
In IEEE/ACM Transactions on Networking, to appear, March 2009.

Upgrading Mice to Elephants: Effects and
End-Point Solutions
Amit Mondal and Aleksandar Kuzmanovic

Department of Electrical Engineering and Computer Science
Northwestern University

Evanston, IL, 60208, USA
{a-mondal, akuzma}@cs.northwestern.edu

Abstract— Short TCP flows may suffer significant response-
time performance degradations during network congestion.Un-
fortunately, this creates an incentive for misbehavior by clients
of interactive applications (e.g., gaming, telnet, web): to send
“dummy” packets into the network at a TCP-fair rate even when
they have no data to send, thus improving their performance
in moments when they do have data to send. Even though
no “law” is violated in this way, a large-scale deployment of
such an approach has the potential to seriously jeopardize one
of the core Internet’s principles — statistical multiplexing. We
quantify, by means of analytical modeling and simulation, gains
achievable by the above misbehavior. Our research indicates
that easy-to-implement application-level techniques arecapable
of dramatically reducing incentives for conducting the above
transgressions, still without compromising the idea of statistical
multiplexing.

Index Terms— Interactive application, TCP, retransmission
timeout, statistical multiplexing

I. I NTRODUCTION

It is well known that short TCP flows may experience
significant performance degradations when they multiplex with
long-lived TCP flows [2]. The root of the problem is the
lack of knowledge about the level of the underlying network
congestion. In absence of the large number of packets char-
acteristic for long-lived flows, even a single packet loss can
force a short-lived TCP flow to experience long retransmission
timeouts [3], which in turn significantly increase a client’s
perceived response time. While several solutions have been
proposed to efficiently combat the problem, none has been
deployed in the Internet, probably because they require non-
negligible architectural changes [2], [4], [5].

However, one extremely relevant — and imminent — aspect
of this problem is still unexplored. In essence, TCP-based
interactive applications such as gaming [6], telnet, or persistent
HTTP [7], which share the above problem common for short
flows, have an incentive to improve their performance; still,
without waiting for any Internet-wide architectural changes.
In particular, they can “upgrade” themselves from “mice” to
“elephants” in a trivial way, simply by sending packets into
the network at a TCP-fair rate even when they have nothing to
send. In this way, they become capable of developing larger
congestion windows, avoid “losing memory” in moments

A subset of this work appears in the Proceedings of IEEE Infocom ’07 [1].

of application-level data starvation [8], and improve their
performance by avoiding long retransmission timeouts.

There are two reasons why users would want to reduce
the response times. First, while the common wisdom is that
50 − 100 ms is the lower bound that clients care about; this
is still an open research question. Recent results indicate
that there is a tremendous variation in user satisfaction in
interactive applications [9]. Second, there are scenarios, such
as multiplayer games over the Internet, where users would care
about improving their performance relative to other players,
hence reducing their response time.

While it may appear that this is a minor problem, or even
there is no problem at all (given that all flows are TCP
friendly), this is far from being the case. While interactive
flows account for a small fraction of the total Internet traffic
in bytes, their percent in terms of the number of flows in
the Internet is much higher [10], [11]. Moreover, interactive
flows (e.g., chat and gaming) are long-lived in general. A
large-scale deployment of this approach has the potential to
seriously jeopardize one of the core principles that today’s
Internet is built upon — statistical multiplexing. Indeed,if
everyone started taking their own fair bandwidth share, the
network would soon become highly congested. While the
absoluteperformance of all flows would necessarily degrade
in such a case, a troubling observation is that those applying
the fully-backlogged approach would still benefitrelative to
the regular clients. Hence, the dangerous incentive remains.

Unfortunately, upgrading an interactive to a fully-
backlogged flow is easy to implement, both at the TCP and
the application levels. Indeed, client-side only implementations
could dramatically improve user-experienced response times,
still without requiring any changes at servers. Moreover,
inducing servers to send traffic at TCP-fair rates is not impos-
sible [12]. In all scenarios, both network- and endpoint-based
mechanisms that check for TCP-friendliness,e.g., [12]–[14],
are incapable of detecting any violation, simply because all
flows are TCP friendly.

To understand all aspects of the above problem, we conduct
an extensive modeling and simulation analysis. By combining
and extending the modeling results of [15]–[18], we quantify
the response-time gains that fully-backlogged flows achieve
over the interactive ones. Our results show that the expected
response times of fully-backlogged flows can betwo to three
timessmaller than those of interactive ones. Likewise, gains

In IEEE/ACM Transactions on Networking, to appear, March 2009.

achievable by fully-backlogged TCP flows are much more
pronounced in the case of Random Early Drop (RED) queues.
Even if a packet is dropped at a RED bottleneck in the
network, the probability is high that at least three of the follow-
up packets will trigger the triple-duplicate ACK mechanism,
thus avoiding long retransmission timeouts. Because Drop Tail
queues inducecorrelatedpacket losses, the corresponding gain
is smaller.

Further, we explore techniques that regular clients can
apply to mitigate the problem. Given the inherent deployment
issues with network-based solutions [2], [4], [5], we focus
on endpointbased methods. We initially explore a TCP-level
approach of reducing the retransmission timeout parameter
by a half. Despite evident improvements, both our modeling
and simulation results indicate that the method is incapable of
removing the dangerous incentive for misbehavior.

We further explore two other endpoint techniques to address
the problem: (i) short-term padding, and (ii) a diversity
approach. In the first scenario, applications append a small
number of small-sized packets to data bursts, thus increasing
the probability to invoke the triple-duplicate ACK mechanism.
In the second scenario, TCP endpoints repeat their packets:if
at least one reaches the destination, the response time is small.
Surprisingly, our modeling and simulation results indicate that
neither approach is uniformly better, and in particular the
impact of each strategy on system performance depends upon
the queuing discipline (e.g., RED vs. Drop Tail) that is in use.

Finally, our results clearly show that both endpoint tech-
niques outperform the fully-backlogged approach, thus effec-
tively removing the dangerous incentive for the greedy TCP-
friendly behavior. While various sub-versions of the proposed
application-level techniques could themselves become attrac-
tive options for misbehaving clients, this no longer poses
a threat to the Internet. Indeed, we show that even if all
interactive-application clients deploy one of the proposed
approaches, the overall network performance does not change
dramatically. Thus, the statistical-multiplexing benefits remain
available to all network clients.

The analysis and approaches presented in the paper are
useful in cases where a single access link is shared among
multiple end users. Because the bandwidth of the access link
is limited, if a subset of the users adopt the fully-backlogged
scheme, other users’ transmission is severely affected. For
example, many people working at home suffer from their
housemates’ greedy applications like BitTorrent and Flashget.
Our analysis applies to such scenarios as well. The sustainable
approaches we discuss towards the end of the paper can be
used to improve the performance of the application-limited
flows in presence of greedy cross traffic.

This paper is structured as follows. Section II explains
the problem origins and its implications. In Section III, we
quantify the padding-induced gain and present modeling and
simulation results. In Section IV, we explore sustainable
countermeasures, evaluate their performance, and compare
overheads. We discuss related work in Section V. Finally, in
Section VI we conclude.

II. PROBLEM ORIGINS AND IMPLICATIONS

A. Problem Origins

TCP congestion control operates at two timescales. On
smaller time scales of the order of RTTs, TCP performs
additive-increase multiplicative-decrease (AIMD) control with
the objective of having each flow transmit at the fair rate of
its bottleneck link. At times of severe congestion in which
multiple losses occur, TCP operates on longer timescales of
Retransmission Time Out (RTO). It provides two mechanisms
for packet loss detection: Fast Retransmit and timeout.

TCP interprets receipt of three duplicate ACKs as an indica-
tion of a packet loss. It retransmits the lost packet immediately
upon the receipt of the third duplicate ACK. This mechanism
is called Fast Retransmit; it detects a packet loss and reacts
to it on the order of a flow’s RTT. Another mechanism to
detect a packet loss is the timeout mechanism. TCP sender
starts a retransmission timer when it sends a packet. In caseit
receives less than three duplicate ACKs and the timer expires,
the sender retransmits the packet. The initial RTO value is set
to three seconds [3]. To keep balance between waiting time
and spurious retransmission there exists a lower bound of one
second for RTO value [3], [19].

The main reasons for the response-time performance degra-
dations experienced by short TCP flows is their poor knowl-
edge about the actual level of congestion in the network.
Indeed, given that such flows only have a few packets to send,
in case a packet gets lost in the network, they have no other
option but to wait for the RTO to expire. In other words, they
are unable to resend the packet immediately after one RTT,
because the three duplicate ACKs may never return; simply
because the corresponding data packets were never sent by the
sender. Given that RTTs are typically of the order of 10’s to
100’s of msec, each such event degrades the response time for
approximately one to twoorders of magnitude.

While the above effect has mainly been explored in the
context of web traffic [20], [21], the same problem holds for
interactive applications [5]. In such scenarios, a client typically
sends a small burst of data, and then waits for a longer period
of time (e.g., a few seconds) before sending the next burst.
One additional issue with interactive scenarios is that even if
an application manages to develop large congestion windows
during burst periods, it cannot “freeze” the window during
times when no data is coming from the application, and reuse
it afterwards. Indeed, because the network conditions may
change quickly, TCP endpoints are required to reduce their
congestion windows during periods of data starvation [8].

B. Implications

All these facts give incentive for clients of interactive
applications for misbehavior. The logic is simple: if interactive
flows experience performance degradations relative to long
TCP flows, then why not upgrading interactive to long flows?
Clients can simply send packets into the network even when
they have no data to send at a TCP fair rate, thus improving
their performance in moments when they do have data to send.
Figure 1 depicts this approach. Whenever data packets are
available, they are immediately sent (hence, strict priority); in

In IEEE/ACM Transactions on Networking, to appear, March 2009.

TCP−fair rate
priority
strictdata

"dummy"

packets

packets

Fig. 1. Padding misbehavior: Upgrading mice to elephants.

times of application-level data starvation, “dummy” packets
are sent into the network. A client can modify the kernel TCP
implementation to achieve this functionality.

Incentives for clients to apply this approach are manifold.
First, by adopting fully-backlogged approach, clients avoid
losing memory in moments of data starvation [8]. Larger
congestion windows can help “jumpstart” an actual data burst
arriving from the application. Second, “dummy” packets fol-
lowing data packets may significantly increase the probability
that a potential packet loss will be detected via the triple-
duplicate ACK mechanism rather than the RTO. Finally,
clients can freely apply this approach, without any fear of
“getting caught.” This is because both network- and endpoint-
based schemes designed to check for TCP-fairness compliance
(e.g., [12]–[14]) would detect no violations.

Unfortunately, even though no law is officially violated
with the above approach, its wide-spread adoption has a
strong potential to seriously jeopardize the overall Internet
performance. When only a single interactive flow is upgraded
to a fully-backlogged flow, there is only a negligible or no
increase in overall packet loss ratio [22]. Thus, the user sees
an immediate improvement in its response time. However, it
will aggravate the congestion and greatly increase the overall
packet loss when everyone adopts this approach. Indeed, if
interactive clients would start taking their bandwidth fair-
share, the network would soon become highly congested.
The packet-based Internet as we know it would soon become
a “circuit-based” network; given the large number of short
and interactive flows [20], [23], the bandwidth “dedicated”
to each “TCP-friendly circuit” would soon converge tozero
[22]. Still, our research indicates that even in such scenarios,
misbehaving clients wouldoutperform the behaving ones.
Thus, the dangerous incentive remains.

Finally, implementing the approach of Figure 1 is not partic-
ularly challenging. Client-side only implementations, both at
the TCP and the application levels are straight forward. Such
designs could improve the times required to “push” packets
to servers, a feature of particular interest to online gaming
players. (Many online games require reliable transport, and
hence use TCP ports [6]). While slightly more challenging,
provoking servers to send at TCP-friendly rates is not impos-
sible. One example is a recently proposed mobile TCP code
method [12]. It enables clients to deploy a desired TCP version
at servers. Given that it only checks for TCP friendliness, the
approach of Figure 1 would not be qualified as a violation.

III. PADDING-INDUCED RESPONSE-TIME GAINS:
MODELING AND SIMULATION

Here, we quantify the gain a misbehaving client is able to
achieve by applying the fully-backlogged approach. The key
performance metric is theresponse time, defined as the time
that elapses between sending a data packet into the network
and receiving a corresponding acknowledgement. To establish
a baseline for comparisons, we initially model the performance
of pure interactive flows. Next, we model the response times
achievable by fully-backlogged flows, assuming both random
and correlated packet losses in the network. Finally, we verify
our modeling results via simulation.

A. Modeling Response Times of Application-Limited TCP
Flows

Interactive applications transmit data in cycles. The traffic
generated by these applications can be characterized by two
parameters: the data burst size, and the inter-burst time. Similar
approach has been used to model telnet and gaming traffic
in [24] and [25]. Both parameters are dependent on human
behavior and activities, such as the user think times or the
typing speed. The burst sizes are typically small, and they
easily fit into a single packet [24], [25]. The inter-burst arrival
times differ from application to application. They are typically
modeled by the exponential distribution, with the mean of
several hundreds of milliseconds (e.g., for gaming [24]) to
several seconds (e.g., telnet [25]). In any case, as long as the
inter-packet arrival times are longer than one third of theRTO,
a potential packet loss willnot trigger the triple-duplicate ACK
mechanism, but will rather be detected via the RTO.

Thus, assuming single-packet-long data bursts and the RTO-
based packet-loss detection, we proceed as follows. Denoteby
p the packet loss probability. We assume independent packet
losses [16], [18]. While packet losses in a Droptail queue
might be correlated within a RTT round, packet losses are
independent among different rounds [18]. Given that interac-
tive applications typically send only a single packet in a round,
the independent packet loss assumption is reasonable for both
RED and Droptail queues. LetPh(i) be the probability that
a packet experiences exactlyi failure transmission attempts,
followed by one successful try. Then,

Ph(i) = pi(1 − p). (1)

After the timeout expires, the client doubles the current
value of RTO; thus, afteri consecutive packet losses, the RTO
value is set to2iRTO. Denote byL(i) the corresponding
latency experienced by the client afteri failure transmission
attempts.L(i) can be expressed as

L(i) =

i−1
∑

k=0

2kRTO + RTT

=
(

2i − 1
)

RTO + RTT. (2)

Thus, forp < 0.5, the expected value of the response-time
latency becomes

In IEEE/ACM Transactions on Networking, to appear, March 2009.

E [L] =

∞
∑

i=0

Ph(i)L(i)

=

(

p

1 − 2p

)

RTO + RTT. (3)

B. Modeling Response Times of Fully-Backlogged TCP Flows

Here, we model the response times of fully-backlogged
network-limited TCP flows. By establishing this result, we
become capable of understanding gains that a misbehaving
client can achieve by applying the fully-backlogged approach.
We exploit the sophisticated modeling results of [15], [18],
and further extend them to obtain the desired response-time
characteristics. In our analysis, we consider both correlated
and random packet losses, typical for DropTail and RED
routers, respectively.

1) Correlated Packet Losses:Padhyeet al. [18] develop
the well-known TCP throughput model for fully-backlogged
TCP flows, which we exploit to obtain the response-time
characteristic. We use the same notation and preserve all
relevant assumptions of [18]. From our perspective, the most
important is thecorrelatedpacket loss assumption. It says that
if a packet is lost, so are all the following packets within the
same RTT round. Indeed, when the bottleneck router applies
DropTail queuing, this is likely the case.

Denote byb the average number of packets acknowledged
by each ACK. Denote byw the TCP congestion window size
in packets, and byE[w] its expected value. Then, according
to [18], E[w] becomes

E [w] =
2 + b

3b
+

√

8(1 − p)

3bp
+

(

2 + b

3b

)2

. (4)

Next, for a givenw, denote byQ̂(w) the probability that a
loss is indicated via a timeout. According to [18],

Q̂(w) = min

1,
(1 − (1 − p)3)(1 + (1 − p)3(1 − (1 − p)(w−3)))

1 − (1 − p)w

!

.

(5)

Q, the probability that a loss indication is a timeout is,

Q =

∞
∑

w=1

Q̂(w)P (W = w) ≈ Q̂ (E[w]) . (6)

Consequently, the probability that the sender detects a
packet loss via triple duplicate ACKs is given by1 − Q.

2) Random Packet Losses:Broshet al. [15] show that the
above model underestimates the fast retransmit and fast recov-
ery TCP features when routers deploy RED. Because in such
scenarios packet losses are random, rather than correlated, the
loss recovery probability increases and the subsequent loss
recovery latency decreases. Thus, by adopting the Bernoulli
loss model, the assumption is that each packet in a round is
dropped with probabilityp, independentlyof other packets.
Let B(w, k) =

(

w

k

)

pw−k(1−p)k. Then, according to [15], for

1−p p

RTO

2
2
RTO

2 RTO1

1−p

p

p

1−p RTT

RTO

2 RTO
1

1−p

p

p

1−p

Q 1−Q

Fig. 2. Decision Tree

a givenw, and forw > 3, the probability that a loss indication
is a timeout is given by

Q̂(w) ≤

∑2
k=0 B(w, k)(1 + (1 − p)k(−1 + (2 − p)w))

1 − (1 − p)w
.

(7)

Next, assuming a uniform distribution for the TCP con-
gestion windowW , which is the instantaneous congestion
window size based on TCP’s congestion control algorithm,
on the discrete interval[0, wmax]; according to [15], the
probability that a loss indication is a timeout becomes

Q =

wmax
∑

w=1

Q̂(w)P [W = w]

≈ min(1,
1

wmax

(6 + 96p− 32p2 + o(p3))). (8)

Again, the probability that the sender detects a packet loss
via triple duplicate ACKs is given by1 − Q.

3) Response Times:Finally, we compute the response times
for both of the above scenarios. One important issue here is
that TCPalwaysevokes an RTO if a retransmitted packet is
lost again [17]. All versions of TCP, including NewReno and
SACK, cannot recover from a retransmission loss without a
retransmission timeout. Figure 2 depicts this effect. Oncea
packet is lost (with probabilityp), the triple-duplicate ACK
mechanism will be invoked with probability1−Q. However,
if the packet is lost more than once, the RTO is inevitable.
While it may appear that computingQ is not that essential
(given that it appears only once in the decision tree), this is
not the case. Given that the Q branch is close to the root of
the tree, it does impact the response times in a non-trivial way,
as we demonstrate below.

For a fully-backlogged TCP connection, denote byL′(i)
the latency experienced by the client after exactlyi failure
transmission attempts of a packet, followed by a successful
transmission. Using the decision tree of Figure 2, we derive
L′(i) as

L
′(i) =

8

>

<

>

:

RTT for i = 0,

RTT + Q(2i
− 1)RTO+

(1 − Q)(RTT + (2i−1
− 1)RTO) for i ≥ 1.

(9)

Consequently, the expected value of the response-time la-
tency becomes

In IEEE/ACM Transactions on Networking, to appear, March 2009.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
xp

ec
te

d
la

te
nc

y
(m

s)

 Ploss

Non-backlogged
Fully-backlogged with DropTail

Fully-backlogged with RED

Fig. 3. Modeling: Expected latency as a function of packet loss prob.

E [L′] =

∞
∑

i=0

Ph(i)L′(i)

= Q

(

1 − p

1 − 2p
− 1

)

RTO + RTT

+ p(1 − Q)

((

1 − p

1 − 2p
− 1

)

RTO + RTT

)

. (10)

Finally, we define the response time gain,G, as the ratio
between the expected response times for an interactive and a
fully-backlogged TCP,G = E[L]/E[L′].

C. Modeling Results

Figure 3 depicts the expected latency as a function of
the packet loss probability for application-limited as well
as fully-backlogged flows (both for random and correlated
packet losses). Naturally, in all scenarios, the expected latency
increases as the packet loss probability increases. However,
the key point is that for a given packet loss rate, the fully-
backlogged flowsalwaysoutperform interactive ones. In other
words, clients promoting their flows from mice to elephants
always experience better performance than pure interactive
flows. Unfortunately, this means that the incentive for con-
ducting the misbehavior is always present.

Figure 3 further shows that the padding misbehavior pays
off better for RED-based bottlenecks. Because packet losses
are random, avoiding RTOs is more likely in such scenarios.
In particular, if a packet is lost, the probability that the
following packets from the same RTT round will make it
to the destination (and the corresponding ACKs back to the
source) is not small. As a result, the triple duplicate ACK
probability (1−Q) is larger for random packet losses than for
correlated ones. Figure 3 demonstrates that there still exists
gain of fully-backlogged flows with DropTail over the pure
interactive scenario; this is despite the correlated packet loss
assumption (if a packet is lost in a round — then all packets
that follow in the same round are dropped). If at least three
packets from a RTT round make it to the destination before
the concerned packet is lost, they may still trigger the triple-
duplicate ACK mechanism in the following RTT round (see
reference [18] for details).

Figure 4 depicts the response-time gains achievable by the
padding misbehavior as a function of the packet loss ratio.
Such a measure is of particular importance for misbehaving
clients trying to maximize their performance gains. All curves

in Figure 4 show a similar shape. Initially, the gain is relatively
small for very small packet loss ratios. Indeed, even if packet
losses are detected via the RTO, such events are rare, and thus
the impact on the expected latency is negligible. However, as
the packet loss ratio increases, so does the gain. Interactive
flows suffer more and more, while fully backlogged flows
manage to improve their performance by relying on the
triple-duplicate ACK mechanism. Finally, the gain starts to
decrease as the packet loss ratio keeps increasing. In such
environments, the TCP congestion window starts reducing, Q
starts converging to 1, and padding is not as beneficial any
more.

Figure 4 further shows that the gain is a function of RTT;
the higher the RTT value, the smaller the RTO/RTT ratio, and
the smaller the gain. Also, as RTT increases, the maximum
gains are achieved for larger packet loss ratios. Indeed, asthe
RTO/RTT ratio decreases, it must be compensated by its
factor ((1 − p)/(1 − 2p) − 1) (Equations (3), (10)) to keep
a balance, meaning thatp increases. Finally, for the reasons
explained above, RED’s gain is larger than DropTail’s.

D. Simulation

To verify our modeling results, we have conducted ex-
tensive simulation experiments, which are described here.
The topology consists of a client and a server pool that are
interconnected by a pair of routers and a bottleneck link. The
effective round trip time fluctuates in the range from 10 to
100 ms; likewise, we vary the bottleneck link capacity from
1.5 to 10 Mbps. By generating the background cross traffic
of appropriate intensity, we control the packet loss ratio at
the bottleneck. We usens-2’s TCP/FullTcpAgent. For each
data sample, we run the simulation for a thousand seconds
repeatedly and report averages1.

For interactive traffic, we open a telnet connection. The
telnet client generates packets using an exponential distribu-
tion with average inter-arrival time of1 second. For fully-
backlogged TCP connections, we open FTP connections be-
tween a pair of nodes, one each from the server and the
client pool. To accurately emulate an interactive connection
converted to a fully-backlogged connection, we mark packets
randomly using the same exponential distribution as in the
telnet scenario. For the analysis of the simulation results, we
consider the statistics for those marked packets only.

Figure 5(a) plots the simulation results for the gain ratio
(the y-axis in the figure) as a function of the packet loss rate
(the x-axis in the figure) for RED and DropTail queues. In this
particular scenario, we set the bottleneck bandwidth to 5 Mbps,
and the round-trip propagation delay is 12 ms. The bottleneck
router buffer is 40 kB; in the RED case, we use the defaultns-
2 RED parameters. We control the packet loss ratio by varying
the intensity of the cross-traffic. The background traffic is
composed of http, ftp, and low-rate udp traffic. In addition,
we generate a pure interactive flow and an interactive flow
converted to a fully-backlogged flow. For each of the flows, we
log the experienced packet loss ratio and response-time. Then,

1The modified ns-2 code and simulation scripts are available at
http://networks.cs.northwestern.edu/Intcp/code/

In IEEE/ACM Transactions on Networking, to appear, March 2009.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.05 0.1 0.15 0.2 0.25

G
ai

n
R

at
io

 Ploss

RTT = 12ms
RTT = 30ms
RTT = 60ms

(a) RED

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 0.05 0.1 0.15 0.2 0.25

G
ai

n
R

at
io

 Ploss

RTT = 12ms
RTT = 30ms
RTT = 60ms

(b) DropTail

Fig. 4. Modeling: Gain ratio as a function of packet loss prob.

 1

 1.5

 2

 2.5

 3

 0 0.02 0.04 0.06 0.08 0.1

G
ai

n
ra

tio

Ploss

RED, sim
DropTail, sim

RED, mod
DropTail, mod

(a) congestion-related losses

 1

 1.5

 2

 2.5

 3

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
G

ai
n

ra
tio

Ploss

Modeling
Simulation

(b) artificial losses with RED queue

Fig. 5. Simulation: Gain ratio as a function of packet loss prob.

we run the experiment multiple times and aggregate the results
to calculate the gain ratio. Unless otherwise indicated (e.g.,
Figure 8), this is the default simulation scenario. The shape of
both curves in the figure is as predicted by modeling. Likewise,
simulations confirm that gains are larger in the case of RED
than with DropTail. The figure shows a discrepancy between
the model and the simulations. This is due to varying queuing
delay in simulations, and because the effective RTT increases
with the packet loss ratio (congestion in the network), which
is not captured in the model.

In order to understand why the match between modeling
and simulations shown in Figure 5(a) is so poor, we proceed
as follows. By applying thens-2’s artificial random packet
loss module, we manage to effectively control the packet loss
ratio while keeping the RTT value relatively constant. We
apply RED queue at the routers for this experiment. Given that
packet loss is introduced artificially, and there is no congestion
in the network, both RED and DropTail yield similar results.
Figure 5(b) shows the results. For packet loss ratios of up
to 3.5%, the model and simulations match well. However, for
larger packet loss ratios, the modeling leads to over-estimation
of the gain ratio. This is because we assumed that the initial
RTO is set to minRTO of 1 second [3]. However, when the
packet loss ratio is high, this is not necessarily the case. For
example, due to multiple packet losses in a single RTT round,
a future packet may “inherit” a longer initial RTO, an effect
that is not captured in our modeling. Still, the gain in both
scenarios remains in favor of fully-backlogged flows. Despite
the mismatch between the modeling and simulations, the gain
ratio is always greater than one both for RED and Droptail

queues. The important implication is that greedy users always
have the incentive to adopt the fully-backlogged approach to
improve their response times.

In order to understand the impact on overall network perfor-
mance when a user adopts the fully-backlogged approach we
conduct an experiment and present our observation in Figure
6. The experiment is done using a dumbbell topology with
access link capacity of 100Mbps and bottleneck capacity of
10Mbps. Each link in the topology has a delay of 2ms. Figure
6 shows the overall loss rate on the Y-axis and number of
fully-backlogged flows in the system on the X-axis. The gap
between the solid line and the dotted line depicts the increase
in packet loss rate when a user adopts the fully-backlogged
approach for a given number of background flows on X-axis.

Figure 6 clearly shows that there is no considerable increase
in packet loss rate for any given background setup when a
user upgrades itself to fully-backlogged connection. Given this
observation and the fact that an interactive connection always
improves its response times by adopting fully-backlogged ap-
proach, any greedy user would always be tempted to upgrade
itself to fully- backlogged connection, even after knowing
that if everyone starts doing the same the overall Internet
performance will be severely degraded. This is because there
is no central authority that monitors or controls user behavior
in the Internet, and a user has no way to know what others
are doing. Thus upgrading itself is the best strategy for a user,
and any greedy rational user will do it.

In IEEE/ACM Transactions on Networking, to appear, March 2009.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 100 1000

L
o

s
s
 r

a
ti
o

No of users

Interactive conn
Fully-backlogged conn

Fig. 6. Loss rate as a function of number of users

IV. SUSTAINABLE COUNTERMEASURES

In this section, we explore ways to enhance the perfor-
mance of interactive applications without applying the fully-
backlogged approach. In other words, the challenge is to
makesustainablechanges, which if applied globally, would (i)
solve the problem, yet (ii) without compromising the idea of
statistical multiplexing. Our primary goal is to increase the per-
formance of legitimate users to a level which will demotivate
misbehaving clients from converting their interactive flows into
fully-backlogged TCP connections.

A. Approach I: Differentiated minRTO

We initially focus on the RTO parameter. Selection of the
timeout value requires a balance among two extremes: if set
too low, spurious retransmissions will occur when packets
are incorrectly assumed lost when in fact the data or ACKs
are merely delayed. Similarly, if set too high, flows will
wait unnecessarily long to infer and recover from congestion.
Allman and Paxson [19] experimentally showed that TCP
achieves near-maximal throughput in the Internet if there exists
a lower bound for RTO of one second. The study found that
all flows should have a time-out value of at least 1 second in
order to ensure that congestion is cleared, thereby achieving
the best performance.

One approach to reducing the performance degradations
experienced by application-limited flows is reducing the min-
RTO parameterexclusivelyfor such flows. In particular, we
explore an approach in which a TCP sender is allowed to
use a lower value for minRTO, (e.g., minRTO’), when its
used congestion window size is less than afraction of the
current congestion window size (we quantify theminRTO’and
fraction parameters below). While it is arguable whether such
an approach can cause a congestion collapse, one argument
in its behalf is that interactive applications represent only a
small fraction of the byte-level Internet traffic. Moreover, the
ultimate protector from congestion collapse is the RTO backoff
mechanism [26]. Thus, having a few spurious retransmissions
will not degrade the network performance by a perceptible
amount. Moreover, in the context of the congestion collapse
problem, this approach can only be better than the fully-
backlogged one. However, the results we present below make
such a discussion obsolete.

B. Approach II: Short-term padding with dummy packets

In this approach, the goal is to improve the performance
of interactive applications by increasing the probabilitythat

a packet loss is detected via the fast retransmit mechanism;
yet, without applying the “brute-force” fully-backloggedap-
proach. In particular, this could be achieved by appending the
application data packet with three “tiny” (e.g., 20 bytes each)
“dummy” packets. Indeed, RFC 3390 [27] enables setting
TCP’s initial congestion window size to 4 packets when TCP
starts a new connection or restarts a connection after a long
idle period. Thus, the three additional tiny dummy packets
should help the endpoints detect data packet losses via triple
dummy-packet-initiated duplicate ACKs.

The unique characteristic of this approach is that in ad-
dition to being implementable at the TCP layer, it could be
implemented at theapplication levelas well. An application
should make sure that it does not send packets back to back;
otherwise, TCP will make a single 60-byte packet and send it
to the network. At any rate, contrary to the approaches above
and below, interactive applications could immediately deploy
this approach without requiring any kernel-level TCP changes.

1) Modeling: Here, we derive the response-time formula
for the short-term padding approach. Assume a general sce-
nario in which the minimum congestion window size param-
eter is m, such thatm − 1 packets are appended to a data
packet. A timeout is invoked if two or fewer dummy packets
reach the receiver; more precisely, if the TCP sender gets back
two or less duplicate ACKs. Thus, the probability that the loss
indication for a data packet is a timeout is given by

Q(m) =

2
∑

i=0

(

m − 1

i

)

p(m−1−i)(1 − p)i. (11)

Again, the probability that a data packet loss is detected by
the triple duplicate ACK mechanism is 1-Q. Also, as discussed
above, in case a retransmitted packet is lost again, it evokes
an RTO. Thus, by applying the same approach as in Section
III-B, the expected latency becomes

E [L′] = Q

(

1 − p

1 − 2p
− 1

)

RTO + RTT

+ p(1 − Q)

((

1 − p

1 − 2p
− 1

)

RTO + RTT

)

. (12)

Strictly speaking, Equation (12) appliesonly to the random
loss scenario. Indeed, under the assumption that if a packetis
lost, so are all the packets that follow in the same round, the
proposed approach is ineffective. However, our simulations
indicate that the above correlated packet loss assumption
is “too strong,” and that when a data packet is lost, the
corresponding follow-up packets are not always dropped in
DropTail routers. Hence, the proposed approach improves the
performance even in such scenarios, as we show below.

C. Approach III: A Diversity Approach

In this approach, we modify a TCP sender to send a packet
k times;k is a small integer,k > 1. TCP sendsk copies of a
packetwithoutviolating TCP’s congestion control mechanism.
The key idea behind this approach is that the probability that at
least one of thek copies of a packet will make it to the receiver

In IEEE/ACM Transactions on Networking, to appear, March 2009.

is high. However, if allk packets are lost, TCP undergoes
retransmission timeout and cuts down the congestion window
to one. Hence, in the following retransmission rounds, it
retransmits the packet only once.

Formally, when a TCP sender transmits only a single packet
and it cannot send any more packets because it does not
have any data to send, this approach allows the TCP sender
to transmit a duplicate copy back to back. Of course, this
only applies under the assumption that the current congestion
window permits the TCP sender to transmit more than one
packet.

This is aTCP-onlyapproach; it cannot be deployed at the
application layer. For example, if two copies of a packet are
sent from the application to the TCP layer, TCP will treat
them as two different packets. Thus, if the first packet is lost
and the second one makes it to the receiver, the second packet
will only be buffered at the TCP layer; it will be “pushed” to
the application layer only after the first packet is successfully
retransmitted — which in this scenario happens after one RTO
in the best case.

Note that TCP uses the lack of an acknowledgement as an
implicit signal of packet loss, and reacts by cutting down its
congestion window. However, in this approach, even if one of
the packets is lost, TCP sender gets acknowledgement from
the receiver. In order to keep TCP’s congestion mechanism
function correctly, the sender maintains extra information,
whenever it sends a duplicate copy, it expects a duplicate
acknowledgement from the receiver. If it does not receive the
duplicate acknowledgement, it cuts down the congestion win-
dow. Moreover, delayed acknowledgement should be disabled
at the receiver.

1) Modeling: Here, we derive the response-time formula
for the diversity approach. Denote byk the number of copies
of a packet a TCP sender generates. Then, the probability that
at leastone copy of a packet is transmitted successfully exactly
after i failure rounds becomes

Ph(i) =

{

1 − pk for i = 0,
pk+i−1(1 − p) for i ≥ 1.

(13)

In particular, the probability that at least one of thek packets
in the first round successfully reaches the destination is given
by 1 − pk. For i ≥ 1, Ph(i) is given by the product of two
probabilities: (i) the probability that allk copies are lost in the
first round, and (ii) the probability that the single packet copy
is lost in all subsequenti−1 rounds, followed by a successful
transmission. Then, following the approach of Equation (3), it
could be shown that forp < 0.5, the expected response-time
latency becomes

E [L′] = pk−1RTO

(

(1 − p)

(1 − 2p)
− 1

)

+ RTT. (14)

Similarly to the above scenario, our modeling approach here
strictly applies only to random packet losses. Still, simulations
below indicate that the approach is viable in DropTail scenar-
ios as well.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
xp

ec
te

d
la

te
nc

y
(m

s)

Ploss

Interactive conn.
Fully-backlogged conn.

Approach-I
Approach-II
Approach-III

Fig. 7. Modeling: Expected latency as a function of packet loss prob.

D. Evaluation

Here, we evaluate the effectiveness of the three approaches.
For Approach I, we set the minRTO’ to 500 ms, and the
fraction parameter to 1/4. Given that the minimum congestion
window is four packets [27], this enables a client to always
re-send a packet after an RTO of 500 ms. In Approach II,
an application data packet is appended with three application-
level dummy packets, each of the size of 20 bytes. After TCP
adds a 40-byte-long header, the dummy packet size in the
network becomes 60 bytes. Finally, for Approach III, we set
k = 2; thus, each packet is repeated twice.

Figure 7 plots the expected latency, estimated by the analy-
ses given above (Equation 12, 14), as a function of the packet
loss ratio for the three approaches. The key observation is that
the short-term padding and diversity approachesoutperform
the fully-backlogged approach. In this way, two goals are
achieved: (i) The interactive-application clients no longer have
incentives to generate fully-backlogged flows. Indeed, why
convert to fully-backlogged when approaches-II and -III are
better? (ii) Approaches-II and -III still preserve the idea of
statistical multiplexing, as we demonstrate below.

Figure 7 also shows that despite the fact that we reduced the
minRTO parameter bya half, the response time of Approach I
is still higher than that of the fully-backlogged approach.Our
evaluations (using both Equation (3) and simulations) indicate
that reducing the minRTO parameter much more would help
outperform the fully-backlogged approach. However, such an
approach in essence converges to the Approach III (fork = 2),
and hence we refrain from showing it further.

1) Simulations: Figure 8 plots the simulation results for
the above scenarios, both for RED and DropTail routers. In
simulations, we control the packet loss by varying the intensity
of the cross traffic. In addition, we generate one of the flows
indicated in the figure: an interactive, a fully-backlogged,
an Approach II, and an Approach III flow. Figure 8(a) (the
RED case) confirms general trends shown previously in Figure
7: approaches-II and -III outperform the fully-backlogged
scenario. Moreover, as explained above (in Section III-D),
due to inheriting longer than minRTO initial timeouts, the
fully-backlogged flow experiences additional response-time
degradations for larger packet-loss ratios.

Figure 8(b) plots simulation results for the DropTail case.
While correlated packet losses, characteristic for drop-tail
queues, do affect the overall performance, the key finding
remains unchanged: both approaches-II and -III have lower
response times than the fully-backlogged approach. For exam-

In IEEE/ACM Transactions on Networking, to appear, March 2009.

 0

 50

 100

 150

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

La
te

nc
y

(m
s)

Ploss

Interactive conn.
Fully-backlogged conn.

Approach-II
Approach-III

(a) RED

 0

 50

 100

 150

 200

 250

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

La
te

nc
y

(m
s)

Ploss

Interactive conn.
Fully-backlogged conn.

Approach-II
Approach-III

(b) DropTail

Fig. 8. Simulation: Latency as a function of loss rate

 0

 5

 10

 15

 20

 25

 100 200 300 400 500 600 700 800 900 1000 1100

O
b

s
e

rv
e

d
 l
o

s
s
 r

a
te

 (
%

)

Packet size (bytes)

load = 90%

load = 100%

load = 110%

Fig. 10. Simulation: Observed loss rate as a function of segment size used
by the flows.

ple, due to larger probability that both copies of a packet in
Approach III will get dropped at the router, its performance
is not as good as in the RED case. However, because the
probability that both packets are lost concurrently doesnot
equal one in reality, there still exists gain over the fully-
backlogged approach. Also, contrary to the RED scenario, itis
interesting that Approach II (padding) outperforms Approach
III (diversity). Since padded dummy packets are smaller than
data packets, the likelihood that they will get dropped at
the byte-based drop-tail queue is smaller. To validate the
hypothesis, we conduct an experiment where we generate
multiple Telnet flows, and each of them uses a different
segment size (128, 256, 512, and 1024 bytes). The bottleneck
router uses a Droptail queue in the byte mode. We control
the network load by generating pareto and http cross traffic of
average segment size of 576 bytes. Figure 10 shows the impact
of the packet size on the observed loss rate experienced by the
flows. It clearly shows that flows with smaller segment sizes
experience significantly lower loss rates relative to the flows
with larger segment sizes.

2) Overhead and Sustainability:One final issue that we
explore is overhead and sustainability. In essence, we explore
scenarios in which a given approach is widely deployed, and
evaluate (i) the performance gains over the greedy fully-
backlogged approach, and (ii) performance reductions relative
to the purely interactive, yetunsustainable, approach.

Figure 9 plots response times as a function of the number of
flows in the network, whenall clients apply a given approach
indicated in the figure. Even for a moderate number of
connections, the response times increase dramatically forthe
fully-backlogged approach. At the other extreme, the purely

interactive approach can support more than 350 connections
before the latency starts increasing. Unfortunately, as discussed
above, this state is unstable in the sense that clients have
incentives to improve their performance while still remaining
TCP friendly. Finally, the figure shows that approaches-II
and -III support a necessarily smaller number of connections
relative to the interactive scenario. However, the key point
is that both approaches provide (i) a sustainable solution
that demotivates clients from moving the system into the
fully-backlogged state; and (ii) a significantly “friendlier”
environment relative to the fully-backlogged approach.

Figure 9 shows that in the case of Approach III, the
latency starts increasing when the number of flows exceeds
175. Indeed, because clients send two copies of a packet by
default, the “departure” point is approximately at one half
of the number achievable by the purely interactive approach.
Next, because the overhead for the Approach II is smaller
(3*60bytes relative to 540 bytes-long data packets), it can
support a larger number of flows without increasing response
times (the “departure” point is around 250 flows).

Also, while the performance for Approach II (padding) is
approximately identical in the RED and DropTail scenarios,
this is not the case with the diversity approach. Indeed, Figure
9(a) shows that RED’s random packet dropping has a brilliant
effect on Approach III, given that latency increases moder-
ately with the number of flows. Not only that the approach
dramatically outperform the fully-backlogged approach, but it
even outperforms the pure interactive approach when there are
many flows in the system. By contrast, due to correlated packet
losses, the latency slope is much steeper in the DropTail case.

E. TCP Smart Framing

Mellia et al. [28] propose a segmentation algorithm,TCP
Smart Framing(TCP-SF) to reduce TCP’s latency. The basic
notion is to split data into smaller segments when TCP’s
congestion window is less than fourmaximumsegment sizes
(MSS). This helps TCP to recover from packet losses during
the slow-start period. In essence, this is an attempt to ensure
that there are always enough packets in the network to trigger
the fast retransmit. As the congestion window grows, the
algorithm increases the segment size. This technique has been
shown to perform well in reducing timeout events during the
slow-start phase when the end point has new data to send in

In IEEE/ACM Transactions on Networking, to appear, March 2009.

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 50 100 150 200 250 300 350 400

La
te

nc
y

(m
s)

No. of conn.

Fully-backlogged conn.
Interactive conn.

Approach-II
Approach-III

(a) RED

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 50 100 150 200 250 300 350 400

La
te

nc
y

(m
s)

No. of conn.

Fully-backlogged conn.
Interactive conn.

Approach-II
Approach-III

(b) DropTail

Fig. 9. Simulation: Number of flows vs latency: C = 1.5Mbps

response to an acknowledgement. Below, we explore if this
approach can improve the performance of interactive flows.

It appears that TCP-SF approach will also enable interactive
TCP senders to detect packet losses via fast retransmit without
waiting for long retransmit timeouts. However, we show below
that contrary to the common intuition, TCP-SF even degrades
the response times for interactive applications. The key reason
is that the probability of getting one of the multiple small
segments lost in the network is even higher than when entire
data is packed into a single packet. This approach works well
for reducing timeout probability during the slow-start period of
a backlogged TCP connection because the TCP sender always
has new data to send upon a receipt of an acknowledgement.
But, this does not hold true for an interactive TCP sender.
Interactive applications often wait for the response message
from its peer before sending any new data to the TCP layer.
In such scenarios, if any of the last three segments are lost,
then the only way to recover is to wait for the retransmit
timer to expire. This exacerbates response time of interactive
applications.

1) Modeling: Here, we analyze the behavior of the TCP-
SF approach using a state machine. Figure 11 describes the
behavior of TCP-SF for a interactive connection. The initial
state of the system is represented byS. When a loss occurs,
TCP-SF can either enter fast retransmit (FR) or timeout (TO).
This choice depends on the loss pattern.FR can be entered
only if the first segment is lost and the following three
segments are successfully delivered. Denote byps the small-
size segment loss probability. Then, the transition probability
from stateS to FR is equal top(S, FR) = ps(1 − ps)

3.
If a loss pattern occurs so thatFR cannot be entered, the
state machine moves from stateS to TO. The probability of
this transition isp(S, TO) = 1 − p(S, FR) − (1 − ps)

4. The
state machine can then leave stateTO and enter stateS if no
further losses occur. Similarly, from stateFR, it can either

FR TOS

Fig. 11. State machine to analyze the behavior of TCP-SF

enterTO or go back toS depending upon further loss events.
The state machine of TCP for interactive connection consists
of two states only;S and TO. Denote byp the normal-size
packet loss probability; the probability of transition from state
S to TO is equal top(S, TO) = p.

The performance of the TCP-SF approach relative to the
TCP approach highly depends upon small-size to normal-size
(ps/p) packet loss ratio. In a packet-based queue, whereps =
p, the TCP-SF approach will necessarily perform worse than
TCP. Even with byte-based droptail queue, where the queue
operates at the edge during periods of congestion, packet losses
are inevitable when multiple small-size packets arrive in burst.
This will often lead to multiple packet losses, and resulting in
timeout. We evaluate these hypotheses below.

2) Simulations:Figure 12(a) shows the TCP-SF and TCP
response time profiles for abyte-baseddroptail queue. The
result is even worse for a packet-based queue (not shown).
It clearly reveals that the response-time plot for TCP-SF is
significantly worse than it is for TCP. This is for the same
reason explained above. Figure 12(b) shows that there is little
improvement when RED AQM is deployed at the network
routers. This is because the average queue size remains below
the actual queue limit due to the random early dropping
mechanism, and the packet dropping probability reduces pro-
portionally when the incoming packet size is smaller than
the mean packet size[29]. However, both DropTail and RED
queues are deployed in today’s Internet, which makes TCP
smart framing a nonviable solution for interactive TCP.

V. RELATED WORK

There has been substantial amount of work to improve
the response time of short flows in the Internet. Many such
approaches appear to address the response time degradation
problem of interactive applications to some extent. In this
section, we discuss such related work.

Several solutions based on the idea of service differentia-
tion and preferential treatment to short flows in the network
has been proposed. Guo and Matta [2] use different mark-
ing/dropping functions at the routers and a packet classifier
at the network edge to distinguish between long- and short-
lived TCP flows. In addition to requiring large changes to
the existing network infrastructure, the solution appearsto
address the problem of short, but not the interactive flows

In IEEE/ACM Transactions on Networking, to appear, March 2009.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

La
te

nc
y

(m
s)

Ploss

TCP
TCP-SF

(a) DropTail

 0

 50

 100

 150

 200

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

La
te

nc
y

(m
s)

Ploss

TCP
TCP-SF

(b) RED

Fig. 12. Simulation: Evaluation of TCP-SF for interactive applications

because its packet/flow classification technique is based on
packet counting, rather than the sending rate of the flow. It
would classify a long-lived interactive connection, even if
sending packets at a very low-rate, into the category of long
flows, once the packet counter exceeds the threshold value.
Noureddine and Tobagi [5] propose application- and TCP-level
marking to give strict priority to interactive applications in the
network. In addition to requiring per-user traffic policingat
the network edge (tedious to deploy), the authors assume a
widespread network support for multi-priority services inthe
Internet (to the best of our knowledge, not the case).

Le et al. [4] propose an AQM scheme which gives a strict
priority to short flows, while it applies congestion control
only to long flows. The key advantage over the above two
schemes is that it requires no support from the endpoints; it
distinguishes short from long flows by tracking the number
of packets that have recently been seen from each flow at
the router. In addition to provoking potential security and
stability side effects (e.g., see [21]), the proposed scheme
requires to be implemented in thenetwork core; unfortunately,
no strong incentives for such a deployment exist. Similarly,
it has been shown that marking, instead of dropping, TCP
control packets using Explicit Congestion Notification (ECN)
could significantly improve the performance of short flows
[21]. Unfortunately, ECN is not widely deployed in today’s
Internet.

Endpoint-based approaches have also been proposed. A
large amount of Internet TCP trace analysis [30] shows that
lowering TCP’s duplicate acknowledgement threshold from
three to two, would increase the fast retransmit opportunities
by 65−70%. However, it also increases the number of spurious
retransmissions by a factor of three. Further analysis shows
that introducing a small delay (around20 ms) at the receiver,
before sending duplicate acknowledgement upon the advent of
a sequence hole, can avoid most of such spurious retransmis-
sions. Since this approach requires modification both at the
sender and receiver side, the author discards this solutionas
being impractical for Internet wide deployment.

The Limited transmit approach [31] allows a TCP sender
to transmit a previously unsent data upon arrival of the first
two consecutive duplicate acknowledgements, provided, of
course, that the receiver window allows the transmission of
the segment and outstanding data remains less or equal to the

congestion window size plus two segments. Assuming these
two new segments and corresponding ACKs are not dropped,
the sender can infer packet loss using standard Fast Retransmit
threshold of three packets. To take advantage of this method,
TCP sender should always have new data to transmit, which
is not the case with interactive applications.

The Early Retransmit approach [32] addresses TCP’s loss
recovery mechanism for congestion windows smaller than four
packets and when the TCP sender cannot send any new data
either because of a limited receiver window or it does not have
any new data to send. This approach enables TCP senders to
retransmit the lost packet upon receiving congestion window
minus one duplicate acknowledgements. However, the TCP
sender should send at least two packets for this loss recovery
mechanism to work.

To address the problem of low network observability by
short flows, RFC 3390 [27] specifies an increase in the
permitted upper bound for TCP’s initial window from one or
two segment(s) to between two and four segments. If at least
one of the packets returns to the sender, the connection will
not suffer the initial default 3 second-long timeout penalty
[3]. Padmanabhan [33] describes a technique for integrated
loss recovery and congestion window evolution by persistent
and pipelined HTTP flows. Such techniques are shown to be
capable of faster loss recovery and more responsive to network
congestion than multiple TCP connections. The motivation
behind integrated loss recovery is to reduce the number of
timeouts for short flows. Yang and de Veciana [34] develop
TCP/SAReno in which the AIMD parameters dynamically
depend on the remaining file size, such that short flows become
more aggressive. Finally, Savageet al. [35] and Andersonet
al. [36] have demonstrated that using history can be efficiently
used to improve the performance of short flows.

Despite the fact that all of the above endpoint approaches
enable protocol support for improving the performance of
short or interactive flows, the key problem remains: the
application-level data starvationcan prevent clients from
experiencing any benefits from the above designs. In particular,
the burst periods of interactive flows are typically small
enough to fit into asingle packet[24], [25]. As a result, an
increased congestion window, a more aggressive TCP, or a
history-based approachcannot help. If a packet gets lost in
the network, the sender must rely on the RTO mechanism

In IEEE/ACM Transactions on Networking, to appear, March 2009.

before re-injecting the packet back into the network, thus
experiencing significant performance degradations.

VI. CONCLUSIONS

This paper points out the response time degradations suf-
fered by interactive flows relative to fully-backlogged flows
during periods of congestion; it demonstrates that interactive
flows can improve their response times by converting them-
selves into fully-backlogged flows. Our first contribution lies
in pointing out at an imminent and a serious implication of
this problem: nothing stops clients ofinteractive applications
to improve their response-time performance by generating
traffic at a TCP-fair rate. The problem is imminent because
the misbehavior is hard to detect, given that flows are TCP
friendly. The problem is serious because it has the potential
to jeopardize one of the core principles that today’s Internet
is built upon — statistical multiplexing. Second, we showed
that interactive clientsalways have an incentive to send at
a TCP-fair rate, because the corresponding response-time
performancealwaysoutperforms the pure interactive approach.
Moreover, we revealed that due to random packet losses, the
gain is much larger for RED routers. Finally, we demonstrated
that there exist simple, easy-to-deploy, andsustainablesolu-
tions that are capable of effectively demotivating clientsfrom
applying the greedy fully-backlogged approach. In particular,
we showed that a diversity method, accompanied with RED
routers in the network, performs remarkably well. Still, the
short-term padding approach appears even more attractive;
it could be implemented at theapplication layer, without
requiringany TCP-level modifications.

ACKNOWLEDGEMENTS

We would like to thank Mark Allman and Sally Floyd for
their insightful comments on this paper. We would also like
to thank anonymous INFOCOM reviewers for their valuable
feedback on an earlier version of this paper.

REFERENCES

[1] A. Mondal and A. Kuzmanovic, “When TCP friendliness becomes
harmful,” in Proceedings of IEEE INFOCOM ’07, Anchorage, Alaska,
May 2007.

[2] L. Guo and I. Matta, “The war between mice and elephants,”in
Proceedings of IEEE ICNP ’01, Riverside, CA, Nov. 2001.

[3] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,”
Nov. 2000, Internet RFC 2988.

[4] L. Le, J. Aikat, K. Jeffay, and F. Smith, “Differential congestion
notification: Taming the elephants,” inProceedings of IEEE ICNP ’04,
Berlin, Germany, Oct. 2004.

[5] W. Noureddine and F. Tobagi, “Improving the performanceof interactive
TCP applications using service differentiation,” inProceedings of IEEE
INFOCOM ’02, New York, NY, June 2002.

[6] “Which ports are used by computer games?”
http://www.u.arizona.edu/ trw/games/ports.htm.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol - HTTP/1.1,”June 1999,
Internet RFC 2616.

[8] M. Handley, J. Padhye, and S. Floyd, “TCP congestion window valida-
tion,” June 2000, Internet RFC 2861.

[9] P. Dinda, G. Memik, R. Dick, B. Lin, A. Mallik, A. Gupta, and
S. Rossoff, “The User In Experimental Computer Systems Research,”
in Proceedings of the Workshop on Experimental Computer Science
(ExpCS’07), June 2007.

[10] S. McCreary and K. Claffy, “Trends in wide area IP trafficpatterns -
A view from ames Internet exchange,”Proceedings of the 13th ITC
Specialist Seminar on Internet Traffic Measurement and Modelling,
2000.

[11] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: multilevel
traffic classification in the dark,” inProceedings of ACM SIGCOMM
’05, Philadelphia, PA, Aug. 2005.

[12] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and T. Stack, “Upgrading
transport protocols with untrusted mobile code,” inProceedings of ACM
SOSP ’03, Bolton Landing, NY, Oct. 2003.

[13] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high-bandwidth
flows at the congested router,” inProceedings of IEEE ICNP ’01,
Riverside, CA, Nov. 2001.

[14] A. Kuzmanovic and E. Knightly, “A performance vs. trustperspective
in the design of end-point congestion control protocols,” in Proceedings
of IEEE ICNP ’04, Berlin, Germany, Oct. 2004.

[15] E. Brosh, G. Lubetzky-Sharon, and Y. Shavitt, “Spatial-temporal analysis
of passive TCP measurements,” inProceedings of IEEE INFOCOM ’05,
Miami, FL, Mar. 2005.

[16] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in
Proceedings of IEEE INFOCOM ’00, Tel Aviv, Israel, Mar. 2000.

[17] B. Kim and J. Lee, “Retransmission loss recovery by duplicate acknowl-
edgement counting,”IEEE Communications Letters, vol. 8, no. 1, Jan.
2004.

[18] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Reno
performance: A simple model and its empirical validation,”IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145, Apr. 2000.

[19] M. Allman and V. Paxson, “On estimating end-to-end network path
properties,” inProceedings of ACM SIGCOMM ’99, Vancouver, British
Columbia, Sept. 1999.

[20] L. Le, J. Aikat, K. Jeffay, and F. Smith, “The effects of active queue
management on Web performance,” inProceedings of ACM SIGCOMM
’03, Karlsruhe, Germany, Aug. 2003.

[21] A. Kuzmanovic, “The power of explicit congestion notification,” in
Proceedings of ACM SIGCOMM ’05, Philadelphia, PA, Aug. 2005.

[22] R. Morris, “TCP behavior with many flows,” inProceedings of IEEE
ICNP ’97, Atlanta, GA, Oct. 1997.

[23] F. Smith, F. Campos, K. Jeffay, and D. Ott, “What TCP/IP protocol head-
ers can tell us about the Web,” inProceedings of ACM SIGMETRICS
’01, Cambridge, MA, June 2001.

[24] J. Farber, “Network game traffic modeling,” inProceedings of NetGames
’02, Braunschweig, Germany, Apr. 2002.

[25] P. Danzig and S. Jamin, “tcplib: A library of internetwork traffic
characteristics,”USC Technical Report, Computer Science Department,
1991, Report CS-SYS-91-01.

[26] V. Jacobson, “Congestion avoidance and control,” inProceedings of
ACM SIGCOMM’88, Stanford, CA, Aug. 1988, pp. 314–329.

[27] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial
window,” Oct. 2002, Internet RFC 3390.

[28] M. Mellia, M. Meo, and C. Casetti, “TCP smart framing: a segmen-
tation algorithm to reduce TCP latency,”IEEE/ACM Transactions on
Networking, vol. 13, no. 2, pp. 316–329, 2005.

[29] W. Eddy and M. Allman, “A comparison of RED’s byte and packet
modes,”Computer Networks, vol. 42, no. 2, June 2003.

[30] V. Paxson, “End-to-end Internet packet dynamics,”IEEE/ACM Transac-
tions on Networking, vol. 7, no. 3, pp. 277–292, June 1999.

[31] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s loss
recovery using limited retransmit,” Jan. 2001, Internet RFC 3042.

[32] M. Allman, K. Avrachenkov, U. Ayesta, and J. Blanton, “Early Retrans-
mit for TCP and STCP,” Nov. 2006, IETF Internet Draft.

[33] V. Padmanabhan, “Addressing the challenges of web datatransport,”
PhD Dissertation, University of California, Berkeley, 1998.

[34] S. Yang and G. de Veciana, “Size-based adaptive bandwidth allocation:
Optimizing the average QoS for elastic flows,” inProceedings of IEEE
INFOCOM ’02, New York, NY, June 2002.

[35] S. Savage, N. Cardwell, and T. Anderson, “The case for informed
transport protocols,” inProceedings of HotOS ’99, Rio Rico, Arizona,
Mar. 1999.

[36] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “PCP:
Efficient endpoint congestion control,” inProceedings of NSDI ’06, San
Jose, CA, May 2006.

In IEEE/ACM Transactions on Networking, to appear, March 2009.

Amit Mondal is a Ph.D. student in the Department
of Electrical Engineering and Computer Science
at Northwestern University. He received his B.S.
degree in computer science and engineering from
Indian Institute of Technology, Kanpur, India in
2004. His research interests are in the area of com-
puter networking with emphasis on understanding
the behavior of Internet protocols in diverse and
extreme scenarios and exploring vulnerabilities in
commonly used Internet protocols.

Aleksandar Kuzmanovic is an assistant profes-
sor in the Department of Electrical Engineering
and Computer Science at Northwestern University.
He received his B.S. and M.S. degrees from the
University of Belgrade, Serbia, in 1996 and 1999
respectively. He received the Ph.D. degree from the
Rice University in 2004. His research interests are in
the area of computer networking with emphasis on
design, measurements, analysis, denial-of-service re-
siliency, and prototype implementation of protocols
and algorithms for the Internet.

