
A Poisoning-Resilient TCP Stack
Amit Mondal and Aleksandar Kuzmanovic

Northwestern University
{a-mondal, akuzma}@cs.northwestern.edu

Abstract— We treat the problem of large-scale TCP poisoning:
an attacker, who is able tomonitor TCP packet headers in the
network, can deny service to all flows traversing the monitoring
point simply by injecting a single spoofed data or control packet
into each of the flows. One of the entities responsible for this
severe vulnerability is certainly the TCP protocol itself: it behaves
as a “dummy” state machine that can more-than-easily become
desynchronized by an attacker. In this paper, we explore ways
for upgrading TCP endpoints into viable DoS-resilient protocol
entities, capable of mitigating large-scale poisoning attacks. We
show, by means of analytical modeling, simulations, and Internet
experiments, how small upgrades implemented by the endpoints
can dramatically improve resilience to attacks. The key mecha-
nisms unique to our approach are (i) deferred protocol reaction,
used to accurately detect poisoning attacks; (ii) forward nonces,
applied to distinguish among different traffic sources during
the attack; and (iii) self-clocking-based correlation, utilized for
successfully detecting legitimate packet streams. Our solution
solely relies on the protocol design, it is incrementally deployable,
and TCP friendly.

I. I NTRODUCTION

Denial of Service (DoS) attacks are presenting an increasing
threat to the global inter-networking infrastructure. A troubling
observation is that it is usually easier for the attacker to
find a single security hole than for the defender to block
all holes. However, reversing this asymmetric situation to
the defenders’ advantage is not impossible. Small efforts by
defenders, typically easy to deploy and use, may raise the
“bar” high enough, forcing the attacker to multiply the amount
of resources in order to perform a successful attack.

The TCP’s implicit assumption of end-system cooperation
results in a well-known vulnerability to attack by high-rate
non-responsive flows. However, to deny service to TCP traffic,
it is not necessary to apply such high rate-attacks. Instead, an
attacker who is able to monitor TCP packet headers in the
network can send asingle spoofed packet (e.g., RST) to one
of the TCP endpoints, and instantly poison the flow. As long
as the spoofed packet’s sequence number is in the acceptable
range — the TCP endpoint will simply abort the connection
[1].

This work addresses the problem of large-scale TCP poison-
ing attacks. An attacker who monitors traffic in the Internetcan
poison TCP flows traversing the monitoring point simply by
injecting spoofed data or control packets to either the servers
or the clients. In this way, the attacker can effectively deny
service to both servers and clients, without directly dropping

packets in the network, and without flooding network or server
resources.

Many counter-DoS techniques, which address the problems
of packet spoofing, header encryption, or authentication, di-
rectly or indirectly address the above problem,e.g., [2]–[9].
Still, none of the solutions is widely deployed in today’s
Internet. As such, the approach we propose in this paper is a
complementary effort aimed to increase the overall resiliency
to DoS attacks. Moreover, our approach is unique in the sense
that we apply no “classical” security techniques, but rather
solely rely on DoS-resilient protocol design to defend against
the attacks.

Our contributions are threefold. First, we demonstrate that
by considering realistic limitations on the attacker, we open
avenues for quite novel approaches to the poisoning problem.
Second, we show that network measurements (latency in our
case) can be used as an effective implicit authentication tool;
the technique, we believe, might become a viable alternative
for a number of other security-related problems. Finally, we
demonstrate that the proposed scheme is effective in relieving
the attacker from the ability to conduct simple, scalable, and
low-rate attacks.

We start-off by recognizing the attackers’ constraints: (i)
Dropping or modifying packet is much harder to achieve
than sniffing packets and (ii) identifying and utilizing lower
latency Internet paths than those applied by the legitimateTCP
endpoints requires a significantly larger amount of resources.
Once these limitations are considered, the space of solutions
significantly changes.

The first mechanism unique to our solution is deferred
protocol reaction; instead of instantly processing the received
packets, the TCP endpoints defer their reaction to incoming
packets, which enables them to detect the attacks. For example,
the arrival of data packets with the same or overlapping
sequence numbers that carry different payload is a clear
signature of the attack.

Next, we introduce forward nonces; the protocol requires the
endpoints to repeat 8-bit long random numbers in successive
TCP packets. This technique alone neither prevents attackers
from generating meaningful spoofed packets, nor does it
enable the receiver to authenticate arriving packets. Still, when
combined with the attacker’s limitation in utilizing lower-
latency paths, it does provide the TCP endpoints with the

A1

A2

S

C1

C2

Cn

Fig. 1. TCP poisoning attack

valuable ability to distinguish streams generated by different
sources.

Finally, we apply the self-clocking-based correlation mech-
anism to detect the legitimate flow. The key idea is to exploit
TCP’s self-clocking property, which induces high correlation
between subsets of legitimate DATA and ACK streams. For
example, if the attacker sends a single RST packet, the
proposed mechanism can accurately detect the valid TCP
flows by measuring high correlation between the appropriate
substreams of DATA and ACK packets. Still, because dy-
namic network conditions can blur the correlation between
the packet substreams, we perform an extensive simulation
study to explore the robustness of the proposed techniques to
diverse, often quite hostile, network conditions. To confirm
the applicability of the self-clocking correlation approach in
the Internet, we perform TCP measurements among several
PlanetLab nodes [10] and find a high correlation between ACK
and DATA packets measured along various Internet paths.

At the end, we explore the incremental-deployability prop-
erties of the poisoning-resilient TCP stack. The key problem
is that due to delayed protocol reaction, the protocol utilizes
less-than-TCP-friendly throughput. To resolve the problem,
we derive a general TCP-friendly formula as a function of
arbitrary additive-increase and multiplicative-decrease param-
etersα andβ. Finally, we compensate the deferring effects by
appropriately adjustingα andβ. As a result, we demonstrate
that in addition to achieving high resilience to poisoning,
the proposed TCP stack remains TCP friendly in absence of
attacks.

II. M OTIVATION

A. A TCP-Poisoning Attack Scenario

What the attacker can do (part 1). Figure 1 depicts a
TCP-targeted poisoning attack scenario. Victims, denotedby
C1, . . . , Cn, are clients that download content from a server
S. An attacker, denoted byA1 (e.g. in the same subnet as the
sender), monitors packets from the server to the clients. While
this attacker could poison the TCP streams by sending bogus
packets to either the clients or the server, this might not be
feasible in reality; for example, because the attacker might not
be able to send packets with forged source addresses. Further,
attackers tend to avoid activity that is easily detected. Thus, we

focus on a more discreet case of a cooperative version of the
attack.1 In a cooperative scenario, the attackerA1 monitors
only the victims’ traffic and forwards valuable information
(e.g., source and destination addresses, together with port and
sequence numbers of sampled packets) to another attacker, de-
noted byA2 in Figure 1.A2 then poisons the communication
between the clients and the server by sending spoofed packets
to either of the two.

Both TCP’s control and data planes are equally vulnerable
to the attack. For example, an attacker can subvert the TCP
control plane by sending a reset (RST) packet to either the
client or the server, thus immediately shutting down the
connection. Likewise, the attacker can target the TCP data
plane by sending bogus data packets to the receiver. A forged
packet will be accepted by the receiving TCP agent and pushed
to the application layer, as long as the forged packet is in the
acceptable sequence-number range [1].

B. Attackers’Model

Here, we present the realistic constraints of the attacker.
We will show below that these constraints can dramatically
change the scope of possible solutions by opening the door to
fundamentally novel approaches.

It is harder to modify or drop than to sniff packets.While the
ability to modify or drop packets is justified in scenarios where
the attacker compromises network routers (e.g., [11]–[15]),
or where hosts forward control and data packets on behalf
of others, (e.g., in multicast [16]–[18] or ad-hoc wireless
networks [19], [20]), such capability is in general much harder
to achieve in the Internet. On the other hand, monitoring
packets is much easier; packet-sniffing software is freely
available at various web sites and as commercial products [21],
[22].

Limited “racing-success” probability.When the attacker
sniffs a packet, assume it generates a spoofed packet, and
send it to one of the endpoints. The probability that the
spoofed packet will reach the destination before the valid
packet, is significantly smaller than the probability that the
valid packet reaches the destination first. Our arguments are
the following. First, generating a spoofed packet itself may add
a non-negligible delay, particularly when higher-layer packets
must be generated. Second, if the valid and spoofed packets
share the same network path to the destination, then unless the
packets are re-ordered at routers, the packet generated first will
reach the destination first. Finally, if the valid and the spoofed
packets do not share the same network path (e.g., Figure 1),
it is indeed possible that the latency on the attacker’s path
(e.g., A1 — A2 — C1) can be shorter than the latency on the
valid path (e.g., A1 — C1). To achieve this the attacker needs
to install its own overlay monitoring system. However, even

1Still, the solutions we develop later in the paper apply equally to the above
scenario in which the monitoring machine (e.g.,A1) itself inserts packets to
either the source or the destination.

in such case the probability of finding a lower latency path
for the majority of clients (e.g., C1,. . . ,Cn) in the system is
negligible [23].

What the attacker can do (part 2). In combination with
packet spoofing, the monitoring capability can be utilized to
conduct TCP-poisoning attacks, exactly as explained above.
By sniffing a single packet, the attacker can send a single
spoofed packet, and abort or poison the entire flow. Because
the receiver windows are typically of the order of tens of
packets [24], generating a spoofed packet with acceptable
sequence numbers is highly feasible and requires no “hard”
racing with valid packets. Moreover, once the attacker ob-
serves a DATA packet, it can poison the source by sending
a spoofed ACK packet in the reverse direction; similarly, the
attacker observing an ACK packet can poison the destination
by sending a spoofed DATA packet.

III. COUNTER-DOS TECHNIQUES

A. Design Principles

Given that the attacker can only monitor packets, the stream
of valid packets is continually present at the destination.We
discuss exceptional scenarios (e.g., Telnet-type applications)
in Section VI. This view motivates a new way of approaching
this problem: instead of trying to instantly authenticate the re-
ceived packets, the goals are, first, distinguish among different
streams, and then detect the valid one.

1) Deferred Protocol Reaction:Accurately detecting the
TCP-targeted poisoning attack is the first step in addressing
the problem. Given that the stream of valid packets will be
present at the receiver, deferred protocol reaction to packet
arrivals can be used to detect the attack. Delaying the protocol
reaction for short intervals (exact values will be defined below)
would be enough to receive contradicting messages, which
would clearly reveal that the system is under attack. For
example, the arrival of a RST packet followed by a stream
of data packets would clearly reveal that the attack has been
launched. Similarly, the arrival of data packets with the same
or overlapping sequence numbers that carry a different payload
would be a clear signature of the attack.

While quite effective in detecting poisoning attacks (as we
will demonstrate below), deferred protocol reaction aloneis
insufficient to mitigate the attacks. The key problem remains:
once the attack is detected, how to authenticate valid packets
and drop the spoofed ones? We decouple the above problem
in the following subproblems: (i) How to distinguish among
the packets (or the streams of packets) generated by different
sources? (ii) How to detect which of the sources is the
legitimate one?

2) Forward Nonces:The first problem is distinguishing
among packets generated by different sources. We propose
forward nonces, which are similar in spirit, yet fundamentally
different from the ones proposed by Savageet al. [25].

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

PN FN

Poisoning
stream:

Original
stream: FN PN FN

PN FN FN

PN:

Pi+1 Pi+2Pi

Pi Pi+1

Future Nonce
Past Nonce

FN:

PN

PN

Fig. 2. Forward nonces (up) and concatenation attacks (down)

Forward nonces do not prevent the attacker from generating
meaningful spoofed packets. Instead, they provide a simple
chaining mechanism that enables distinguishing among differ-
ent packet sources.

We introduce two new fields into the TCP packet format:
Past NonceandFuture Nonce. Both are implemented as TCP
options, as we elaborate below. Figure 2 illustrates this idea.
For each DATA and ACK segment, the sender fills theFuture
Noncefield with a unique random number generated when the
segment is sent. In addition, the sender fills thePast Nonce
field with the random number that corresponds to theFuture
Nonceof the previous packet. Nonces generated by the source
and the destination are independent of each other. Below, we
explain how this method helps us separate packets generated
by different sources.

What the attacker can do (part 3).Forward nonces impose
a fundamental limitation on the attacker — it is no longer
able to generate an easy attack by spoofing a packet with an
arbitrary sequence number. Instead, to “break” the chain of
valid packets, it must generate a packet with the nonce values
relative to the sniffed packet. Moreover, nonces generatedby
the source and the destination are fullyindependentof each
other. The implication of this design choice is significant:the
attacker is no longer capable of injecting poisoning attacks
in the direction opposite from the observed one,e.g., send
spoofed ACK packets after observing DATA packets, or vice
versa. One exception are TCP SYN packets, which we discuss
later in Section VI.

Assume the scenario from Figure 1. When the attackerA1

sniffs a valid packet (e.g., pi) and accesses its payload and
header values, including those of thePastandFuture Nonces,
it has the following options. First, the attacker can generate a
spoofed packet (e.g., p̂i) with exactly the samePastandFuture
Noncesas inpi, and change either the payload or set the RST
or FIN flags in the TCP header. However, as discussed in detail
above (Section II-B), the spoofed packetp̂i will reach the
destination after the packetpi with high probability. Hence, the
attacked endpoint refuses the attack with the same probability
simply by accepting the first of the two packets. Second, the
attacker can launch the packetp̂i with randomly generatedPast
and Future Nonces. However, because a randomly generated
Past Noncewill not match theFuture Nonceof the previous
valid packetpi−1, this type of attack is mitigated.

Finally, the best option for the attacker is to launch con-
catenation attacks, as illustrated in Figure 2. We explain the

ACKi
ACKi+1

ACKi+2
ACKi+3

IDTi
IDTi+1
IDTi+2

DATAi
DATAi+1

DATAi+2
DATAi+3

IATi

IATi+1

IATi+2

Server Client

Fig. 3. Self-clocking-based correlation

single-packet attack version first. The attacker generatesa
spoofed packet (e.g., p̂i) such that itsPast Noncematches
thePast Nonceof the observed valid packetpi; yet theFuture
Nonceis necessarily different; otherwise, we would repeat the
scenario described above. Likewise, once the attacker sniffs the
packetpi, it can also generate a malicious packetp̂i+1, whose
Past Noncematches thepi’s Future Nonce(not shown in the
figure). Still, thep̂i+1’s Future Noncewould again differ from
the pi+1’s with high probability, simply because these two
are generated independently by two different sources. Finally,
once the “chain” of valid packets has been “broken,” nothing
stops the attacker from generating streams of spoofed packets,
as illustrated in Figure 2. We treat this problem in depth below.

In summary, forward nonces enable the destination to dis-
tinguish among legitimate and malicious (streams of) packets;
yet, the important problem remains: which of the streams is
the right one?

3) Self-clocking-based Correlation:Here, we propose a
self-clocking-based correlation method as a way to accurately
detect the legitimate TCP stream. This method is based on the
TCP’s self-clocking property, which induces high correlation
between appropriate subsets of legitimate DATA and ACK
packet streams.

TCP self-clocking characterizes the well-known TCP be-
havior in which the reception of ACK packets triggers the
transmission of DATA packets at the sender [26]; likewise,
the same term equally applies to the complementary scenario
in which the reception of DATA packets at the receiver
triggers the transmission of ACK packets. (We discuss the
delayed ACK option of RFC 2581 [27] later in the text.)
While the TCP self-clocking behavior is a consequence of
the reliable window-based TCP congestion control, the key
insight is that the timely responses to packet arrivals induce
strong correlation between appropriate samples of inter-packet
departure and arrival times at an endpoint, which we exploit
to detect legitimate flows.

Figure 3 depicts a simple scenario showing the exchange of
packets between a TCP sender and a receiver. We purposely
idealize the scenario to convey the basics of the self-clocking
correlation idea, and address many of the challenges later in

the paper. Denote byIDT i the inter-departure time between
two consecutive ACK packets,ACKi andACKi+1; likewise,
denote byIAT i the inter-arrival time betweenDATAi and
DATAi+1. As long as the sender transmits DATA packets in
response to ACK packets (e.g., DATAi in response toACKi,
as shown in the Figure), and the packets are not significantly
distorted in the network, the inter-ACK departure “code” set
by the receiver will repeat in the inter-DATA arrival stream:
IAT i will be short (correlated toIDT i), IAT i+1 will be
longer (correlated toIDT i+1), etc. Denote byN the number
of inter-arrival and inter-departure samples. Then, we define
the normalized distance between the two subsets, starting at
index i and of the lengthN , σN

i (IDT, IAT), as

σN
i (IDT, IAT) =

1

N

i+N−1
∑

k=i

|
IATk − IDTk

IATk

| . (1)

Computing the above metric over highly correlated packet
substreams yields a small value, which can be used for
implicitly authenticating the arrival streams. Likewise,higher
distance values reveal potential attackers.

What the attacker can do (part 4). Nothing stops the
attacker from launching longer-packet concatenation attacks.
There are two options. First, the attacker may try to mimic the
observed inter-packet times, thus achieving high correlation
between legitimate and poisoned packet streams. However,
endpoints can easily detect such attacks since poisoned packets
will consistently reach the endpointsafter the regular ones
(Section II). Thus, the attacker is forced to apply a sim-
ple “see and shoot” strategy. Once the attacker observes a
packet, it randomly intersperses concatenated packets around
a reasonable, yet randomly chosen value. Hence, even if the
attacker’s packet arrivals are distributed around the correct
mean value, they are unable to successfully mimic the inter-
packet variations existent in the valid stream. As a result,the
normalized distance for such streams increases, enabling the
receiver to detect the attack. The implication is the following:
even if the valid TCP transfer finishes while the concatenation
attack is taking place, the TCP endpoint is able to accurately
detect the malicious flow. This demonstrates the scheme’s
ability to thwart attacks the goal of which might be to prevent
the connection to terminate by sending extra data packets.

B. Putting it all together

Here, we explain how we embed the above ideas into the
TCP protocol. In addition, we define novel protocol param-
eters and TCP option fields, and provide guidelines for their
settings.

1) How long to defer?: The deferring time parameter
critically impacts an endpoint’s ability to detect the poisoning
attack. Setting it too low prevents successful detection; yet,
setting it too high can unnecessarily degrade the protocol
performance. Intuitively, relevant measures of interest here are
the packet inter-arrival times; if the deferring time parameter is

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

D
et

ec
tio

n
pr

ob
ab

.

Deferring time as percentage of SRTT

RTT = 120ms
RTT = 60ms
RTT = 30ms
RTT = 12ms

Fig. 4. Deferring time

set to a value that is longer than the packet inter-arrival times
are, this guarantees detecting all attack attempts. Because
the inter-arrival times are connection-dependent, the deferring
time needs to be adjusted on per-connection basis.

To determine a reasonable value for the deferring time, we
perform a number of simulations, and present the key results
in Figure 4 (The exact simulation setup is explained in Section
IV-A). The figure shows the attack detection probability
as a function of the deferring time, which is expressed in
terms of the percentage of the smoothed RTT (SRTT). As
expected, the detection probability is poor for small deferring
values. Yet, by increasing the deferring time parameter, the
detection probability quickly increases. For example, Figure
4 shows that setting the deferring time parameter to 25% of
the SRTT yields the detection probability above 0.99 for all
evaluated RTT values. Thus, we opt for setting the deferring
time parameter to 25% of the SRTT.

Deferred protocol reaction is tightly coupled with the self-
clocking correlation mechanism. Despite delayed responseto
packet arrivals, an endpoint must preserve the self-clocking
property characteristic of a non-deferring TCP. This could
be achieved by equally delaying responses to packet arrivals.
Hence, the deferring time parameter should not be updated
over short time-scales because that can affect the accuracyof
the self-clocking correlation method. This is exactly why we
compute the deferring time as a function of the slowly-varying
SRTT parameter. To avoid potentially frequent updates of the
deferring parameter, we deploy additional low-pass filtering.

2) How to remain TCP-Friendly?:Delaying the protocol
reaction by 25% of the SRTT by each of the deferring TCP
endpoints effectively increases the TCP connection’s RTT by
50%. This prevents such a connection to utilize the TCP-fair
bandwidth share. According to [28], increasing the RTT by
50% approximately degrades the throughput by 33%. Still,
this bandwidth loss could be easily compensated by retuning
the additive increase and multiplicative decrease parametersα

andβ.

Using the stochastic TCP model and methodology of [28],
we generalize the TCP-friendly formula to a scenario with
arbitrary values ofα and β. In particular, we express the
average TCP rateB as a function of the round-trip timeRTT,
steady-state loss event ratep, TCP retransmission timeout

value RTO, and number of packets acknowledged by each
ACK b, as

1

RTT
√

2bp(d−1)
α(d+1) + RTO min(1, 3

√

bp(1+d)(d−1)
2αd2)p(1 + 32p2)

.

(2)

We provide the derivation in [29].

Finally, by settingα=2 and β=0.54, we effectively undo
the deferring effects. This helps the poisoning-resilientTCP
to regain its TCP friendly fair-share, despite delayed protocol
reactions. Later, in Section V, we demonstrate that this is
indeed the case. To achieve the same for short TCP flows,
we appropriately adjust the receiver window parameter and
the TCP’s slow-start behavior.

3) How Long are Nonces?:The nonce size determines the
probability with which the attacker can launch a successful
attack simply by guessing theFuture Noncefield of the packet
following the sniffed valid packet. If the guess is correct,and
the malicious packet reaches the destination before the valid
next-to-the-sniffed packet, the attack will be successful.

We propose using 8-bit long nonces, which we implement
as a TCP option. Thus, the total overhead per packet is 2 Bytes,
one for thePast Nonceand the other for theFuture Nonce.
With such an approach, the probability for the attacker to
succeed by sending a single spoofed packet is2−8. At the
same time, to guarantee the success of the attack, the attacker
would have to send hundreds of Mbps bursts to the victim
(e.g., 28 packets over the interval of a few milliseconds in
order to guarantee that atleast one of the attacker’s packets
will match the nonces).

4) How to Apply the Correlation Method?:Not all TCP
packets are generated in response to incoming DATA or ACK
packets. For example, whenever the TCP sender increases the
window size, more than one DATA packet can be generated as
a response to a single ACK. On the other hand, to effectively
apply the self-clocking correlation ideas proposed above,a
TCP endpoint must be capable of accurately filtering such
packets. To cope with this problem, we propose that the
endpoints set a single bit (implemented as a TCP option)
only to packets generated directly in response to previously
received packets, thus enabling a reliable use of the self-
clocking method. While the use of a single bit is a type of
explicit signaling between the two endpoints, it is here applied
only to improve the performance of the implicit self-clocking
correlation method, and not for explicit packet authentication.

Next, we explain the application of the self-clocking-based
method, necessarily omitting many low-level details. Assume,
for simplicity, a single-stream poisoning attack. Thus, when-
ever the attack is launched, the victim endpoint receives
packets from two distinct sources, the malicious and the
legitimate one. The self-clocking-based method is less reliable
when the normalized distance is computed over short number
of data points. Indeed, even a small deviation in the inter-

C
HTTP cross traffic
Attacker’s flow

C

C

A2

A1

R1 R2

R3

S

Fig. 5. Simulation scenario

packet arrival time can cause errors. But, in the vast majority
of scenarios, it is possible to bring reliable detection decisions
based on a larger number of samples. For example, even if
the attack is short,e.g., 1-packet long, it is highly likely that a
sufficient number of packets belonging to the legitimate stream
will reach the destination after the start of the attack. We
explore scenarios in which this is not the case later in the
paper.

Thus, whenever one of the streams is less than 5-packets
long, we compute the normalized distance defined by Equation
(1), and compare it to a threshold. Numerous simulation
experiments including scenarios with hundreds of flows, het-
erogeneous link capacities, and multiple bottlenecks, as well as
Internet experiments corroborate that the threshold valueof 0.8
represents a high performance compromise for all investigated
scenarios. Finally, no threshold is needed when the number of
packets from both streams is larger than 5, because we then
directly compare the corresponding normalized distances and
choose the one with smaller value.

IV. M EASURING TCP-POISONING RESILIENCE

A. Simulation Scenario

Figure 5 depicts the simulation scenario. The topology
consists of a web-client and a web-server pool that are
interconnected by a pair of routers and a bottleneck link. Each
node from the server pool connects to a router R1 with a
1 Gbps link; likewise, each node from the client pool connects
to another router, R2, via a 1 Gbps link. Nodes R1 and R2 are
connected by a link which capacity we vary from 10 Mbps
(default) to 100 Mbps. By adjusting delays on the access links,
we uniformly distribute the flow round-trip times in the range
from 10 ms to 100 ms. We inject HTTP cross traffic on non-
bottleneck links R1-R3 and R2-R3.

To simulate the distributed poisoning attack, initially il-
lustrated in Figure 1, we proceed as follows. The attacker
consists of two distinct entities — sniffing and poisoning.
The sniffing entity, denoted by A1, monitors and forwards
randomly-sampled packets to the poisoning entity A2 using
IP-over-IP encapsulation. (Forwarding all packets is bothnot
scalable and non-stealthy.) The attacker A2 obtains all relevant
information by reading the TCP and IP headers of the sniffed
packets. It then generates spoofed packets by forging the
source address of the original packet within the acceptable

 0.6

 0.7

 0.8

 0.9

 1

 50 75 100

C
or

r.
 d

et
ec

tio
n

pr
ob

.

Link utilization (%)

attack’s length = 1 pack.
5 pack.

10 pack.

Fig. 6. Variable queuing delay

sequence-number range of the receiver. The poisoning entity
either launches a single-packet RST attack or a “see and
shoot” concatenation attack. We consider five- and ten-packet
long attacks. In both cases, we randomly intersperse attacker’s
packets in the range from 100µsec to 3 ms.

To compute the attack-mitigation accuracy with low over-
head, we initially do not abort a TCP connection once the
attack is successful. In such cases, we simply increment the
number of successful attacks, and continue with data transfer.
Later, we do abort connections in order to evaluate the impact
of the attack on throughput and fairness. Our implementation
of the poisoning-resilient TCP is derived by modifying the
ns-2 FullTcpAgent stack. For every data sample, we run the
simulation for 1000 sec repeatedly and take the average of the
results.

B. Challenging Environments

Our anti-poisoning mechanisms exploit high correlation be-
tween subsets of inter-arrival and inter-departure times,which
is induced by timely responses of legitimate TCP endpoints.
However, such timely responses may become distorted due
to queuing delay or packet loss, both of which are common
in today’s Internet. Below, we explore the behavior of our
algorithm in such environments.

1) Variable Delay: Queuing delay and packet losses are
correlated; for a given queue limit, the higher the queuing
delay, the larger the packet loss probability. Our goal hereis
to understand the impact of both parameters on the detection
accuracy. Thus, to decouple the two effects, we proceed as
follows. First, to isolate the impact of the variable queuing
delay, we increase the bottleneck queue limit for an order
of magnitude, such that it becomes 25 times the bandwidth-
delay product. In this way, bursts of highly variable HTTP
cross traffic directly transfer into variable bottleneck queuing
delay without causing packet losses. As a result, the inter-
packet times of the TCP flows under attack become distorted,
potentially weakening their resilience to attacks.

Figure 6 plots the correct detection probability as a function
of the bottleneck link utilization, which we control by varying
the cross traffic. For low link-utilization levels (e.g., 50%),
the queuing delay does not change dramatically, and thus the
detection accuracy does not suffer. As the link utilizationin-

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
or

r.
 d

et
ec

tio
n

pr
ob

.

Packet loss rate (%)

attack’s length = 1 pack.
5 pack.

10 pack.

Fig. 7. The impact of packet loss ratio

creases, so does the variability induced by the cross traffic, and
the packets become more and more distorted. However, Figure
6 shows that the detection accuracy remains high, particularly
for longer-packet attacks. Despite strong inter-packet aliasing,
even short subsets of undistorted inter-arrival samples, existent
in the legitimate TCP streams, are sufficient for distinguishing
them from malicious streams, which lack such signatures.
Finally, the correct detection probability degrades the most
during single-packet attacks, when the distortion is largest
(e.g., 95% utilization). Indeed, in absence of longer malicious
streams, we have to rely on the threshold-based scheme, which
is less reliable in this case.

2) Congested Environments:To isolate the impact of packet
losses on the accuracy of our detection scheme, we add an
artificial packet dropper at the bottleneck link. In this way, we
manage to control the packet loss rate, yet without increasing
the queuing delay.

Figure 7 shows the correct attack-detection probability as
a function of the packet loss rate, which we vary from 0.1%
to 5%. As expected, the detection accuracy decreases as the
packet loss ratio increases. Whenever a packet loss happens,
the “chain” of valid packets breaks, which complicates the de-
tection process. Once the attack is launched, the key parameter
impacting its success is the number of valid packets arriving
until the next packet loss event. If the number is high, thereare
almost no differences from the loss-less case, and the detection
probability is high. However, as the number of valid packets
that can be used for detection decreases, the detection accuracy
worsens, as discussed in the previous section. Finally, if the
attacker generates a spoofed packet that matches a packet loss
event, the attack is certainly successful. Still, the probability
for this to happen is small, necessarily smaller than the packet
loss probability.

In summary, highly congested network environments do
degrade the anti-poisoning detection accuracy. Luckily, such
environments do not prevail in today’s Internet. Recent net-
work measurements reveal that a large percentage of TCP
connections (e.g., 20%) experience no packet loss, while only
a negligible percent of connections (e.g., 0.06%) experience a
loss rate of more than 10% [30]. Below, we re-evaluate this
result by performing Internet experiments.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

N
or

m
al

iz
ed

 li
nk

 u
til

. (
%

)

No. of attacks per second

Deferring TCP
TCP

Fig. 8. Throughput

3) The Impact on Throughput:Thus far, the goal was to
estimate the correct detection probability in various environ-
ments, so we did not abort the connections in the case of a
successful attack. Here, we evaluate the effects of poisoning
on throughput; thus, we reset TCP connections whenever
the attack is successful. To create a realistic networking
environment, we generate the traffic by randomly distributing
file sizes in the range from 10 kB to 10 MB.2 To support a
larger number of flows, we increase the bottleneck capacity to
100 Mbps.

Figure 8 plots the normalized link throughput as a function
of the RST attack rate, which varies from 1 to 50 RST packets
per second. In the first scenario, we evaluate the performance
of the regular TCP stack (marked as “TCP” in the figure). For
even moderate attack rates,e.g., 4 RST packets per second, the
link utilization drops almost by a half. Indeed, as long as the
spoofed packet’s sequence number is in the acceptable range
(easy to achieve), the TCP endpoint aborts the connection [1].
As the attack rate increases, the normalized throughput further
quickly decreases. It does not drop all the way to zero due to
high arrival and departure rates of short flows.

At the same time, the “deferring TCP” stack remains highly
resilient to attacks, despite a large number of short flows.
For example, in the most severe scenario (RST rate equals
50 packets per second), and despite large number of short
flows, the throughput remains high, approximately four times
higher than in the regular TCP scenario. One interesting effect
we observed is that whenever the attack starts succeeding and
resetting a percent of flows, the congestion reduces; as a result,
the self-clocking technique becomes more accurate, such that
the throughput remains high.

C. Internet Experiments

Here, we perform Internet experiments to evaluate the
accuracy of the self-clocking-based detection method in a real
system. We donot generate any attacks; instead, we simply
measure the normalized distance between DATA and ACK
packets, which indirectly reveal the potential attack-mitigation
probability.

2Our results, not shown due to space constraints, indicate high resilience
of both short and longer-lived flows to poisoning attacks. Also, a poisoning
attack against short flows quickly experiences scalabilitylimitations.

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

S
ig

m
a

(I
D

T
, I

A
T

)
 [M

ea
n

+
 S

t.
D

ev
.]

No. of packets

IIT
Columbia
Berkeley

Cambridge
Hannover

Fig. 9. Internet experiments

We establish TCP connections from a host machine located
at Northwestern Campus to 5 PlanetLab nodes around the
world [10]: IIT (India), Columbia (New York), Berkeley
(California), Cambridge (England), and Hannover (Germany).
We perform number of measurements by transferring 5 MB
files from the host to the destinations; the transfers last from
40 sec to Berkeley up to 400 sec to IIT. In all scenarios, we
measure the normalized distance,σN

i (IDT, IAT), defined by
Equation (1); in this case, the IDT sequence corresponds to
DATA packets generated by the host machine, while the IAT
corresponds to ACK packets returned by destinations. We
compute normalized distance overall substreams of the size
i, ranging from 1 to 10.

Figure 9 depicts the mean plus one standard deviation of
σN

i (IDT, IAT) as a function ofi for all measured Internet
paths. As expected, the normalized distance decreases as the
length over which the measure is taken increases. This is
primarily because the variance of the normalized distance
decreases. However, the key insight from the figure is that
while slightly larger than in the simulations, the normalized
distance between DATA and ACK substreams is pretty much
the same. Moreover, in all scenarios, mean plus one standard
deviation are below the threshold of 0.8 for 5 packet-long
intervals. This result confirms that the proposed method is
indeed highly accurate in detecting low-rate poisoning attacks.

One of the reasons for the slight increase in the normalized
distance between DATA and ACK packets is the delayed ACK
feature. A TCP endpoint may delay transmission of ACKs
hoping to have DATA ready to sent in that frame. In any case,
for obvious reasons, poisoning-resilient TCP simply doesnot
apply the delayed ACK feature, but requires endpoints to reply
immediately.

V. I NCREMENTAL DEPLOYABILITY

In this section, we treat the problem of incrementally de-
ploying deferring TCP in the Internet. In essence, we explore
how regular and deferring TCP streams affect each other when
they are multiplexed.

A. Performance in Presence of Attacks

Figure 10 plots the normalized link utilization as a function
of the percentage of deferring TCP connections in the system.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 li
nk

 u
til

. (
%

)

Deferring TCP deployment (%)

TCP
Derferring TCP

Total

Fig. 10. Incremental deployability; in presence of attacks

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

Li
nk

 th
ro

ug
hp

ut
 s

ha
rin

g
(%

)

Deferring TCP deployment (%)

Deferring TCP
TCP

Fig. 11. TCP fairness in absence of attacks

The plot clearly reveals that as the number of poisoning-
resilient TCP flows in the system increases, the total link
utilization increases. In presence of attacks, regular TCPflows’
service is easily denied, whereas deferring TCP survives
the attack; hence, the link utilization increases. Becausethe
TCP connections are in this scenario limited by the receiver
window, the link utilization does not increase quicker. In other
circumstances, deferring TCP flows would be able to utilize
bandwidth left unused by regular TCP flows, thus providing an
additional incentive for clients to apply the novel TCP stack.

B. Performance in Absence of Attacks:TCP Fairness

Here, we explore the fairness properties of the proposed
TCP stack. Typically, such experiments are needed to show
that the new stack does not overwhelm the regular TCP.
However, in our case, the goal is opposite. Due to deferred
protocol reaction, the proposed TCP effectively increasesthe
RTT by a half. To compensate for these effects, it also
adjusts the protocol parameters as explained in Section III-B.2.
Figure 11 shows that the compensation is indeed successful,
since the protocol remains TCP friendly. We conduct an
experiment with a large number of long-lived TCP flows which
create congestion. Independently of the level of deployment,
deferring TCP flows manage to utilize their bandwidth fair
share. Finally, this also confirms the correctness of our non-
trivial modeling efforts, which resulted in Equation (2).

VI. D ISCUSSION ANDRELATED WORK

A. Discussion

Forward vs. “classical” nonces.Savageet al. [25] propose
Nonceand Nonce replyfields as a way to prevent a misbe-

having receiver from driving a standard TCP sender arbitrarily
fast. For each segment, the sender fills theNoncefield with
a unique random number, which is echoed by the receiver in
theNonce Replyfield. This is fundamentally different from the
forward noncesmechanism proposed here. The key difference
is that in our scenario, nonces generated by the two endpoints
are independent of each other. Also, the TCP endpoint that
generates a nonce isitself required to repeat the same nonce
in the successive TCP packet. This enables the destination
endpoint to distinguish packets generated by different sources.
In addition, the “classical” nonces ([25]) address a different
problem, and does not solve the TCP-poisoning problem: the
attacker can return a correctNonce Replyfield, yet maliciously
set the RST flag. Moreover, nothing prevents the attacker from
sending a future data packet within the receiver window, yet
with a different nonce.

Interactive communication. All proposed counter-
poisoning mechanisms critically depend on the assumption
that the sender is backlogged,i.e., always has packets to
send. Because interactive applications (e.g., Telnet) violate
this assumption, the proposed solutions do not directly apply
to such scenarios. While beyond the scope of this paper,
one way to address the problem would be sending “dummy”
packetsat low rates into the network in moments when no
data is coming from the application.

Poisoning TCP SYN packets.Using independent nonces
in different flow directions (i.e., source-to-destination and
vice-versa) prevents the attackers from generating meaningful
poisoning attacks towards the origin endpoints (e.g., returning
ACK packets to the source after observing DATA packets).
However, this does not hold for the exchange of initial (i.e.,
TCP SYN) packets, in which case the attacker can start a
meaningful concatenation attack towards the source. While
this effectively becomes a hijacking attack, our approach still
has a great potential to combat the problem. First, due to
deferring, we arealways capable of detecting such attacks.
Moreover, applying additional techniques (e.g., estimating the
actual RTT to the other endpint either by sending active out-
of-band pings or by using a history-based approach [31]) could
be used to effectively defend against such attacks.

B. Related Work

Our approach relies solely on DoS-resilient protocol design,
and requires no “classical” security techniques. Here, we
briefly summarize such techniques. The following system
vulnerabilities enable the TCP poisoning attack: (i) the lack of
an authentication mechanism between senders and receivers,
(ii) the visibility of TCP packet headers in the network, and
(iii) the attacker’s ability to generate packets with forged
source addresses.

An authentication mechanism would prevent the TCP poi-
soning attacks. One such approach is proposed in [3] to defend
against TCP-based BGP-targeted attacks. It defines a new TCP
option for carrying an MD5 digest in a TCP segment [32].

This digest acts like a signature for that segment, incorpo-
rating information known only to the connection endpoints.
There are several drawbacks to such an approach. First, the
computation burden of such algorithms may become a system
bottleneck on high-bandwidth networks [8]. Second, the key
exchange and management (e.g., required by [33]) is itself an
unsolved problem [15]. Building an Internet-wide public key
infrastructure (PKI) incurs huge costs and suffers from a high
risk of failure [34], [35]. Finally, independently of the PKI
problem, the initial key-exchange (e.g., based on theDiffie-
Hellman key agreement[36]) is itself vulnerable to poisoning
attacks: an attacker that observes the transfer of a public key is
unable to decrypt messages encrypted by that key, but nothing
stops the attacker from poisoning the initial transfer of keys,
e.g., by resetting a TCP (or a lower-layer) connection before
the keys are exchanged.

The IPsec protocol [4] encrypts the TCP packet headers
and payload. Thus, users applying the IPsec are immune
to the TCP-targeted poisoning attacks. However, there are
several drawbacks with such an approach. First, while IPsec
improves users’ security and privacy, it also increases general
network vulnerability to DoS attacks. For example, withoutthe
ability to monitor packet headers and classify packets, counter-
DoS and intrusion-detection systems (e.g., [37]) simply cannot
function. Second, the inaccessibility of packet header bits in
the network prevents deployment of advanced transport pro-
tocols (e.g., XCP [38]) as well as novel security mechanisms
for BGP (e.g., [15]), which require explicit flow monitoring.
Third, IPsec is incompatible with widely-deployed network
address translators (NATs) [39].

Finally, preventing malicious hosts from sending spoofed
packets would also solve the TCP-targeted poisoning problem.
One approach is ingress filtering in which ISPs on the edges
drop outgoing packets with forged source addresses to mitigate
DoS attacks. However, ingress filtering has not been widely de-
ployed for economic reasons: ISPs must pay for a system that
only benefits others. Moreover, even if ingress filtering were
universally deployed at the customer-to-ISP level, attackers
could still forge addresses from the hundreds or thousands of
hosts within a valid customer network. Another approach is IP
traceback [5]–[7], [9]. Such mechanisms, when implemented
at network core routers, can detect hosts that forge source
IP addresses. Unfortunately, such mechanisms either require
routers to keep a large amount of state [7] or generate a large
amount of overhead traffic [5]. In addition, problems such
as scalability, incremental deployability, and large hardware
changes required at routers further prevent the deploymentof
traceback mechanisms in the Internet [9].

VII. CONCLUSIONS

This paper addresses the problem of large-scale TCP-
poisoning attacks, in which an attacker can severely deny
service to a large number of flows by poisoning the endpoints
with spoofed packets. We design and evaluate a poisoning-

resilient TCP stack, which applies novel mechanisms, (i)
deferred protocol reaction, (ii) forward nonces, and (iii) self-
clocking-based correlation to accurately detect, distinguish,
and mitigate poisoning attacks. We demonstrate that the pro-
posed TCP upgrades relieve the attacker from the ability to
conduct simple, scalable, and low-rate attacks, in which even
a single spoofed packet is sufficient to deny service to a flow.
To succeed, the attacker is forced to flood the endpoints, thus
becoming detectable by other counter-DoS mechanisms.

The proposed solution requires no explicit security asso-
ciation between the TCP endpoints, nor it requires them to
explicitly prove the receipt of packets. Instead, the legitimate
TCP endpoints challenge and authenticate each other implic-
itly by recognizing random “codes” embedded in the inter-
packet departure and arrival sequences. Large-scale simulation
and Internet experiments show remarkably high accuracy of
this scheme in diverse, even quite hostile, networking en-
vironments. The proposed TCP upgrades are incrementally
deployable; clients applying the change become resilient to
attacks while they experience no performance degradations
in their absence, since the protocol is TCP friendly. In the
future work, we plan to implement the proposed TCP stack
and validate its performance in a controlled network testbed
as well as on the Internet.

VIII. A CKNOWLEDGEMENTS

This work is supported by NSF CT grant ANI-0627715.

REFERENCES

[1] “Transmission control protocol,” Sept. 1981, InternetRFC 793.
[2] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial-

of-service attacks which employ IP source address spoofing,” May 2000,
Internet RFC 2827.

[3] A. Heffernan, “Protection of BGP sessions via the TCP MD5signature
option,” Aug. 1998, Internet RFC 2385.

[4] S. Kent and R. Atkinson, “Security architecture for the Internet proto-
col,” Nov. 1998, Internet RFC 2401.

[5] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale IP tracebackin high-speed
Internet: Practical techniques and theoretical foundation,” in Proceedings
of the IEEE Symposium on Security and Privacy, Oakland, CA, May
2004.

[6] S. Savage, D. Wetherall, and T. Anderson, “Network support for IP
traceback,”IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp.
226–237, June 2001.

[7] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio,
B. Schwartz, S. Kent, and W. Strayer, “Single-packet IP traceback,”
IEEE/ACM Transactions on Networking, vol. 10, no. 6, pp. 721–734,
Dec. 2002.

[8] J. Touch, “Performance analysis of MD5,” inProceedings of ACM
SIGCOMM ’95, Boston, MA, Aug. 1995.

[9] A. Yaar, A. Perrig, and D. Song, “FIT: Fast Internet traceback,” in
Proceedings of IEEE INFOCOM ’05, Miami, FL, Mar. 2005.

[10] “Planetlab,” http://www.planet-lab.org.
[11] S. Cheung, “An efficient message authentication schemefor link state

routing,” in Proceedings of the Annual Computer Security Applicataions
Conference, San Diego, CA, Dec. 1997.

[12] Y. Hu, A. Perrig, and D. Johnson, “Efficient security mechanisms for
routing protocols,” inProceedings of NDSS ’03, San Diego, CA, Feb.
2003.

[13] Y. Hu, A. Perrig, and M. Sirbu, “SPV: Secure path vector routing
for securing BGP,” inProceedings of ACM SIGCOMM ’04, Portland,
Oregon, Sept. 2004.

[14] O. Nordstrom and C. Dovrolis, “Beware of BGP attacks,”ACM Com-
puter Comm. Review, vol. 34, no. 2, pp. 1–8, Apr. 2004.

[15] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz, “Listen
and whisper: Security mechanisms for BGP,” inProceedings of NSDI
’04, San Francisco, CA, Mar. 2004.

[16] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar, “Distillation
codes and applications to DoS resistant multicast authentication,” in
Proceedings of NDSS ’04, San Diego, CA, Feb. 2004.

[17] A. Perrig, R. Canetti, B. Briscoe, J. Tygar, and D. Song,“Efficient
authentication and signing of multicast streams over lossychannels,” in
Proceedings of the IEEE Symposium on Security and Privacy, Berkeley,
CA, May 2000.

[18] A. Perrig, R. Canetti, D. Song, and J. Tygar, “Efficient and secure source
authentication for multicast,” inProceedings of NDSS ’01, San Diego,
CA, Feb. 2001.

[19] Y. Hu, D. Johnson, and A. Perrig, “SEAD: Secure efficientdistance
vector routing for mobile wireless ad hoc networks,”Ad Hoc Networks,
vol. 1, no. 1, pp. 175–192, July 2003.

[20] Y. Hu, A. Perrig, and D. Johnson, “Packet leashes: A defense against
wormhole attacks in wireless networks,” inProceedings of IEEE INFO-
COM ’03, San Francisco, CA, Apr. 2003.

[21] ProgramURL.com, “Packet sniffing software,”
http://www.programurl.com/software/packet-sniffing.htm.

[22] OptOut, “Packet sniffing,” http://grc.com/oo/packetsniff.htm.
[23] D. Anderson, H. Balakrishnan, M. Kaashoek, and R. Morris, “Resilient

overlay networks,” inProceedings of ACM SOSP ’01, Banff, Canada,
Oct. 2001.

[24] A. Medina, J. Padhye, and S. Floyd, “Measuring the evoluation of
transport protocols in the Internet,” Tech. Rep., 2004.

[25] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP congestion
control with a misbehaving receiver,”ACM Computer Comm. Review,
vol. 29, no. 5, pp. 71–78, Oct. 1999.

[26] V. Jacobson, “Congestion avoidance and control,”ACM Computer
Comm. Review, vol. 18, no. 4, pp. 314–329, August 1988.

[27] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” Apr.
1999, Internet RFC 2581.

[28] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Reno
performance: A simple model and its empirical validation,”IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145, Apr. 2000.

[29] A. Kuzmanovic and E. Knightly, “Receiver-centric congestion control
with a misbehaving receiver: Vulnerabilities and end-point solutions,”
Journal of Computer Networks, 2007.

[30] M. Allman, W. Eddy, and S. Ostermann, “Estimating loss rates with
TCP,” ACM Performance Evaluation Review, vol. 31, no. 3, Dec. 2003.

[31] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “PCP:
Efficient endpoint congestion control,” inProceedings of NSDI ’06, San
Jose, CA, May 2006.

[32] R. Rivest, “The MD5 message-digest algorithm,” Apr. 1992, Internet
RFC 1321.

[33] R. Moskowitz, P. Nikander, P. Jokela, and T.Henderson,“Host Identity
Protocol,” June 2006, Internet draft draft-ieft-hip-base-06.txt.

[34] D. Davis, “Compliance defects in public key cryptography,” in Proceed-
ings of the USENIX Technical Conference, San Diego, CA, Jan. 1996.

[35] C. Ellison and B. Schneier, “Ten risks of PKI: What you’re not being
told about public key infrastructure,”Computer Security Journal, vol. 16,
no. 1, pp. 1–7, Apr. 2000.

[36] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT, no. 11, pp. 644–654, Nov.
1976.

[37] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high-bandwidth
flows at the congested router,” inProceedings of IEEE ICNP ’01,
Riverside, CA, Nov. 2001.

[38] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” inProceedings of ACM SIGCOMM
’02, Pittsburgh, PA, Aug. 2002.

[39] B. Adoba, “IPsec-NAT compatibility requirements,” May 2001, IETF
Internet draft.

