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Abstract—Web tracking is a practice that has grown in scope
and complexity as the Internet has expanded. In particular, ad-
vertising networks have been continually advancing web tracking
in order to gather the most information on users. On the other
hand, users have often reacted negatively to tracking schemes,
expressing concern about their lack of control. We present
Synthoid, a system which returns control to users, without a
need for tracker cooperation or broad adoption.

Synthoid achieves this by actively fetching content of a
selected set of topics, imprinting the tracking network profile
for the user with these topics. It eliminates the need for users
to place trust in web trackers by directly controlling the signal
trackers measure, without inconveniencing users. Additionally, as
traffic is generated directly from the users’ machines, Synthoid
is able to function with any method of tracking, even those which
use advanced techniques.

We examine the effectiveness of Synthoid with real web
trackers. We demonstrate that it is successfully able to imprint
a target profile with low volume and when faced with significant
interference. Finally, we show that it is able to entirely alter
browsing profiles when run alongside user traces. The key
behind Synthoid’s performance is a strong, artificial, yet carefully
constructed and semantically determined, signal.

I. INTRODUCTION

In recent years the field of user tracking on the web
has grown significantly. Beyond simply analytics, advertising
networks have been expanding their capabilities with the goal
of most efficiently presenting effective ads to users [17], [20].
These advancements have come in many forms, from context
aware advertising to the building of user profiles to deliver
custom ad experiences [11]. In order to build a meaningful user
profile, these networks have developed complex techniques to
gather user information.

Many of these techniques have created tension with users
and consumer advocates, who are concerned about the col-
lection of so much information in a manner which users are
unable to control and which reveals a portion of a user’s brows-
ing history. As a result, users have pursued the development
of methods to counter the collection of this information. These
methods include the blocking of tracking content through
web browser plugins such as AdBlock [1], as well as more
aggressive methods, such as regularly clearing browser cookies
and local storage data. However, many of these techniques
complicate the users’ web browsing experience, causing many
sites not to function correctly. This can range from lost login
sessions, often requiring painful re-authorization procedures, to
sites simply refusing to operate if the browser does not allow

cookies. Furthermore, these approaches only address a limited
number of tracking mechanisms, leaving trackers to develop
new methods.

In this paper, we present a system which returns control of
a user’s appearance directly to the user. We present Synthoid,
which allows a user to select a set of topics and automatically
visits sites of these topics from the user’s machine. Doing so
actively imprints the user’s desired topics in tracking profiles.
Such a setup allows the user to place whatever information they
desire into these profiles by targeting tracking at the source.
This method does not force users to place trust in the tracking
networks.

Since the system functions by generating direct traffic,
it stands to work with all networks. As traffic is generated
directly from the user’s machine, Synthoid can function with
any method of tracking, even those which use techniques
beyond simple cookie interactions, i.e., [33]. By generating
web traffic, Synthoid is able to control these systems, filling
the tracking history with traffic which reflects the user’s desired
behavior. By browsing only sites of focused topics, Synthoid
generates strong signals to trackers.

Under pressure from regulators, some of the largest net-
works, e.g., Google (DoubleClick), Yahoo!, and Microsoft,
provided interfaces for users to view or edit their profiles.
However, there are several issues. First, users are left to trust
in the effectiveness of these interfaces, but have no means to
audit their effectiveness. Users have no way of knowing which
parts of their browsing history are ultimately stored by the
networks, used for selecting advertisements, or sold to other
organizations. Second, nothing compels the networks to honor
these requests. Worse still, they have significant incentive not
to honor them, as limiting the information they store about a
user can dramatically reduce their revenue [3], [9], [10]. Third,
numerous other trackers do not even provide such interfaces,
leaving users without any mechanism to regulate their profiles.
Synthoid offers recourse in the above scenarios, allowing users
to influence their profile with information of their choosing.
This is done comprehensively for all trackers, yet without
placing any trust in, utilizing mechanisms from, or expecting
the cooperation of tracking networks.

We demonstrate experimentally that Synthoid is success-
fully able to imprint user profiles. First, we demonstrate that
Synthoid is able to rapidly generate a successfully imprinted
profile in under 2 days with low browsing traffic. Second, we
explore the effect of adjusting the amount of interference on
the ability of Synthoid to imprint profiles and find that even
when faced with 8 times its volume in focused interference,



no less than half of target topics still appear in the interest
profiles. Third, we use traffic traces from actual users and
demonstrate that when run alongside these traces, Synthoid
is successfully able to control the profiles as desired and
is capable of generating an entirely disjoint profile. Finally,
we consider the generality of our system, and find that it is
effective at imprinting profiles in multiple tracking services.

In the next section, we present a brief background on web
tracking and the current approaches to consumer protection.
We then describe the design and operation of our system in
Section III. We provide an evaluation of the effectiveness of
our system in a number of key scenarios in Section IV. Finally
we discuss the generalizability of Synthoid in Section V, and
conclude in Section VI.

II. BACKGROUND

Web tracking has become prominent in today’s Internet,
and one of the primary mechanisms and purposes for web
tracking is advertising. The increased importance of advertis-
ing in the Internet economy has put advertisers in a position
to collect information on users behavior across the web.

For example, suppose there are two websites, both of which
contain advertisements from the same ad tracking network.
If the sites managed their ads themselves, each site could
only collect information about its own users. Now, however,
the presence of the tracker on both sites means the user will
download content from the ad network’s servers. If the tracker
is able to reliably identify users, for example by cookies,
flash data, or browser fingerprint, they are able to recognize
whenever a particular user has visited a participating site. This
information is then processed by the tracker and becomes
part of the calculation of the user’s profile using the trackers
categorization of the site, potentially indicating that the user
is interested in the topics of the participating sites.

This careful design allows popular advertisers and trackers
to collect large amounts of information from users. Since there
is very little cost associated with this tracking, they can be
created any time a user who doesn’t have a profile is detected.
Since the users need never directly interact with any part of
the system, it can operate over long periods of time without
the users’ knowledge or consent.

The ecosystem of trackers is subject to significant variation
[26]. Some exist as large advertising networks, managing the
collection and analysis of user data, the generation of ad
profiles, and the distribution of ads. Other services are more
focused, performing only tracking and analysis. Others still
are primarily social networks. For the purposes of Synthoid,
these models are effectively the same, as they all collect and
analyze user browsing information. Therefore, we refer to such
networks and trackers interchangeably.

A. Current Approaches

Users who do not wish to participate have explored various
techniques to interfere with tracking. Common techniques in-
clude blocking certain domains (i.e., preventing the loading of
iframes from known trackers), preventing certain JavaScript
from executing without user permission, and blocking cookies
[26]. However, such steps may inhibit the proper functioning

of a site, either because the site detects that ads are being
interrupted, or the site depends on these technologies for
normal operation. Furthermore, trackers are left to develop
replacement techniques.

Several existing solutions have proposed systems which sit
between advertisers and users, preventing information from
flowing freely between them, often by moving interest min-
ing to users [5], [8], [12], [25], [31]. While these systems
appear effective, some require infrastructure, such as auction
platforms, proxies, or hardware, in order to function. Even the
most scalable systems require the deployment and maintenance
of such infrastructure. Worse still, [25] requires a trusted
third party to operate portions of its infrastructure. Finally,
all of these systems depend on the willing participation of ad
networks. Since advertisers and trackers stand to gain the most
information at the least cost with the current model, they have
no incentive to be involved in the deployment of such systems.

The Do Not Track header [7], and similar regulatory
efforts, rely on the cooperation of tracking networks or outside
regulatory bodies. Moreover, the technology of tracking often
outpaces such efforts. Additionally, it is not unheard of that
a tracker may simply ignore such mechanisms, as they only
restrict the information the tracker can collect [3]. A lack of
effective auditing methods mean that users are unable to detect
when such systems are being ignored.

Services, such as TRUSTe and The Network Advertising
Initiative [23], [32], have attempted to provide a central inter-
face by which users are able to opt-out of tracking. However,
users are only able to opt-out on select services. Furthermore,
opting-out is generally the only choice: users are not able to
exert any real control over their profiles.

Other attempted solutions have considered the approach of
poisoning users’ profiles by pooling tracking cookies among
several users, attempting to provide a protection by aggregating
user behavior [6]. However, such solutions are extremely easy
to detect, as a tracker could easily observe a single cookie
performing rapid travel between physically distant locations.
Moreover, even when cookies are not used, accurate finger-
printing is still feasible [33], allowing trackers to develop new
mechanisms to subvert such tools.

In light of these restrictions and challenges, Synthoid runs
directly on a user’s computer. It allows a user to modify
their tracking profile as desired by generating synthetic traffic
traces designed to be indistinguishable from a user’s regular
traffic from the network’s perspective. By running solely on
the user’s machine, Synthoid avoids the need for tracking
network participation and instead takes advantage of existing
tracking methods. It does not require that the user perform any
manipulation to the low level communications, or otherwise
interfere with their browsing experience.

III. SYNTHOID

In order to empower the user to determine their own
online profiles in a universal and effective manner, we present
Synthoid. Synthoid generates web traffic alongside a user’s
normal web browsing. It does so at a sufficient rate and
consistency that any third party observing the traffic is left
with information generated both by the user’s behavior and



Fig. 1. Synthoid system design. The binary vectors represent potential interest
profiles.

information the user chose to place in their profile, regardless
of the tracking mechanism. This allows the user to control
the trackers impression of their interests on two levels. First,
in terms of the aggregate profile, the user can imprint topics
entirely separate from their real interests. At the individual site
level, the tracker is unable to distinguish real from synthetic
traffic components. Together, these allow the user to control
the tracker’s perception of their interests and behaviors.

A. Overview

Figure 1 presents an overview of Synthoid. In order to use
Synthoid the user selects a set of topics from an available
list, or allows Synthoid to select them at random, which they
would like trackers to observe. Doing so designates a desired
profile. Synthoid then selects an appropriate set of sites from
the indicated categories, as well as control parameters dictating
the browsing behavior. We describe the site selection process
in more detail in Section III-A1. Synthoid then passes these
inputs to the browser. Details of how the browser performs
these visits and the techniques used to generate a regular traffic
pattern are discussed in Section III-A2.

1) Site Selection: In order for our system to generate the
described traces, we require a database of websites that are
semantically categorized. We chose the Open Directory Project
(ODP) to seed our traces. The ODP claims to be the largest
such web directory with over 5 million sites, and its data are
easily accessed. We note that our system is designed to work
with any such classification, and is not limited to the ODP.

The system builds a list of sites from the ODP database
which match the designated profile, building a separate list for
each of the input categories. In order to provide consistency in
its traces, Synthoid allows the user to specify the number of
sites to use for each topic list. Setting the list size to a low value
causes the system to visit individual sites more frequently. A
larger value allows the visits to be spread across a greater
number of sites, increasing the variety for a topic. We explore
the effects of this parameter in Section IV-C. These lists persist
for the duration of the operation of Synthoid and form the pool
of sites which the system is able to visit.

2) Browsing: To begin browsing, Synthoid randomly se-
lects one of the provided topics. Next, the system randomly

samples a single site from the list corresponding to that
topic and loads it. After the page has loaded completely,
the browsing module pauses for an interval sampled from an
exponential distribution. It then selects a random link from the
loaded page and follows it. Once the new page has loaded, a
new link is selected and the process continues. The mean of
the pause-time distribution, and the number of links followed
in this fashion are both tunable parameters to the system. In
our evaluations in Section IV we use a mean of 5 seconds
and follow 4 links. After the final link, the system repeats,
selecting a new topic and corresponding page.

By default the system performs the above browsing pattern
every 2 hours between 8 AM and 12 AM, though these times
are user editable. The user is further able to set how much
traffic is generated by specifying a duty cycle. In particular,
the user is able to specify what fraction of the 2 hour period
is devoted to browsing, including page load time and the time
between links. A smaller duty cycle corresponds to a lower
number of sites visited. The browsing is performed at the
beginning of each period; once the duty cycle is reached, the
system refrains from selecting a new topic and site until the
start of the next period. We explore the effects of adjusting the
duty cycle experimentally in Section IV-B. The flexibility of
these parameters allows users to configure the system so that
it closely replicates their usual browsing behavior.

Throughout the process, the browsing module also main-
tains the cookies and browser state for the trace, ensuring
consistent identification for trackers. In our implementation, all
system controls are implemented in Python. For browsing, a
version of Webkit [30] was used for its ease of customizability.
However, Synthoid can be configured to use the Selenium
Browser Automation Tool [27] to perform the trace with the the
user’s default browser, allowing the user browser fingerprint to
match exactly. Alternatively, a simple browser plugin could be
used to perform the browsing in the background.

B. Feedback

1) Tracker Feedback: To demonstrate that our system is
successfully manipulating the user profile, we require the
ability to see the profile that a tracker has generated. However,
this is not a standard feature of trackers. Even in the rare
case in which viewing the user profile is possible, significant
effort may still be required. For example, Microsoft requires
the creation of an account to view one’s profile. At the time
of writing, this left only Yahoo!, Blue Kai, and DoubleClick
as viable options. We have chosen the DoubleClick network
as our primary source of feedback. To ensure that our system
is as general as possible, we confirm in Section IV-F that our
imprints were indeed successful in the other networks.

Figure 2 provides an example of the type of profile which
DoubleClick makes visible to the user. The profile comes in the
form of a list of topics in a shallow hierarchy that is generally
3 or 4 topics deep. The top level of this hierarchy is made
up of 25 categories, covering a wide variety of possible user
interests. We refer to the profile that we have collected from
the tracker as the observed profile.

2) Scoring System: In order to measure the performance
of our system, we developed a method to determine how
well the observed profile matches the desired profile. This



Fig. 2. An example interest profile from DoubleClick. A number of category
hierarchies can be observed.

task is complicated by the fact that many sites actually fall
into multiple topic categories and may therefore occur with
sufficient regularity that these secondary topics are imprinted
on the profile. As the appearance of additional topics is part of
the goals of Synthoid, we require that our scoring system not
count their appearance negatively, accepting that extra topics
are a normal feature.

Topic Mapping The task of developing a scoring system
is further complicated by disparities between the topics in
the ODP and the observed DoubleClick topics. In order to
remove the need to map all possible sub-categories between
the two models, we consider only the top-level categories. We
map the input ODP categories to a top-level category from
the DoubleClick model, as the latter is more permissive. The
inputs are mapped using longest prefix matching, so the input
topic in “Arts/Literature” would map to the DoubleClick top-
level category “Books and Literature”, where “Arts” would
map simply to “Arts and Entertainment”.

Cosine Similarity We represent the user profiles with a
binary vector. Each dimension of the vector corresponds to an
input topic that has been mapped to its top-level DoubleClick
counterpart. First, the vector is initialized to 0. If the topic
appears in the resulting profile, a value of 1 is set in the
corresponding dimension. We then generate an ideal vector of
the same dimensionality, where we set the value of the desired
topic dimensions to 1. We then compute the cosine similarity
of these vectors, therefore measuring how similar the resulting
observed profile is to the input desired profile. Later, we will
refer to the score of evaluations to mean this cosine similarity.

IV. EVALUATION

In order to further understand how Synthoid would func-
tion in real world use scenarios, we perform a number of
experiments, generating actual web traffic and measuring the
resulting profiles. In particular, we hope to understand how
Synthoid must operate in order to successfully imprint the user
selected topics on the tracking profile.

A. Topic Selection

As a preliminary step, a desired profile was selected.
In order for this selection to offer a proper representation

Topic Ad Rate
Arts - Performing Arts 31%
Business - Accounting 6%
Business - Marketing and Advertising 6%
Health - Conditions and Diseases 24%
Home - Food 8%
Home - Gardening 18%
Recreation Travel 15%
Science - Astronomy 14%
Sports - Basketball 40%
Sports - Baseball 42%

TABLE I. THE SELECTED TOPICS AND THEIR PREVALENCE OF
DOUBLECLICK ADS IN A SAMPLE OF 200 SITES.

of the functionality of Synthoid we performed a random
sample, without replacement, of 10 topics from the set of all
topics on the ODP which were no more than 2 layers deep
(i.e. /Topic/Subtopic) and contained at least 2, 000 sites. To
obtain a better understanding of the resulting profile, we apply
the measurement methods from [26] to measure the rate of
appearance of DoubleClick ads. We present our selected topics
and their ad prevalence rates in Table I. The rates offer a
significant spread: from 6% of sites having DoubleClick ads in
“Marketing and Advertising” to 42% in “Baseball.” We make
use of these chosen topics throughout our evaluations.

B. Duty Cycle

First, we consider the effect adjusting the total amount of
browsing performed by Synthoid. We consider 6 duty cycle
settings, which range from 1% to 100%. In all cases, Synthoid
was given the previously described profile. We further set
Synthoid to visit 4 links on each site and set the mean of
the wait-time distribution to 5 seconds. Each instance ran for
1 week, after which the profile was collected every 30 minutes
for an additional day.

Figure 3 shows the average scores over 3 identical instances
of each type at the end of the final day of collection, where
the error bars indicate the standard deviation. We see that the
system is able to strongly influence the profile in all cases
and is also able to implement a target profile even at lower
duty cycles. Furthermore we note there is very little variation
between the rates, each scoring in a very similar range.

While every topic succeeded in appearing in the profile of
at least one instance, certain topics have some difficulty, failing
to appear more often than not: “Astronomy” and “Conditions
and Diseases.” While their appearance at all indicates that they
are capable of being imprinted, we suspect they failed to appear
due to competition with more common topics. In particular, the
“Arts and Entertainment” and “Business” categories dominated
the profiles, accounting for as much as half of the topics in
the profile. While we chose to keep the topic ratios equal for
these experiments, Synthoid can account for this by increasing
the fraction of traffic devoted to less popular topics.

For additional perspective, we consider the score for each
duty cycle over time. To do so, we examine profile observations
that were taken after periods of inactivity, to avoid including
transient profile features in the score.

Figure 4 shows the scores over the course of the experi-
ment.1 We see that all duty cycles except the 1% reached a

1For clarity, we have selected a single run of each duty cycle, but note that
all runs of the same duty cycle behaved in a similar fashion.



1 5 25 50 75 100
Duty Cycle (%)

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Fig. 3. The average score for instances of varying duty cycle. The system
is able to imprint the majority of desired topics at low volumes.
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Fig. 4. The score over the course of the week for various Synthoid duty
cycles. Only the 1% duty cycle run seems to lag behind.

steady plateau after only a single day of operation. The 1%
instances took slightly longer, requiring a full 3 days. Rather
than the profile failing to imprint correctly at low rates, it
merely takes longer for the tracker to detect. We see at duty
cycles as low as 5%, the system was already able to influence
the profile as fast as all other duty cycles. Therefore the system
is able to achieve its fastest rate at relatively low traffic rates.

C. Restricted Site List

The next parameter that we consider is the size of the topic
lists. As mentioned in Section III-A1, a natural hypothesis is
that trackers pay particular attention to consistency: if a certain
site is visited regularly, its corresponding topics are more likely
to appear in the tracking profile than if many different sites of
the same topic are visited over time.

In order to explore the potential effects of this parameter,
we perform week-long runs of Synthoid using varying sizes
of the pool of sites per topic, considering 25, 50, 100, 200,
400, and 800 sites. The experiments were performed at a duty
cycle of 37.5%, with all other parameters as they were in the
previous experiment and each repeated 3 times. Recall that a
list size of 25 means that the system has 25 possible sites to
choose from for each topic, the number of pages loaded is still
determined by the duty cycle and load times.

We find that the scores are largely unaffected by the list
size parameter, achieving an average score of 0.74 across all
runs, with a 16% maximum difference from the mean and a

variance of 0.8%. These observations suggest that Synthoid
can successfully operate with a relatively small list. This has
several direct benefits: First, it greatly reduces the footprint of
Synthoid, as it need not store large lists for each topic. Second,
the task of generating a semantic classification of websites
becomes easier, as a large set is no longer necessary.

We observe no significant difference between the list sizes
when we consider their scores over the week. As in the
previous experiments, the system takes a single day to reach
a stable profile. This suggests that reducing the list size will
not negatively affect the time it takes to imprint a profile.

In light of these observations, we use a list size of 100
for the remainder of the experiments, as we saw it should not
affect performance, while reducing the resources used by the
system and still providing sufficient tracker occurrences.

D. Interference

Next, we explore how the system performs when there
is additional web traffic using the same cookie, such as the
user’s normal browsing, by exposing Synthoid to different rates
of interference. In order to properly understand these effects,
we consider two experimental setups. The first maintains a
fixed amount of traffic devoted to imprinting the profile, and
considers increasing amounts of interference (Section IV-D1).
The second maintains a constant total traffic, but considers
increasing proportions of traffic devoted to interference (Sec-
tion IV-D2).

1) Total-Traffic Dependent Analysis: For this experiment,
we divide Synthoid’s efforts in two: one devoted to imprinting
the same selection of topics used previously; and a second
devoted to a set of 5 topics randomly selected from the
remaining ODP topics not used in the first 10. We begin with
system generating equal amount of traffic for all 15 topics. As
before, we allow Synthoid to run for a week and collect profile
information for 1 additional day. We then repeat the setup on
a fresh cookie with double the duty cycle of the interference
topics, then consider 4× the interference, and finally 8×. When
running at equal rates, the system operates with a duty cycle of
25%. As we want the score to measure the occurrence of the
original 10 topics despite the addition of the interfering traffic,
we exclude the additional topics from the desired profile when
calculating the score for these experiments.

Figure 5 shows that there is very little change across the
levels of interference. Even in the face of up to 8 times its
volume in interference, Synthoid is still successfully able to
imprint a portion of its target topics. On average, Synthoid
imprinted 0.5 topics fewer than when running unencumbered.
Observing the profiles indicated that the the size of the profile
was quite large, often up to 20 topics. This suggests the
trackers are responding to the diverse high volume traffic,
allowing for a larger, more varied profile.

Figure 6 indicates a slight delay in the first 3 days of profile
imprinting. After day 3, the system again reached a stable
profile. When faced with 4× and 8× as much interference,
the initial startup was particularly slow, and the scores did not
recover to quite as high a level. However, all other setups were
able to achieve successful profile imprinting similar to those
seen when Synthoid was run alone.
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Fig. 5. The average scores for increasing volumes of interference topics. The
final score does not seem to be significantly affected.
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Fig. 6. The scores of total-traffic dependent interference runs over the course
of the week. The 4× and 8× runs took an additional day to imprint.

2) Total-Traffic Independent Analysis: As a further analysis
on the effects of interference, we run Synthoid at a duty
cycle of 50% and alter the proportion devoted to interference
traffic. As we increase the proportion of browsing devoted to
interference, the traffic devoted to the target topics decreases.
This allows us to study the effects of interference separate
from changes that happen as a result of changing entire system
browsing rate.

Figure 7 shows the performance of Synthoid for each rate
of interference. While we see a small dip in the performance
of the runs with 4× the interference, we note that it seemed
to recover in the 8× case. In these interference scenarios,
Synthoid imprinted an average of 0.9 topics fewer than when
running alone.

Considering the scores over time, we observed that in
all cases the profiles took between 2.5 and 3 days to reach
steady state, generally staying near 0 until the second day.
The scores for all levels of interference were marginally lower
than those seen in the unhindered runs. This is likely caused
by a combination of heavy interference and lower volume.

E. Case Studies

As is often the case, there is potential for significant
complexity to be added when considering actual user traffic,
rather than synthetic traffic. In order to try and understand how
Synthoid performs when running alongside real web traffic,
we perform a number of case studies using traffic generated by
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Fig. 7. The average scores with fixed total traffic and variable ratio of
interference. The decrease at 4× seems to be noise.

User Number of Pages Unique Domains
1 2019 251
2 559 92
3 1031 186
4 1772 120
5 2369 147

TABLE II. AN OVERVIEW OF THE CHARACTERISTICS OF THE USER
SUBMITTED TRACES.

actual users. A small set of users anonymously submitted traces
of their last 7 days of traffic. Table II contains an overview
of the submitted user traces. We see that the number of sites
visited varies dramatically between users. We also estimate the
number of unique domains in the set using the current Mozilla
public suffix list [24]. The rate of unique domains varies widely
between users, suggesting significant variation in how each of
the users browses the internet.

We recreate each user trace on two fresh DoubleClick
cookies. The first is done as a control in order to see what
profile results from only the user’s behavior. The second is
performed alongside Synthoid running on the original set of
10 randomly sampled topics which we used previously. All
browsing parameters were set to match the previous runs, and
the system operated at a duty cycle of 25%.

Figure 8 shows the final score of Synthoid when used
alongside the human traces. Despite the variation in the human
behavior, Synthoid regularly scored above 0.8, imprinting most
of the profile. Furthermore, there is no significant difference
between the runs: Synthoid functioned equally well alongside
all 5 traces.

Figure 9 indicates Synthoid is again rapidly able to imprint
the profile. All instances performed similarly, despite relatively
large variations in the number of pages and domains in the
user trace. Such performance suggests robustness to varied
user behaviors. Moreover, Synthoid performed comparably to
previous unencumbered experiments, suggesting that it was
relatively unaffected by the human traffic.

Manual comparison of the topics in the final profiles
revealed significant differences between the profile produced
by recreating the user trace alone and alongside Synthoid. In
particular, all runs for users 1, 2, and 3 generated entirely
disjoint profiles, sharing no topics with the original. Users 4
and 5 shared 2 topics with their original profiles, however
this was the result of these topics, forms of “Food” and
“Performing Arts”, both being in Synthoid’s target profile.
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Fig. 8. The average scores of Synthoid when run alongside human traces.
Strong performance is seen for all 5 users.
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Fig. 9. The scores over time for Synthoid alongside each human trace. A
stable imprint is achieved after only 1.5 days.

F. Other Trackers

In order to understand how our system interacts with other
ad trackers, we also consider the resulting profiles from the
Yahoo! and Blue Kai ad networks. In a sample of Yahoo! pro-
files resulting from Section IV-B, we found that the majority
of the profile was imprinted, with “Travel,” “Performing Arts,”
and “Accounting” or “Marketing and Advertising” appearing
in all checked profiles. “Baseball” or “Basketball” appeared
in a majority of checked profiles. Surprisingly, “Food” and
“Gardening” failed to appear more often than not, topics
DoubleClick had no difficulty with, suggesting differences in
the types of sites which use each tracker. “Astronomy” proved
the most difficult, never appearing in a profile. Samples of
profiles from Section IV-D revealed nearly identical results.

In examining the Yahoo! profiles, we noted that the pro-
files were in general slightly noisier than their DoubleClick
counterparts, often including seemingly unrelated topics which
did not appear in our earlier analysis. This suggests that the
algorithms employed by each network vary significantly, and
likely the set of participating sites differ greatly. Despite this
difference, Synthoid functions well in both cases.

A review of the Blue Kai profiles of the same experiments
revealed much smaller profiles, the largest containing only
11 topics, and frequently containing only 3 or 4. Various
forms of “Performing Arts” and “Accounting” appeared in
nearly every profile checked. “Sports” occurred in roughly half
the observed profiles. Similar topics, such as “Software” and

“Online communities” were observed as well, but in general
there were very few additional unrelated topics. Again, we
suspect these differences arise largely from differences in the
sites visible to the tracker and the specific algorithms they
employ. While these profiles were much smaller, their contents
were dominated by topics targeted by Synthoid.

V. DISCUSSION

A. Generalizability

Central to Synthoid’s design principles is its ability to
operate effectively on any network, regardless of the tracking
method and profile creation algorithm. While we have demon-
strated its effectiveness for networks which offer feedback,
many networks offer users no control or information. However,
Synthoid should still prove effective in these environments as
long as it is able to visit sites which lie in the appropriate
behavioral tracking networks.

We demonstrated that Synthoid can alter a tracker profile
completely. Still, all of a user’s traffic remains in the tracker’s
system. Nonetheless, in the presence of careful synthetic
traffic, trackers are unable to differentiate between such traffic,
causing the tracker to effectively discard certain user interests.

Another advantage of Synthoid’s endpoint design is its
ability to cooperate with fingerprinting techniques. Since it
operates closely to the user, techniques that attempt to measure
peculiarities of a user’s browser will recognize that Synthoid’s
traffic comes directly from the user, and therefore treat it’s
traffic as the user’s. Even a third party snooping on a user’s
traffic on a local network would be unable to readily differen-
tiate between a user’s normal traffic and Synthoid traffic .

We showed Synthoid is capable of imprinting user profiles
with 25MB/day. Such volumes would be reasonable even in a
mobile setting. Further adjustments could be made to optimize
mobile use, such as only browsing when connected to Wi-Fi
or while charging, preventing wasteful data and power use.

B. Related Work

There has been a significant body of work studying the
interactions between users, advertising networks, and online
tracking services. Jensen, et al. [17] developed a web crawler
that hunted for the presence of trackers and other user tracking
mechanisms. Others have studied the prevalence and mecha-
nisms by which user information can be collected [20]. In
particular, many of these consider methods beyond traditional
cookies, including Flash, HTML5, and JavaScript [4], [16],
[29]. More recently, Roesner, et al. [26] examined several
of the mechanisms used by popular trackers. They further
measured the prevalence of tracking behaviors on popular
websites. Yen, et al. [33] considered how much personal infor-
mation can be revealed via information collected by trackers.
While understanding the methods and prevalence of trackers is
important, Synthoid operates in a generic fashion that is able to
inform any tracker which listens to a user’s traffic, regardless
of the particular mechanism.

A handful of solutions have been proposed which aim to
resolve the conflict between the needs for effective advertising
and for user control. These range from moving the actual
tracking to the users local machine [8], [18], [31] to developing



intermediary layers or auctions for releasing user data [5],
[12], [25]. However, these solutions require participation on
the part of advertising networks. Synthoid overcomes these
requirements by making use of the tracking systems currently
in place to imprint trackers with a user selected profile and
therefore needs no additional structure. Since the traffic ap-
pears as ordinary web traffic, trackers themselves need not
opt-in to the system, so no explicit cooperation is required.

More generally a significant body of work has been devoted
to the study of user web information control, studying how a
user’s information may be leaked through a number of vectors,
from simple browser partitioning [2], [14], [15], [28] to the use
of online social networks and other services [22], [13], [19],
[21]. Synthoid works to return control directly to the user,
allowing them to control external profiles of their information.

VI. CONCLUSIONS

We have presented Synthoid, a system designed to imprint
web trackers with information selected directly by users.
Synthoid imprints a user’s desired profile on tracking profiles
by regularly visiting a series of web pages that match the
user’s selected topics. This endpoint design enables a user
to select the contents of their profile for all trackers from a
single interface. Furthermore, this approach is not limited to
those trackers which currently allow editing and functions for
any service which observes a user’s traffic. Finally, it does not
require users to place trust in the trackers, allowing users to
provide the tracker with information of their choosing.

We have demonstrated Synthoid’s effectiveness and robust-
ness to interference through a number of experiments using
the profiles generated by a real world tracker and real web
traffic. Furthermore, we showed that Synthoid can completely
alter a profile when run alongside collected web traces from
human users. Finally, we showed that the system is general,
and functions well in multiple tracking services. It is able to do
so by generating strong, synthetic signal in the form of browser
traffic. Synthoid provides users with a direct methodology
which can be implemented and employed effectively today.
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