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ABSTRACT
Global-scale Content Distribution Networks (CDNs), such
as Akamai, distribute thousands of servers worldwide pro-
viding a highly reliable service to their customers. Not only
has reliability been one of the main design goals for such
systems — they are engineered to operate under severe and
constantly changing number of server failures occurring at
all times. Consequently, in addition to being resilient to
component or network outages, CDNs are inherently con-
sidered resilient to denial-of-service (DoS) attacks as well.

In this paper, we focus on Akamai’s (audio and video)
streaming service and demonstrate that the current system
design is highly vulnerable to intentional service degrada-
tions. We show that (i) the discrepancy among streaming
flows’ lifetimes and DNS redirection timescales, (ii) the lack
of isolation among customers and services, (e.g., video on
demand vs. live streaming), (iii) a highly transparent sys-
tem design, (iv) a strong bias in the stream popularity, and
(v) minimal clients’ tolerance for low-quality viewing expe-
riences, are all factors that make intentional service degra-
dations highly feasible. We demonstrate that it is possi-
ble to impact arbitrary customers’ streams in arbitrary net-
work regions: not only by targeting appropriate points at
the streaming network’s edge, but by effectively provoking
resource bottlenecks at a much higher level in Akamai’s mul-
ticast hierarchy. We provide countermeasures to help avoid
such vulnerabilities and discuss how lessons learned from
this research could be applied to improve DoS-resiliency of
large-scale distributed and networked systems in general.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Internet
C.4 [Performance of Systems]: Reliability, availability,
and serviceability
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1. INTRODUCTION
Streaming is thriving in the Internet. A recent study

shows that as a result of streaming audio and video in web
downloads, HTTP took back the leading position from peer-
to-peer (p2p) applications for the first time in the last four
years [19]. Streaming alone accounts for more than 20% of
the total Internet traffic [19], and it is expected that new
applications, such as Internet video and TV (e.g., [5,7,10]),
will further accelerate this trend over the coming years.

One of the key driving forces standing behind the suc-
cess of streaming applications in the Internet is certainly
their quality. Due to penetration of high-speed broadband
access technologies and improved streaming dissemination
techniques, the quality bars have been raised quite high. In-
deed, a recent study conducted by Akamai Technologies ex-
plored fundamental elements related to the future success of
online video: consumer preferences around video consump-
tion and consumer reaction to low-quality viewing experi-
ences. The most compelling results reveal that, having ex-
perienced poor video performance at an Internet site, more
than half of online video users would seek content from a
competing website, and a quarter would leave with a more
negative brand perception and be less likely to return to the
poorly performing site [13].

This apparently opens the doors for denial-of-service (DoS)
attacks against streaming services. Indeed, generating even
short server or network outages, or reducing the encoding
rate can cause a stream’s quality to degrade, producing
“glitches,”“slide-shows,”and“freeze ups”as the user watches
the stream. This, in turn, can dramatically impact clients’
perception and can cause them to switch the channel or sim-
ply give up [13].

Incentives for conducting such misbehaviors are manifold.
In addition to the rough competition among streaming con-
tent providers, other scenarios are possible as well. For
example, many political and sport events are frequently
streamed over the Internet nowadays, and opposing parties
might be tempted to disrupt such broadcasts on the Inter-
net, e.g., interrupt the broadcast of a political speech on



CNN’s web site to clients on the East Coast, or disrupt the
broadcast of a basketball game on NBA’s pay-per-view site
on the West Coast. Unfortunately, such scenarios are not
the matter of a distant future; we demonstrate that such
sophisticated attacks could be launched today.

In this paper, we focus on Akamai’s streaming architecture
and its resilience to DoS attacks. While our experiments
and evaluations are necessarily tied to Akamai’s stream-
ing infrastructure, the lessons learned from our study can
be generalized not only to other DNS-driven and multicast
streaming services, but can have important impact on the
design and security of distributed and networked systems in
general, as we discuss later in the paper. Akamai’s stream-
ing network is one of the largest streaming infrastructures in
the world, capable of serving close to a million streams con-
currently [3].1 In addition to the built-in resilience to net-
work and server failures [14], the architecture is character-
ized by several other desirable properties. Unlike p2p-based
streaming architectures (e.g., ESM [4]), which are vulnerable
to misbehaving peers (e.g., [28]), no clients are directly in-
volved in distributing content in Akamai’s case [22]. Unlike
data-center-oriented systems (e.g., YouTube [9]) that have a
single point of failure (a data center itself), Akamai’s stream-
ing network aggressively distributes content all around the
world; hence, no single point of failure exists.

Contrary to the common belief, we find that it is highly
feasible to degrade service quality to arbitrary flows in ar-
bitrary parts of the Akamai’s streaming network. The key
issue is that the redirection time-scales used for load balanc-
ing by DNS-driven systems are fundamentally inappropriate
for live streaming. In particular, when a server (or the net-
work access link) experiences increased load, the redirection
might help the newly arriving clients to avoid the problem,
but not the clients that are already fetching their streams
from the given server.2 Thus, contrary to the web case,
where DNS redirections at time scales of tens of seconds can
effectively help reduce the load from the troubled server,
such an approach does not work for streaming, particularly
when the system is under attack. This is because the flow
lifetimes are fundamentally different for streaming and the
web. Moreover, clients’ tolerance for the former is dramati-
cally thinner [13].

Unfortunately, other problems exist as well. In particu-
lar, streams belonging to different customers, channels, and
services (e.g., live audio, live video, or video on demand) all
share the same infrastructure, and we show that no strong
spatial nor temporal isolation among them exists, neither at
the server nor at the network level. The combination of this
problem and the above slow load balancing problem causes
additional security implications. Because both popular and
unpopular streams overlap at the same servers, it is possible
to generate traffic surges by requesting unpopular streams,
thus dramatically impacting the popular ones.

A related issue is that global-scale streaming services dis-
tribute streaming servers to edge regions which typically
have limited, often moderate bandwith (e.g., 100Mbps or
less), shared by the rest of the ISPs’ traffic. As a result, only
moderate attacker resources are needed to generate traffic
surges and impact a streaming service at a particular edge

1Monthly peak 974,296 streams on May 17, 2007 [3].
2Even the newly arriving flows might end up redirected to
a distant backup server, e.g., to a different continent, with
increased probability to experience poorer viewing quality.

region. Even though these attacks may not “melt down” the
entire streaming service globally, they can dramatically en-
danger the reputation of a streaming service by targeting
a desired customer’s stream (e.g., broadcast of a popular
event) at a given network region.

In an attempt to verify the above hypotheses, while tak-
ing enormous care not to cause any problems to Akamai’s
clients, we perform Internet experiments. To excite Aka-
mai’s bottlenecks, we carefully and gradually increase the
request rate for unique unpopular streams from appropri-
ate Akamai servers. Whenever the bottleneck reaches its
limit, we instantly abort the experiment. We verify the slow
load balancing problem, and demonstrate that a stream’s
throughput can get thinned (e.g., from 1.4Mbps to 200 kbps)
when the bottleneck reaches its capacity. Moreover, a highly
transparent system design that feeds important internal in-
formation to the public (via URLs), opens the doors to ad-
ditional unforeseen problems. We show that it is feasible
to effectively exploit the transparent system design and ex-
cite resource bottlenecks not only at the streaming network’s
edge, but at a much higher level in the Akamai’s multicast
hierarchy: at reflectors or even at content providers’ origin
servers.

Providing a single comprehensive solution to the above
problems is challenging for a number of reasons. Hence, we
provide a set of countermeasures with the goal to signifi-
cantly increase the bar for potential attackers rather than
provide a “bullet-proof” solution. First, we argue that
resource-based or graphic-puzzles based admission control
schemes are either inappropriate or incapable of solving the
problem. Second, we argue that location-aware admission
control can dramatically raise the bar for the attackers:
force them to use botnets, instead of a few high-bandwidth
machines as we did. Third, we argue that a more care-
ful edge cluster configuration, and most importantly, a less-
transparent system design that is capable of hiding impor-
tant internal information from the public, can dramatically
raise the system’s resilience to even botnet-equipped attack-
ers. Finally, we discuss the tradeoffs between security and
system transparency in networked and distributed systems
in general.

This paper is structured as follows. In Section 2, we sum-
marize a DNS-driven streaming architecture and illucidate
the key vulnerabilities of this system. In Section 3 we per-
form a measurement study that reveals the security impli-
cations of this architecture, and we show how they can be
exploited in Section 4. We provide design guidelines to avoid
these exploits in Section 5. Finally, we conclude in Section
6.

2. DNS-BASED STREAMING SERVICES:
BACKGROUND AND VULNERABILITIES

Here, we provide the necessary background on Akamai’s
DNS-driven streaming infrastructure. Then, we outline the
main vulnerabilities characterstic not only for this particular
infrastructure, but for large-scale DNS-driven and multicast
streaming systems in general.

2.1 Background
In order to serve millions of audio, video, on-demand,

and live streaming clients globally, Akamai designed and de-
ployed an overlay streaming multicast network [14].



Figure 1: Akamai’s overlay multicast streaming net-
work

Figure 1 illustrates an abstract view of this streaming ar-
chitecture. At the source, content providers (e.g., a radio
or a TV station) encode their streams and transfer them
to the so-called entry points of the Akamai’s streaming net-
work. To distribute streams to a large number of regions
in a scalable manner (e.g., [26]), the streams are then repli-
cated to multiple set reflectors [22]. Set reflectors in turn
propagate the streams to edge servers. Finally, edge servers
stream content to clients (not shown in the Figure).

Data in the multicast network is transferred via UDP. To
tolerate network transfer errors, reflectors and edge servers
may receive multiple copies of each packet and reassemble
the data streams by pruning duplicate packets. Still, repli-
cating each of the streams to each of the reflectors and edge
servers is simply not feasible. This is because such an ap-
proach would overload set reflectors. Moreover, replicating
all streams to all reflectors and edge servers is really not
needed, because not all streams are equally popular [22].

Subscription system. To address this problem, the
streaming CDN adopts a reflector subscription system. It al-
lows set reflectors to propagate streams upon requests from
downstream edge servers. Indeed, the subscription approach
ensures that only watched streams get propagated to edge
regions [22]. Still, even the development of a subscription
system does not fully remove the potential to overload set
reflectors. For example, if all popular edge regions subscribe
to the same set reflector, they could overload that machine
or a set of machines, even though the set reflector subsystem
as a whole has plenty of spare capacity [22].

Portsets. To further address the problem, the approach
is to group streams into buckets called portsets.3 Then, it as-
signs portsets to different set reflectors to ensure the load is
distributed appropriately. Indeed, a portset is no more than
a collection of streams that is supposed to be transported
through the same set reflectors [22]. Akamai groups popular
and unpopular streams in the same portsets. Such an ap-
proach provides good load balancing capabilities. Likewise,
when the load in a given portset starts growing, the system
can adapt to the growth.

DNS-driven system. Following the successful design
applied in the case of web,4 all the mappings in the Akamai’s
streaming architecture, i.e., those between clients and edge

3In this paper, we interchangeably use terms ’portset’ and
’channel.’
4Akamai routinely delivers between ten and twenty percent
of all web traffic, at times reaching more than 650 Gigabits
per second [3].

servers and between edge servers and reflectors are done via
DNS. Below, we exemplify the first scenario — DNS-driven
mapping between clients and edge servers.

Figure 2: DNS-based load balancing

Figure 2 illustrates the DNS load balancing approach.
When the monitoring infrastructure observes network or
server overloading conditions of an edge server (E1), it up-
dates appropriate DNS entry to redirect new clients to an-
other edge server (E2). In this way, the system reduces
the load placed on edge server E1 and helps newly arriving
clients get better service from the server (E2). The criti-
cal issue, however, is the timescale at which the redirection
takes place, which has significant security repercussions, as
we first explain below.

2.2 Vulnerabilities

2.2.1 Slow Load Balancing
Here, we explain the slow load-balancing problem. DNS’

Time-To-Live (TTL) value defines how frequently a client
should query DNS system to get current IP addresses of a
hostname. On the one hand, in DNS-driven systems, large
TTL can lead to slow response to changes of network or
server conditions [27]. On the other hand, small TTL may
put unnecessarily high load on the DNS system. The ques-
tion then becomes which TTL Akamai sets for their stream-
ing service. While we answer this question in the next sec-
tion, our key hypothesis is that if the redirections at time
scales of several tens of seconds are applied, as used in the
case of web [27], that might generate severe vulnerabilities
in the case of live streaming.

Indeed, while DNS redirections at such time scales are ca-
pable of efficiently distributing the load in the case of web
traffic, this is not the case for streaming for the following
two reasons. First, once an edge server becomes overloaded
in the web case, either due to a flash crowd or a DoS at-
tack, even a slightly delayed DNS redirection can help effec-
tively reduce the load from the troubled edge server. This
is because web flows are relatively short-lived, and thus the
overload quickly ’goes away’ after the redirection. This is
not the case with streaming. While a redirection can help
new streaming clients to experience better service, the high
overload on the original edge server will not disappear in-
stantly (unless a subset of clients disconnect from the trou-
bled server), precisely because streaming flows are longer
lived.

Second, redirection time-scales at the order of tens of sec-
onds leave a long window size to potential attackers, which
can easily overload either network or server resources during



such relatively long intervals. Finally, clients are much more
tolerable to minor delays in the web performance, which is
not a ’live’ medium. For example, a slightly delayed image
appearance at a web page is not a catastrophic event. On
the contrary, this does not hold for streaming where even
a slight degradation can affect clients’ perception and moti-
vate users to seek content from elsewhere [13].

We explore the redirection timescales applied by the Aka-
mai streaming network in Section 3.2.1, and we experimen-
tally explore the slow load balancing problem in Section
4.2.1.

2.2.2 No Isolation
The idea of deploying a number of servers at the edge is to

bring the clients to their closest servers in order to get bet-
ter services. However, for a limited number of edge servers
located at the same region, it is simply impossible to assign
dedicated servers to different services. The situation aggra-
vates in streaming services because each streaming connec-
tion can occupy significant server and network resource for
a long period of time, and therefore impact the performance
of other services co-located at the same region. For exam-
ple, overlapping between media implies that traffic from one
media can affect quality of others. Moreover, by artificially
increasing traffic load at one media (e.g., VoD), one can af-
fect service to other medias (e.g., live streaming).

This is a critical problem because it provides the way
for an attacker to relatively easily collect a large amount
of unique active VoD streams. Thus, before a live streaming
event, the attackers can get prepared with enough amount
of ”bullets” to launch the attacks. We explore the level of
isolation among different channels, customers, and medias in
Section 3.3, and we experimentally explore the repercussions
of the isolation problem in Section 4.2.2.

2.2.3 Suboptimal Migration
In a DNS-driven streaming service, when an edge region

is overloaded, new clients might get redirected to distant re-
gions, e.g., to different continents. Contrary to the web case,
where such redirections are not problematic, this might not
be the case for streaming. Longer inter-continental paths
might offer smaller bandwidth and poorer viewing experi-
ences, hence turn away clients from accessing such services.
We experimentally explore this problem in more depth in
Section 4.2.3.

2.2.4 Amplification Attacks
DNS-driven streaming services adopt a multicast tree struc-

ture in order to optimize network resources (Figure 1). Data
streams first travel to a regional reflector and then dupli-
cate to edge servers. It is important to realize that each
unique stream request from edge servers consumes resources
from their shared reflector. Hence, if an attacker is capable
of reverse-engineering the system to understand which edge
servers map to given reflectors, then such an attacker might
become capable of exciting a bottleneck at the reflector level
by exploiting the appropriate edge servers in a given region
as proxies.

This is a particularly dangerous vulnerability for the fol-
lowing reasons. First, because the edge servers are not di-
rectly attacked, it is hard to detect the attack at edges.
Second, because such attacks can affect the service in an
entire geographic region served by a given reflector (i.e., all

edge servers served by a given reflector), they are very dan-
gerous. Below, in Section 3.1, we first reveal the method
used for mapping between edge servers and reflectors. Next,
in Section 3.4, we explore the characteristics of edge server
clusters that are susceptible to become proxies in such at-
tacks. Finally, in Section 4.3, we experimentally evaluate
this issue in the Internet.

3. SCANNING AKAMAI
It is well known that before performing any attacks, one

must first scan the system to understand its potentially vul-
nerable points. While our goal is not to attack the system,
but rather to prevent anyone from ever becoming capable
of conducting such misbehaviors (Section 5), we necessarily
first attempt to collect information about the system. In
particular, below we first analyze Akamai’s streaming URLs
which apparently feed a lot of internal system information.
Then, we perform large-scale measurements to verify our
vulnerability hypotheses explained above.

3.1 Understanding ARLs
Akamai encodes the information about each unique stream

in specific URLs called Akamai Resource Locators (ARLs) [12].
In many cases, ARLs are embedded in the web pages by con-
tent providers (e.g., MTV), and retrieved by clients. An exam-
ple ARL for a (Microsoft Media Server) live stream is: mms:
//a1897.l3072828839.c30728.g.lm.akamaistream.net/D/

1897/30728/v0001/reflector:28839. In other cases, ARLs
are not coded into the web pages but embedded in media
players (e.g., Flash player) launched by web browsers. For
this group, packet sniffing and analysis software (e.g., URL
Snooper [8]) can be used to discover ARLs.

From clients to edge servers. Once a client receives
this ARL, it sends a request to its DNS server in an at-
tempt to resolve the IP address of the hostname a1897.

l3072828839.c30728.g.lm.akamaistream.net. The request
further gets redirected to the Akamai’s DNS system. Based
on the client’s location and the current network conditions
and the load at Akamai’s edge servers, the client is redi-
rected to the edge server that should provide the optimal
performance.

The example streaming ARL can be ’decoded’ as follows:
a1897 is the portset (or channel) number; as explained above,
multiple streams can share the same portset; c30728 repre-
sents the customer number — National Basketball Associa-
tion (NBA, nba.com) in this particular case; lm indicates live
media service; l3072828839 combines two names: 30728 is
again the customer number and 28839 is the stream’s unique
identification number [1,2].

From edge servers to reflectors. Once an edge server
receives a request from the client for the given stream, it
proceeds as follows. If the stream is already ’active’ at the
given edge cluster,5 it is simply forwarded to the client. If
this is not the case, the edge server must determine the ap-
propriate reflector to fetch the stream from.6 At this point,
it enters the similar procedure as when a client queries the
Akamai’s DNS system to reach the appropriate edge server.
In particular, the edge server in a given region queries the

5An edge cluster is a set of co-located edge servers.
6According to [11], this is not the case for the video-on-
demand service, in which case the stream is fetched directly
from origin servers. We discuss this issue later in the paper.



ID Type Chan. Cust.ID Str.ID
NASA Live Video a167 c18569 44670
CNN Live Video a466 c37606 51364
ABC Live Video a151 c10588 43249
NBA1 Live Video a785 c30728 28857
NBA2 Live Video a644 c30728 29417
NBA3 Live Video a1020 c30728 28846
Blockbuster1 VoD a1247 c26419 e33220
Blockbuster2 VoD a1042 c26419 e33210
Blockbuster3 VoD a1081 c26419 b10069
FM94.5 Live Audio a1367 c20064 43805
FM92.1 Live Audio a1819 c21650 45129
FM106.7 Live Audio a774 c19810 44599

Table 1: Measured streams

DNS system by looking up the name that contains a given
portset and the region [22]. This approach opens the doors to
amplification attacks explained above. Indeed, this means
that streams from a given edge region that use the same
channel map to the same reflector. We discuss this issue in
more depth later in Sections 3.4 and 4.3.

DNS is effectively used for load balancing and reducing ex-
cessive load from reflectors. If traffic on particular portsets
is low, then the DNS names for those portsets can resolve
to the same reflector. As traffic grows, then the DNS names
can be changed to resolve to different set reflectors for differ-
ent portsets. This allows DNS-driven streaming systems to
scale up or down the reflector network based on customer de-
mand, rather than having to size based on peak demand [22].
Indeed, the flexibility of DNS system has proven invaluable
for Akamai’s streaming network. Still, we show below that
there are downsides as well. In particular, the time-scales
both for redirecting clients to edge servers and for redirect-
ing edge servers to reflectors might not be successful enough
in reducing the load from overloaded servers, as this is the
case with the web traffic.

3.2 Measurements and Implications
Here, we perform a large-scale measurement study that

reveals the most vulnerable mechanisms and points in the
Akamai’s streaming architecture. In particular, we evaluate
the vulnerability hypotheses from Section 2.2 above and ex-
plore (i) the redirection time-scales used for load balancing,
(ii) the level of isolation among clients, channels, and ser-
vices, and (iii) the size and location of streaming edge-server
clusters. Throughout the section, we discuss important secu-
rity implications of the revealed Akamai’s mechanisms and
policies.

Table 1 shows the streams that we use in the experi-
ments in this section. In particular, we select a sample of
streams from different media types, customers, and chan-
nels: Live streaming that belongs to different customers
(NASA, CNN, and ABC), as well as to the same customer
(NBA); Video on Demand (VoD) streams that belong to
the same customer (Blockbuster) but operate on different
channels (a1247, a1042, and 1081), featuring previews for
different movies (e33220 - ’3:10 to Yuma,’ e33210 - ’The
Big Bad Swim,’ and b10069 - ’Pirates of the Caribbean: At
World’s End’); finally, we select three different audio streams
(FM94.5, FM92.1, and FM106.7). While this is a relatively
small number of streams, it is representative in the sense

that it can help reveal internal Akamai’s mechanisms and
policies, as we show below.

To effectively probe the globally-deployed Akamai’s stream-
ing network, we use a set of 1,000 publicly accessible recur-
sive DNS servers scattered all around the world. Neces-
sarily, we do not fetch any streams, but rather query Aka-
mai’s DNS infrastructure from these 1,000 servers to resolve
edge servers for given streams. For example, for the NASA’s
stream, we query a DNS server for the appropriate CNAME:
a167.l1856944670.c18569.g.lm.akamaistream.net. The
experiment lasts for four days. This enables us to reveal
redirection timescales, overlap among different medias, cus-
tomers, and channels, as well as the size and location of
streaming edge server clusters.

3.2.1 Slow Load Balancing
Here, we measure redirection timescales in the Akamai’s

streaming network, i.e., how frequently do clients get redi-
rected to different streaming edge servers. While similar
measurements have been done previously in the context of
web (e.g., [23, 27]), it is essential to understand which time
scales hold for streaming. Then, we discuss security impli-
cations of our findings.
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Figure 3: Inter-redirection time of streaming edge
servers

Figure 3 shows median inter-redirection times, obtained
using the 1,000 vantage points for the streams shown in
Table 1. The results are as follows. First, the observed
time scales are in general similar to the ones reported for
the web. This is not a surprise because Akamai obviously
uses the same measurement system for the web and stream-
ing. Second, our results indicate that 40% of vantage points
show median inter-redirection times of 30 seconds, which
corresponds to the time-scale at which we query each of
the vantage points. Our additional experiments verify that
the minimum time-scale at which the redirection happens is
20 seconds.

Another interesting result from Figure 3 is that around
10% of vantage points (the upper right corner in the figure)
experience almost no redirections at all (inter-redirection
larger than 10,000 sec). Moreover, 90% of the nodes from
this group redirect to the default edge server clusters in
the Boston area.7 This means that Akamai effectively ap-
plies the data center approach for approximately 10% of its
clients. As a result, clients from the US west coast are rou-
tinely directed to this data center on the east coast. We
address the downsides of such an approach later in the text.

7Subnetworks 72.246.103.0/24 or 72.247.145.0/24.
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Figure 4: Server overlaps

Implications. The slow load balancing problem is de-
scribed in Section 2.2.1 above. Our measurement results
indicate that the minimum DNS redirection time applied by
the streaming CDN is 20 seconds, which is fundamentally
inappropriate for live streaming service and opens the doors
to DoS attacks. We experimentally evaluate the slow load
balancing problem in Section 4.2.1 below.

3.3 No Isolation
Another implication of the results shown in Figure 3 is

that they can help to locate busy streaming edge servers.
In general, such servers are accessed by the bottom 40%
of vantage points from Figure 3 that experience frequent
redirections. Degrading service to a busy server is in general
easier, because it already operates close to its capacity limit.
Hence, even small resources are needed to push them into
an overloaded state.

Here, we explore the level of isolation among different ser-
vices, customers, and channels. A potentially large over-
lap among these entities raises serious security implications.
First, different entities can necessarily impact each other
because there is no isolation at either the server or the net-
work level (as we verify later in the paper). Second, the large
overlap enables third parties to effectively collect a sufficient
number of unique streams belonging to overlapping entities,
and then artificially increase traffic volume in these entities.
In this way, it is possible to impact service of an arbitrary
entity (media, customer, or channel) at overlapping servers,
as we demonstrate later in the paper.

To quantify the level of overlap among different entities,
we define the overlap metric as follows. Consider two en-
tities, e.g., customers A and B. Next, consider a vantage
point and denote by SA and SB the subset of streaming
edge servers that this vantage point gets redirected to over
longer time scales. Likewise, denote by SAB the overlap be-
tween the two sets. Finally, we define the overlap ratio as
SAB/min(SA, SB).

3.3.1 Overlap among Services
In our experiments, we find a total of 1,318 distinct stream-

ing edge servers. Out of this number, 703 servers support
video-on-demand, 576 live video, and 688 live audio stream-
ing. These numbers clearly indicate that there is overlap
among different medias, as we exemplify below.

Figure 4(a) shows the CDF of the overlap ratio, taken over
all 1,000 vantage points, for the following pairs: live audio

vs. live video, live audio vs. VoD, and live video vs. VoD.
The more to the right of the figure a curve is, the larger the
overlap between given pairs. The figure clearly shows that
live video and audio overlap more than it is the case for
other pairs. We hypothesize that this happens for the fol-
lowing reasons. First, multiplexing large (video) and small
(audio) bandwidth-demanding flows is meaningful from the
traffic engineering point of view. Second, live audio and
video streaming are similar protocolwise with varying play-
ing times, whereas VoD streams are sometimes played within
the HTTP protocol and have fixed file sizes. Moreover, VoD
content is not streamed using reflectors, as we explain in
detail below.

Implications. Figure 4(a) shows that there is significant
overlap among different services, even for a relatively small
sample of streams that we explored. For example, approx-
imately 20% of vantage points (and consequently clients)
have the overlap ratio larger than 0.5 for all three combina-
tions. Implications are obvious: traffic from one media can
affect quality of others. Moreover, by artificially increasing
traffic load at one media (e.g., VoD), one can affect service
to other medias (e.g., live streaming), as we show in Section
4.2.2.

3.3.2 Overlap among Customers
Here, we explore the overlap ratio among different Aka-

mai’s customer pairs, as shown in Figure 4(b). While the
figure depicts the results for a very small customer sample,
it is still insightful. First, the overlap ratio is necessarily
smaller than it is the case with medias, simply because the
number of customers is larger. Second, the figure shows rel-
atively good isolation among customers, e.g., for majority of
the pairs, more than 50% of vantage points see no overlap
among given customers. This result is slightly misleading
because we show a very small sample. Our additional ex-
periments (not shown) verify that the overlap necessarily
increases when a larger number of customers is considered.

Figure 4(b) shows a somewhat larger overlap between
NASA’s and NBA’s streams. We explore this in more depth,
and find that the following is the case. NBA’s hostname is
a785.l3072828857.c30728.g.lm.akamaistream.net, while
the corresponding Canonical Name (CNAME), used for redi-
rections by Akamai’s DNS infrastructure, is a785.lmg5.

akastream.net. Similarly, NASA’s hostname is a167.

l1856944670.c18569.g.lm.akamaistream.net, and the cor-
responding CNAME is a167.lmg5.akastream.net. While



the two streams operate on different channels (a785 and
a167), the common string in the two CNAMEs is the ’lmg5.
akastream.net’ part of the domain. Indeed, Akamai uses
this approach to group channels based on geographic regions
or other properties.8 Thus, hostnames that have the same
’g’ in their CNAMEs have a larger degree of overlap.

Implications. Given the overlap among different cus-
tomers, the implication is that traffic from one customer can
impact other customers. Also, by exploiting the slow load
balancing problem, it is possible to intentionally degrade
service to arbitrary customers at given streaming servers,
by artificially increasing traffic for other customers. More-
over, once the attacker selects a targeted customer, it is easy
to locate the overlapping customers by simply querying DNS
and finding those that share the same ’g’ names.

3.3.3 Overlap among Channels
Finally, we explore the overlap among channels. As ex-

plained above, a channel is no more than a collection of
streams that is supposed to be transported through the same
set reflectors. For each vantage point, we compute the over-
lap ratio among the following channels: a667, a785, and
a1020. The overlap ratio is computed as the overlap among
the three channels normalized by the size (the number of
edge servers seen by a given vantage point) of each channel.
Figure 5 plots the CDF for the overlap ratio over all vantage
points. The key point from the figure is that channels are
apparently evenly distributed over the edge servers. This
is expected as it represents a meaningful traffic engineering
decision.
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Implications. Necessarily, there exists overlap among
different channels, i.e., a same streaming server can host a
number of channels. The implication is again clear: one can
’jam’ a given channel by increasing activity in other overlap-
ping channels at given servers. This further means that it is
possible to ’jam’ even so-called pay-per-view channels (e.g.,
NBA), which require cookies to connect to and are hence
considered more reliable and safe than other channels. Still,
by artificially increasing traffic in co-located ’regular’ chan-
nels, it is possible to affect the pay-per-view ones.

3.4 Migration and Amplification Attacks
Akamai groups streaming edge servers in clusters and co-

locates them at different locations all around the world, thus
bringing the content closer to end users. Here, we explore

8For example, we found that ’g2’ mainly serves channels
from China.

the size and location of such clusters, and then discuss im-
portant security implications for each of the issues.

For each channel, we define an edge cluster in a simple
way. It is a set of edge servers in the same class C subnet
that hosts that channel. For example, assume that edge
servers E1 - E5 share the same subnet, such that E1 and
E2 host channel A1, and the rest of streaming edge servers,
E3-E5, host channel A2. In this case, these five edge servers
are divided into the two clusters.
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Figure 6 shows the CDF of cluster sizes for explored streams.
The figure indicates that the majority of the clusters are
small, and typically consist of two edge servers. A second
server is typically used as the first choice for backup in case
the first one gets overloaded. Still, larger-size clusters exist
as well. For example, Figure 6 shows that approximately
10% of CNN’s edge clusters have the size of ten and above.

Implications. There are two important security impli-
cations for cluster sizes. First small clusters are potentially
vulnerable to migration misbehaviors. If a given small-size
cluster is overloaded, not only that the existing clients (cur-
rently fetching streams from the given cluster) will suffer,
but newly arriving clients might suffer as well. This is be-
cause new clients might get redirected to distant clusters,
e.g., to different continents. Contrary to the web case, where
such redirections are not problematic, this might not be the
case for streaming. Longer inter-continental paths might of-
fer smaller bandwidth and poorer viewing experiences. We
explore this in more depth in Section 4.2.3.

At the same time, bigger clusters open the doors to even
more serious problems — new reflector level vulnerabilities.
As indicated above (Section 3.1), an edge server in a given
region queries the DNS system by looking up the name that
contains the given portset (channel) and the region [22].
Thus, the edge servers that host the same channel and which
are co-located in the same region will necessarily fetch new
streams from the same reflector. Hence, it is possible to ex-
cite a bottleneck at that reflector (and affect service in an
entire region) by exploiting the appropriate edge servers in a
given cluster as proxies. We explore this issue in more depth
in Section 4.3.

4. EVALUATION
Here, we perform Internet experiments to verify the iden-

tified vulnerabilities of the Akamai’s streaming infrastruc-
ture. The key challenge that we face is how to validate our
research hypothesis, yet without causing any trouble to Aka-
mai or its clients. Indeed, the key purpose of our effort here



is to prevent irresponsible or malicious parties to ever be-
come capable of conducting misbehaviors against streaming
services at a large scale, as we explain in more detail in Sec-
tion 5. Thus, here we perform very cautiously engineered In-
ternet experiments in which we carfully and gradually eval-
uate bottlenecks in the Akamai’s network. Whenever we
observe bottleneck conditions, we instantly terminate our
experiments.

4.1 Experimental Methodology
In order to excite bottlenecks in the Akamai’s streaming

infrastructure, we collect a set of unique streams operating
on a single channel at the time of our experiments. Be-
cause there is a strong bias in stream popularity, popular
and unpopular streams are intentionally multiplexed on the
same channels [22]. Hence, by requesting unpopular streams
at a given channel, it is possible to generate traffic surges
and provoke resource bottlenecks. To collect a set of active
streams, we attempt to connect to Akamai’s edge streaming
servers at a specific channel ID and a specific stream ID to
exam the status of the streams. Whenever we successfully
connect, we discover a new active stream. In this way, we
manage to gather 1,400 unique streams, including live video
and audio, for a given channel.

In the experiments, we use seven machines to connect to
Akamai’s streaming infrastructure.9 Each of the machines
has access bandwith of about 100Mbs and is assigned 200
unique streams, which it gradually requests as we explain in
detail below. One important issue here is that we are able
to connect to any Akamai’s streaming edge server in the
world from our experimental machines. In other words, it
is possible to override DNS redirections. This dramatically
simplifies our experiments here, but at the same time reveals
another security ’hole’ in Akamai’s design.

While it may appear that fixing this single ’hole’ would
prevent the attacks, this is unfortunately not the case. In
particular, these days attackers can rent botnets that can
have millions of machines. In such a scenario, even if over-
riding DNS redirections would not be possible, the attacker
can collect sufficient number of machines in a given region,
that map to the same edge server. Even if each of the ma-
chines would have moderate access bandwith, this is not
an issue for the attacker: even if a single attacking machine
requests only a single unique stream from the streaming net-
work, that would be sufficient to launch successful attacks.
We discuss this and other related issues in more detail in
the next section.

Throughout the experiments, we monitor DNS redirec-
tions to understand how quickly (or not) does Akamai ad-
just to induced bottleneck conditions. Also, to understand
the impact of the experiments on the environment, and more
importantly, to prevent any negative effects for Akamai or
its clients, we install several monitoring points which fetch
streams from given edge servers during experiments. Again,
whenever we observe bottleneck conditions, we instantly
abort the experiments. Since Akamai provides streaming
service for different protocols (e.g., Realplayer, Quicktime)
with a uniform architecture, without loss of generality we
use the Microsoft Media Server (MMS) protocol. In partic-
ular, we connect to Akamai’s streaming servers via MMS by

9To preserve the physical locations of some of the most vul-
nerable points in the Akamai’s streaming network, we refrain
from providing detailed network maps in this section.

modifying the MiMMS program [6]. This helps us to observe
and record a monitored flow’s throughput in each second.

4.2 Edge-level Experiments

4.2.1 Slow Load Balancing Experiment
Here, we evaluate the slow load balancing problem elab-

orated in Section 3.2.1 above. We demonstrate that DNS-
driven redirections are fundamentally incapable of preserv-
ing high quality experiences during system overloads. We
setup our experiment as follows: we assign seven machines
as probers and one as an observer, which has two roles here.
First, it monitors Akamai’s DNS redirections; and second,
it monitors the throughput of a video stream it is fetching
from an edge server.
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Figure 7: Slow load balancing experiment

Figure 7 shows the throughput of the observed video stream
in time. At 11:42:00 the observer connects to an edge server
appointed by Akamai’s DNS and start streaming a live video.
Each second, the observer also monitors DNS redirections by
sending queries to Akamai’s DNS to obtain the up to date
IP addresses associated with the hostname in the stream’s
URL. After the observering stream reaches the projected
throughput (i.e., 1.4Mb/s), at 11:42:30 (a), the seven prob-
ing machines start requesting streams from the same edge
server that the observer is connected to. As explained above,
they are overriding DNS redirections and request one addi-
tional unique stream per second.

At 11:43:00 (b), the edge server (or the access network
link) starts becoming overloaded and throughput of the ob-
served stream starts flapping and gradually degrades. At
11:43:28 (c), we observe that the edge server has been re-
moved from DNS entries. At the same moment, the seven
probing machines abort their connections to the edge server.
At that point, the observing stream’s throughput has al-
ready been degraded to approximately 300Kb/s. In addi-
tion, the throughput does not recover immediately, but re-
establishes approximately 30 seconds later (at 11:44:00 (d)).

Thus, we confirm that the DNS-based system is incapable
of reacting quickly to overloaded conditions. By the time
the DNS entry gets updated and refreshed, the server is
already overloaded. In our experiment, the congestion clears
after 30 seconds, but this happens because our seven probing
machines disconnected. In a real scenario, e.g., either due
to a flash crowd or a DoS attack, regular clients would have
to disconnect. And such disruptions can motivate clients to
search content from competing sites [13]. In section 5, we
discuss how to mitigate this problem.



4.2.2 No Isolation Experiment

Figure 8: Akamai’s streaming models

Here, we evaluate the problem of the lack of isolation
among different media in the Akamai’s architecture elab-
orated in Section 3.3 above. In particular, we focus on live
video and video-on-demand services.

Figure 8 depicts models of two Akamai’s streaming ser-
vices [11]. As explained in Section 2.1, for live streaming,
customers’ streams enter Akamai’s network via entry points,
they are replicated to reflectors, transferred to subscribed
edge servers, and finally transmitted to connected clients.
For video on demand streaming, streams are transferred to
edge servers directly from customers’ web servers or Aka-
mai’s net storage (cache server).

To verify our hypothesis described above, we perform an
Internet experiment, similar to the one from Section 4.2.1,
but at a different edge server. In this experiment, the ob-
server downloads a video on demand stream via the MMS
protocol, while the seven probing machines again request
unique live video streams from the same edge server. We
select a video on demand stream that is transferred from an
Akamai’s cache in an attempt to avoid any potential bot-
tlenecks that are more likely to happen at a customer’s web
site.
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Figure 9: No-isolation experiment

Figure 9 depicts the observed video on demand through-
put. After the VoD flow establishes, at time 8:36:20 (a),
the seven probing nodes start sending requests to the edge
server. At 8:37:50 (b), the throughput starts flapping again
and it degrades from 500Kb/s to 123Kb/s when the edge
server (or the network) becomes overloaded. We abort the
experiment at 08:38:40 (c), immediately after we observe
the congestion. Contrary to the video streaming experi-
ment (Figure 7), after the probing machines are terminated,
there is a traffic burst as high as 2Mb/s (d). Apparently, no

congestion exists on the path between Akamai’s cache and
the edge server. Therefore, the edge server is able to buffer
the stream when the out-bound connection (from the edge
server to our monitoring node) is congested. Consequently,
after congestion clears, the edge server attempts to ’refill’
client’s media player buffer by delivering a burst of data to
the client.

4.2.3 Migration Experiment
Here, we explore the migration problem elaborated in Sec-

tion 3.4 above. The question is what happens to newly ar-
riving flows that get redirected once a default edge server
becomes overloaded. Given that majority of edge clusters
are relatively small in size (Figure 6), once they become
overloaded, clients might be redirected to distant edge clus-
ters, or the default IDC at Boston.

It is well known that such long redirections work well for
the web for two reasons. First, web objects are relatively
small in size, while browsing sessions might be long; hence,
a client does not necessarily remain with the backup server
for the entire browsing session. Second, downloading web
objects is not time critical, i.e., slow images loading do not
severely deteriorate client’s browsing experience. On the
contrary, since live streaming is very sensitive to network
latency as well as bandwidth [24], this approach might not
be as effective. We explore this issue below.

Figure 10: Migration model

Figure 10 shows the redirections we observe from one net-
work node located in Singapore. We measure DNS redirec-
tions from that node to one of the hostnames in our collected
set of Akamai’s streaming ARLs. We find that, for 80% of
time, it is redirected to an edge server located in Japan
for this specific hostname. In addition, the measured net-
work RTT between the two machines is 135ms on average.
Meanwhile, we also observe that this node gets redirected
to edge servers located in Boston and France during con-
gestion epochs. The corresponding RTTs are 286ms and
305ms, respectively.

Next, we measure streaming throughputs between the Sin-
gapore’s node and the three Akamai’s edge servers (Japan,
Boston, and France), for a particular live stream. For the
edge server located in Japan, we enjoy a throughput of
1.4Mb/s, which corresponds to the encoding bit rate for the
stream. Whereas, for the edge servers located in Boston and
France, we are only able to obtain 800Kb/s and 600Kb/s, re-
spectively. We recorded the three traces and replayed them
to colleagues in our institution. All involved in this evalua-
tion confirm that the video quality for the paths to Boston



and France is perceptibly degraded relative to the Japan
case.

4.3 Reflector-level Experiments
Here, we explore the potential to excite bottlenecks at a

higher level in the Akamai’s multicast network - at reflectors,
as explained in Section 3.4 above. Because Akamai uses the
same DNS mechanisms to balance the load by redirecting
edge servers to reflectors, the slow load balancing problem
holds for this scenario as well. Moreover, nodes at a higher
level in the multicast hierarchy (reflectors) are necessarily
carring higher traffic load than the leafs (edge servers). Fi-
nally, given that streams from the same region and the same
channel share the same reflectors, i.e., [22], implies that it
is possible to provoke congestion at the reflector level, as we
explain below.

Figure 11: Amplification scenario

Figure 11 depicts this scenario. Assume that reflector R

is associated with n streaming edge servers. Next, assume
that each edge server gets requests for m unique streams.
Inevitably, the number of clients’ requests is amplified to
n*m at the reflector level. Clearly, the larger the number
of edges, n, in an edge server cluster, the more vulnerable
the reflector becomes. In Section 3.4, we have demonstrated
that relatively large (e.g., about 10 servers) clusters do exist.
Hence, we select one such cluster to verify this hypothesis.
In particular, we select 7 Akamai’s edge servers in the same
class C subnet as our experimental objects. For each of
the edge servers, we assign one observer and one probing
machine.
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Figure 12: Amplification experiment

Figure 12 depicts recorded throughput from 3 of the 7 ob-
servers. In general, we repeat the same procedure as above.

The difference is that our seven nodes probe different edge
servers in the class C network. At 09:48:45, the 3 observers
perceive throughput degradation at a very similar pace. In
addition, the lowest throughput points ( 100Kb/s) recorded
by the observers are almost identical to each other. Fur-
ther, after the probing processes are aborted at 09:49:23,
the measured throughput recover almost simultaneously.

The results indicate that thinning did not happen at the
edge servers for two reasons. First, we perform additional
experiments and verify that no local bottlenecks exist be-
tween our machines and the edge servers for the given re-
quest rates. In particular, we execute our experimental
setup to 7 edge servers individually at different times to
make sure the observing stream does not get thinned. Sec-
ond, thinning shown in Figure 12 did not happen at the
edge because other 4 monitors (not shown in the figure),
which fetch their streams from the same edge cluster, did
not experience any degradation.

We hypothesize that the following happened. The seven
edge servers, while sharing the same channel, are ’backed-up’
by two different reflectors. When one of them, which served
the three flows shown in the figure, was overloaded, the thin-
ning happened. Another possibility is that the three flows
experienced a bottleneck at the network level. Whatever
happened, two things are evident. First, it was the probing
machines which created thinning, because it cleared when
they stopped. Second, this experiment demonstrates that
it is possible to excite bottlenecks at a higher level in the
multicast tree, by using edge servers as proxies.

4.4 Source-Level Exploits
Here, we explore a similar, yet probably even more se-

vere vulnerability. In the video-on-demand service (Figure
8), no reflectors are used, and streams are fetched directly
from customers’ web servers or Akamai’s net storage (cache
server). In both cases, web server or network storage host-
names are embedded in ARLs, and thus publicly available.
Such a design enables edge servers to be stateless, because
all information needed to redirect traffic is already present
in ARLs. Likewise, this approach enables efficient network
storage load balancing using the unified DNS redirection
mechanism adopted throughout Akamai’s network. Still,
this approach opens the doors to misbehaviors in a simi-
lar way as in the above reflector scenario (Figure 11), yet
even more straightforwardly. We discover that the source
hosts embedded in the ARLs can be modified by clients, thus
disregarding Akamai’s original assignments. Consequently,
misbehaving clients can overload the source hosts by prox-
ying their requests via edge servers. We discuss methods to
resolve such vulnerabilities below.

5. COUNTERMEASURES
Here, we propose a set of countermeasures to help address

the above problems. First, we discuss existing solutions to
related problems that appear applicable to our problem; yet
we argue that such solutions would not solve the problem
in a comprehensive way. Second, we present a set of coun-
termeasures that can dramatically raise the bar for the at-
tackers and hence make the system more secure. Finally, we
discuss how our findings and countermeasures could be ap-
plied in a general way to improve the resilience of large-scale
distributed and networked systems to DoS attacks.



5.1 Existing Approaches are Not
Comprehensive

5.1.1 Stream Replication
The key problem in the Akamai’s streaming architecture

stems from the slow redirection timescales, which opens the
doors to DoS attacks, i.e., overloading edge servers or reflec-
tors. One way to address this problem is to stream the same
packets from multiple sources to a single destination. In
particular, (i) from several reflectors to a single edge server;
and (ii) from several edge servers to a single client. Thus,
even if a reflector or an edge server becomes overloaded, the
receiver could effectively recover the stream because it is re-
ceiving packets from multiple sources. According to [22], in
certain scenarios, Akamai may feed a single stream to an
edge server from multiple reflectors. However, this happens
only in areas prone to packet losses.

In general, it is infeasible to replicate each of the streams
to each of the reflectors or edge servers due to resource limi-
tations. Moreover, we showed that it is possible to create ar-
tificial streaming flash crowds at reflectors or origin servers.
Consequently, by the time multiple reflectors get invoked to
help the overloaded reflector, the damage has already been
done. On the other side, sending multiple copies of a packet
from multiple edge servers to a client can utilize precious
resources. As we explained above, global-scale streaming
services distribute streaming servers to edge regions that
typically have limited, often moderate bandwidth, which is
shared by the rest of the ISPs’ traffic.

5.1.2 Resource-Based Admission Control
Resource-based admission control at the edge servers could

help address certain aspects of the problem. The approach is
to reject all additional incoming requests whenever a server
reaches a resource limit (e.g., a predefined number of streams).
The state of the art streaming servers apply this approach to
preserve the quality perceived by admitted clients. While it
may appear counter productive to reject clients when there
exists sufficient spare capacity (at other edge servers), this
is not the case. Our research implies that due to slow DNS
redirections, rejecting clients is required to protect the qual-
ity of the admitted ones.

Unfortunately, resource-based admission control would still
not solve many aspects of the problem. In particular, (i)
when the resource bottleneck does not reside at the server
side, but rather in the network, server-level admission con-
trol is necessarily not effective. Indeed, given that Akamai’s
streaming edge servers typically do not have any guaran-
teed bandwith at edge networks, but simply share the same
pipes with the rest of the traffic, network-level bottlenecks
are quite possible to excite, as we demonstrated above. Like-
wise, (ii) resource-based admission control cannot effectively
protect against ’migration attacks’ (Section 4.2.3). Despite
the fact that the admitted flows might get protected during
an attack, the newly arriving clients might get redirected to
distant edge servers. Hence, the probability to experience
lower streaming quality increases. Finally, (iii) the resource-
based admission control at edge servers does not solve the
potential to excite resource bottlenecks at reflectors, as we
have shown in Section 4.3.

5.1.3 Solving Puzzles
Another approach, successful in a web server scenario,

is to apply admission control mechanisms capable of accu-
rately distinguishing among DDoS attacks and flash crowds
(e.g., [21]). In particular, the approach is as follows. In
moments of increased load, the server brings up a graphical
puzzle that only humans can solve. In this way, large-scale
automatically orchestrated DDoS attacks can be prevented.

There are several reasons why this approach might not
be the ’best fit’ for DNS-driven streaming services. First,
such systems provides a transparent service to its customers
(e.g., CNN). Indeed, one of the benefits of the content host-
ing approach is that the middle provider, Akamai in this
case, stays fully invisible to end users. Thus, bringing up
graphical puzzles from the middle servers might be annoy-
ing for clients. Second, this approach would still not solve
the problem when an attack is targeted towards a reflec-
tor, and edge servers are only used as proxies. Because the
edge servers are not under attack, and hence may experience
only moderate load, no graphical puzzles will be enforced.
Finally, imposing graphical puzzles at reflectors is probably
even more inappropriate than it is the case with edge servers.

5.2 Raising the Bar for Attackers

5.2.1 Location-aware Admission Control
In an attempt to improve clients’ experiences, Akamai’s

measurement infrastructure uses DNS to redirect clients to
approximately the closest edge server in the network sense
[3]. At the same time, we demonstrated that it is possible to
override these DNS ’recommendations,’ and connect to an
arbitrary Akamai’s streaming edge server from anywhere in
the Internet and fetch a stream.

This presents a serious security problem because it en-
ables potential attackers to use machines from all around
the world and target a given point in the Akamai’s network.
Hence, the countermeasure is that edge servers simply re-
ject access to clients that override DNS recommendations.
Enforcing such location-aware admission control at even a
relatively coarse-grained scale would be highly useful. While
this approach would still not fully solve the problem (be-
cause one can recruit a botnet and exploit a sufficient num-
ber of machines in a given network area) this approach alone
would dramatically raise the bar for potential attackers.

5.2.2 Reducing System Transparency
The ability to effectively reverse-engineer internal system

parameters and mechanisms significantly increases system
vulnerability. Hence, reducing system transparency is an
important countermeasure that we propose below.

Shielding vincible IP addresses.
One of the reasons that makes DNS-based load balanc-

ing approach vulnerable to misbehaviors is exposing edge
servers’ real IP addresses to the public (Figure 2). This en-
ables third parties to measure the characteristics of the sys-
tem and unveil the underlying vulnerabilities, as we demon-
strated in Section 3. This problem can be mitigated by
installing load balancers at edge clusters, e.g., [15, 17]. As
widely adopted in IDC-based architectures (e.g., [9]), real
servers are associated with a load balancer which has a vir-
tual IP address (Figure 13). The virtual IP address is the
only publicly available knowledge to the clients. The clients
requesting service are given the virtual IP, they connect to



Figure 13: IDC-based load balancing

the load balancer, and they are then re-routed to the real
server by internal configuration [16]. Moreover, assume an
edge cluster of size n (servers); since the real servers are not
directly accessible from the Internet, degrading the system
is n times harder than when targeting a single server.

The disadvantage of the hardware-level load balancer ap-
proach (Figure 13) relative to the DNS-based approach is the
lack of application-level load balancing capabilities, e.g., dis-
tinguishing among different customers. This can be solved
by assigning multiple virtual IP addresses, e.g., one per cus-
tomer or channel, to the load balancer and then configure
server assignments internally. In this way, the secured in-
formation can prevent third parties from targeting a single
server and interrupting existing long-live streaming clients
connected to the server.

Shielding administrative information. An underly-
ing problem standing behind the ability to target reflectors
or customers’ origin servers deep in the Akamai’s multi-
cast tree is the transparency of the Akamai’s streaming in-
frastructure. Indeed, portset names and even origin server
names (in the case of VoD) are embedded in ARLs, and
hence available to clients. We hypothesize that this design
decision is introduced in order to simplify the system man-
agement. By embedding portset or origin server names in
ARLs, such information need not be kept at edge servers,
which makes them stateless. Consequently, by simply strip-
ping the portset or an origin server name from an ARL, it
is easy to submit an appropriate DNS request and get redi-
rected to the right reflector or origin server.

There are two ways to address this problem. The first
approach is to keep the state about channels, customers,
etc at edge servers. Given the number of channels (e.g.,
around 2,000) and origin servers, such an approach is fea-
sible. The cost of this approach is that whenever a new
stream becomes active (or inactive), e.g., the broadcast of
a new show, information about its channel membership or
about the origin server names must be disseminated to all
edge servers. Luckily, efficient solutions to such problems do
exist (e.g., [20]).

The second approach is to preserve the integrity of ARLs,
so that they do not feed internal information to the public.
This can be done by using a credible hash function and/or
encoding algorithm at edge servers that can effectively shield
sensitive information embedded in ARLs: encode informa-
tion given to clients and decode in the reverse direction.
This approach can be accomplished at a price of several
CPU cycles per request, and it is immediately deployable.
Given that the request rates are much smaller in the case

of streaming than it is the case with web, this approach
appears viable.

5.3 Broader Context
Here, we discuss the implications of our findings and coun-

termeasures in a slightly broader context.
Bandwidth-targeted DoS attacks are not dead. DoS

attacks are becoming more and more sophisticated, and it
is becoming evident that attackers are moving away from
bandwith-targeted DoS attacks to more sophisticated, e.g.,
application-level attacks. In this paper, we demonstrated
that bandwith-targeted DoS attacks against streaming ser-
vices are highly feasible and easy to conduct. Moreover, we
argue that the increased level of streaming in the Internet
has the potential to reverse the above trend. On the one
hand, streaming flows consume a lot of bandwith. On the
other hand, streaming clients are easily discouraged from
accessing such services when the performance is poor. Con-
sequently, attempts to address such problems at a global
Internet scale (e.g., [18]) are certainly valuable.

Tensions between transparency and security. One
of the ways to increase the resiliency of DNS-based systems
to DoS attacks is to reduce system transparency (Section
5.2.2). While this approach is well-suited for proprietary
systems such as Akamai, generalizing such an approach to
the Internet as a whole might bring novel problems. For
example, many ISPs reduce their transparency for secu-
rity reasons, e.g., routers in edge networks already disable
ICMP TTL Time Exceeded replies using firewalls, which
are needed for traceroute to discover topologies. Moreover,
in light of new attacks against the Internet infrastructure,
proposals to disallow ICMP timestamp replies are becoming
more prominent [29]. At the same time, the Internet trans-
parency (e.g., [25]) is critically needed for the performance
of large-scale distributed systems. Unfortunately, it is be-
coming obvious that the two approaches are at fundamental
odds.

6. CONCLUSIONS
In this paper, we explored the resilience of Akamai’s stream-

ing architecture to intentional service degradation attempts.
We demonstrated that the current system design is inca-
pable of preserving high-quality experiences to streaming
clients in such scenarios. In particular, we showed that
(i) the DNS-based redirection subsystem, which has proven
very successful in the case of web, is fundamentally inappro-
priate for live streaming. Moreover, (ii) no isolation at either
the network or the server level among customers, channels,
and services, (iii) a strong bias in the stream popularity,
and (iv) a highly transparent and security-oblivious system
design make Akamai’s streaming network extremely vulnera-
ble. We demonstrated that it is feasible to impact arbitrary
customers’ streams in arbitrary network regions. This is
possible to achieve not only by exciting bottlenecks at edge
servers, but by effectively exploiting edge servers as proxies
to provoke bottlenecks at reflectors and even origin servers.

We provided a set of countermeasures to help avoid such
vulnerabilities. We showed that a less transparent system
design capable of hiding important internal information (e.g.,
about edge servers, reflectors, origin servers, channel assign-
ment, etc.) from the public can dramatically raise the sys-
tem’s resilience to misbehaviors. Still, it should be clear
that minimal users’ tolerance for low quality experiences ac-



companied by the lack of isolation and QoS mechanisms at
servers and at the global Internet makes high-quality stream-
ing inherently vulnerable to jamming misbehaviors.
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