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Abstract—The prevalence of digital cameras and video-capable
mobile phones enables the common practice of audiences captur-
ing recordings of live music performances. It is now increasingly
common to find some of these personal recordings online, up-
loaded to popular video hosting websites. Recognizing the desire
of music fans to obtain a recording of good audio quality, we offer
a time-domain fusion technique for combining these samples to
achieve higher signal-to-noise ratio (SNR) than the single best
original sample. When no composite output can improve SNR,
the best original sample recording is returned.

The scenario is modeled as a single blind source with multiple
diverse receivers. As every live performance is unique, we assume
no prior knowledge of a reference signal, and no knowledge of the
original recordings’ SNRs. Using statistical characteristics among
the samples, we infer relative SNR, rank samples by quality,
and determine whether a composite delivers improvement. The
technique can be applied in a variety of contexts where multiple
receivers have opportunity to capture audio, speech, or other
signals.
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I. INTRODUCTION

The concert-going experience now commonly includes the

sight of hundreds of digital cameras and mobile phones

aimed at the stage. Audience members record their experience

for later enjoyment, and increasingly share them online. On

popular video hosting websites like YouTube, it is not unusual

to find five to ten recordings of a popular song within days of

its performance. These recordings represent multiple vantage

points on the same song performed at the same event.

Recognizing that music fans get unique enjoyment from

hearing recordings of a performance they personally attended,

we attempt to generate an improved audio recording from the

raw audience-generated content. Given a sample set, i.e., a

collection of available recordings of the same event, our goal

is to identify the “best” raw sample, and generate a noise-

reduced composite that is “better” than the original “best.”

The problem is modeled as a single blind source with

multiple diverse receivers and unknown SNR. Consider the

following scenario. Signal is generated from stage-speakers.

Typically the signal is broadcast as a mono mix, and even

if not, receivers record multi-tracking as mono. The speakers

may be spread apart on-stage, but relative to the venue’s scale

they are quite close together resulting in synchronization from

a listener’s perspective (though various recordings need not be

synchronized to each other). Receivers are distributed arbitrar-

ily throughout the audience, all capturing a noise-corrupted

representation of exactly the same underlying music signal.

Noise occurs in the form of cheering, clapping, shouting, in

addition to the expected static, multi-path fading, etc. Noise

near a particular receiver is not the same noise near another

receiver, unless both receivers happen to be close together.

This local noise will not reach distant receivers, because

it is drowned out by noise local to the distant receivers.

(Note, this assumption is inappropriate in the context of a

quiet auditorium, where one cough may appear on every

recording.) Finally, because every live performance is unique

(e.g., different tempo, arrangements, embellishments, etc.),

there is no prior reference of what part of each recording

comes from the signal and what part comes from noise,

thus the SNR is unknown. Even a noiseless studio recording

does not provide adequate reference, since live performances

often deviate significantly. The music may even purposely

incorporate some amount of clapping or shouting that serves

to further blur the distinction between signal and noise.

This problem is not easily addressed by established tech-

niques. Methods of estimating unknown SNR, such as those

found in digitial signal processing, typically assume prior

knowledge of M-ary waveforms [9]. In the current sce-

nario, there is neither an absolute reference waveform nor

any opportunity to pre-code the signal’s waveform prior to

broadcast. Independent component analysis (ICA) is often

applied to blind separation of independent audio sources,

e.g., overlapping speech signals or musical instruments [8].

In the current scenario, our aim is to selectively enhance a

single source, itself composed of many instruments, among

uncountably many noise sources. This is not a conceptual fit

for the separation problem, nor are there enough receivers to

satisfy the requirements of ICA’s mathematical model.

Instead, our problem belongs to the broad area of sensor

fusion, in which data captured from disparate sources is com-

bined to achieve better outcomes than the individual sources

offer alone. In a general sense, fusion is applied to improve

decisions [4] [11]. This includes detection, localization, and

has also proven a useful tool in the enhancement of images

[12]. Speech enhancement has also benefitted from fusion,

for example in [1], where phase deviations between two

microphones are used to reduce noise. [7] builds on this tech-

nique and points out some challenges of not having a-priori

knowledge of input SNR. Returning to the current scenario,

we offer a complement to existing lines of work while tackling

the large problem of enhancing a source composed of many

individual voices and instruments.



In this paper we propose a time-domain fusion technique

for combining raw sample audio recordings in a way that

preserves the sameness among the samples while reducing

the differentness. The scope is not limited to speech, and is

specifically presented in the context of complex music signals.

Improvement depends on the uncorrelatedness of the noise.

Correlation among the noise results in confusion with the

signal, so that portion of noise cannot be reduced. However,

listeners already accept some amount of crowd noise in live

recordings, and even a modest improvement is of value to

fans. Translation of time-domain fusion to a corresponding

frequency-domain approach offers comparable results.

We believe that making this tool available as an application

will encourage more sharing of live recordings, leading to

larger sample sets with the potential for more significant noise

reduction. However, the technique’s applicability is not lim-

ited to entertainment. Any context in which unknown audio,

speech, or other signals are captured by multiple receivers is

a potential application. Such contexts can range from wireless

communications to espionage.

In Section II we introduce characteristics of sample sets

allowing for an improved composite. Three idealized cases

enable analysis of potential SNR gain. One case is then

selected as the basis of a signal fusion algorithm. In Section III,

the algorithm synchronizes, normalizes, ranks, and optimally

combines samples. The resulting output is either the improved

composite, or, if the composite offers no improvement, the

best single sample from the original set. Of special importance

is a novel iterative normalization procedure that successfully

equalizes signal powers (as opposed to total powers) among

samples without prior knowledge of SNR. In Section IV, we

investigate real noise and discuss the fusion algorithm’s effect

on simulated and real samples.

II. SNR GAIN ANALYSIS

Here we establish conditions under which audio samples can

be averaged to enhance SNR. This is related to work done in

the context of averaging noisy images [12]. Three idealized

cases offer tractable SNR analysis. Since real sample sets are

not expected to fit neatly into any of the cases [2], the signal

fusion algorithm of Section III transforms the samples into

conformance with Case II, Section II-B, provided that sample

noise is uncorrelated.

Assume sample recordings are already of equal length, per-

fectly synchronized, and ranked in order of decreasing SNR.

Section III describes how this is achieved in real samples.

Other details impacting real-world implementation, such as

encoding, sampling rate, etc., are also discussed in Section

III, under Data Preparation. Assume that noise is white in

each sample and uncorrelated between samples. Section IV

investigates the characteristics of real noise.

Let N be the number of available samples, xi, where i =
1, 2 . . . N . Let ni be uncorrelated white noise corrupting an

instance of the transmitted signal si, such that Cov(ni, nj) =
0, i 6= j and Cov(si, ni) = 0, ∀i. Then xi = si + ni and

σ2

xi
= σ2

si
+ σ2

ni
.

A. Case I: Identical signals, equal noise powers

This is an idealized scenario in which each sample xi

contains an identical signal with power σ2

s and independent

noise ni with equal power σ2

n. Direct averaging returns the

composite x with unchanged signal power but reduced noise

power proportional to the number of samples N .

Assume

{

si = s, Cov(ni, nj) = 0 for i 6= j
σ2

si
= σ2

s , σ2

ni
= σ2

n

Then, the signal power and noise power of the sample

average are given by

σ2

s =
1

N2
Var(Ns) = σ2

s (1)

σ2

n =
1

N2

N
∑

i=1

Var(ni) =
σ2

n

N
(2)

Thus, an SNR gain of N is attained due to multireceiver

fusion by direct averaging of N independent identically dis-

tributed samples [3].

B. Case II: Identical signals, unequal noise powers

Now relax the noise constraint of Case I by allowing each

sample xi’s noise power σ2

ni
to differ from σ2

n by some scaling

factor ki. Assume k1 = 1, and k1 ≤ k2 ≤ . . . ≤ kN . This

sets the least noisy sample as a benchmark for comparison.

All samples xi still contain the same signal power σ2

s . Direct

averaging returns x with unchanged signal power but a noise

power that is increased or decreased depending on the growth

rate of ki. It can be shown that if ki grows too fast, noise

contributes too much to the composite and overwhelms the

effect of Section II-A. If ki grows slowly enough, then

improved SNR is possible from averaging. Finally, the largest

SNR gain may result from combining only a subset of the

samples.

By having equal signal powers among all samples, the

differences among the samples’ total powers σ2

xi
are due

exclusively to the noise components σ2

ni
. The ability to use

total power as a proxy for noise power is a significant

convenience when the actual signal power is unknown. It

allows us to rank samples in order of quality and judge whether

a composite results in more or less noise power than any of the

original samples. The critical task then becomes normalizing

real samples such that all have equal signal power, even if it

is not known exactly what that signal power is. Normalization

with unknown SNR is achieved through an iterative procedure

described in Section III-D.

Let M be the number of samples actually incorporated

into the composite such that the resulting noise power is

minimized, where 1 ≤ M ≤ N .

Assume

{

si = s, Cov(ni, nj) = 0 for i 6= j
σ2

si
= σ2

s , σ2

ni
= ki · σ2

n

Then, the signal power and noise power of the sample

average are given by



σ2

s =
1

M2
Var(Ms) = σ2

s (3)

σ2

n = Var
[ 1

M
(
√

k1n1 +
√

k2n2 + . . . +
√

kMnM )
]

(4)

=
1

M2

[

k1σ
2

n + k2σ
2

n + . . . + kMσ2

n

]

(5)

=
σ2

n

M2

M
∑

i=1

ki (6)

Thus, whereas the original best sample x1’s SNR is σ2

s/σ2

n,

the SNR of the composite is (M2/
∑M

i=1
ki) · (σ2

s/σ2

n).
SNR is improved over the original best sample x1 when

(M2/
∑M

i=1
ki) > 1. For example, a growth rate of ki < 2i−1

is a sufficient condition to meet the threshold for improvement.

C. Case III: Unequal signal powers, equal noise powers

This third idealized scenario introduces assumptions which

at first glance are a slight alteration of Case II, but result in

unwieldy complications. Assume that the noise components ni

of each sample xi have equal power, i.e., σ2

ni
= σ2

n. Assume

each sample contains the same signal but of different powers,

i.e., σ2

si
= ki · σ2

s . Without loss of generality, assume k1 = 1,

and k1 ≥ k2 ≥ . . . ≥ kN . Averaging now changes both the

signal and noise powers simultaneously.

Let M be the number of samples actually incorporated

into the composite such that the resulting SNR is maximized,

where 1 ≤ M ≤ N .

Assume

{

si =
√

ki · s, Cov(ni, nj) = 0 for i 6= j
σ2

si
= ki · σ2

s , σ2

ni
= σ2

n

Then, the signal power of the sample average is given by

σ2

s =
1

M2

M
∑

i=1

M
∑

j=1

Cov(
√

kis,
√

kjs) (7)

=
σ2

s

M2

M
∑

i=1

M
∑

j=1

√

kikj (8)

From Eq.2, the composite noise power becomes σ2

n =
σ2

n/M . Whereas the best sample’s SNR is σ2

s/σ2

n, the com-

posite’s SNR becomes
(

1

M

∑M

i=1

∑M

j=1

√

kikj

)

· (σ2

s/σ2

n).

Although this case appears similar to Case II, fitting real

samples with unknown SNR into Case III proves difficult

to work with. Mainly, we must normalize noise power in

the samples, which is impossible. Further, we must track

the composite’s changing signal power while its noise power

changes simultaneously. For these reasons, Case II is selected

for algorithmic implementation as described in Section III.

III. PROCESSING AND FUSING ALGORITHM

The algorithm that deals with real music samples consists

of five main stages: data preparation, selecting a reference

and synchronization, windowing, normalization and ranking,

and combining. These steps transform the samples to fit

the assumptions of Case II, Section II-B. Explanations are

provided in a mix of math notation and MATLAB-inspired

pseudocode. Noise is assumed uncorrelated between samples.

Figure 1. Block diagram of algorithm stages.

To acquire real sample recordings, we have used our

own custom-written search application that interfaces with

YouTube via API. This application takes standard search

terms as its input, such as song title, city, venue, date, or

artist. It delivers the search query to YouTube, resulting in a

comprehensive list of potential matches. Then, applying TF-

IDF [10] and cluster analysis [5] to the files’ meta data, it

sorts the results into groups likely to be recordings of the

same performance. For example, a search for a particular song

title and the city “New York” may return performances of that

song spanning the artist’s many different visits to New York.

The application distinguishes the performance of June 1, 2010

from the performance of March 1, 2011. Detailed explanation

of these mechanisms are beyond the scope of this paper. After

successful grouping, the files of interest are downloaded on-

demand (e.g., five recordings of the song performed in New

York on March 1, 2011).

A. Data Preparation

We begin with a set of N raw samples with unknown SNRs.

Each sample xi is a time series stored as a single column

(mono) vector of amplitudes. Samples are not necessarily of

equal vector lengths. In practice this is the effect of converting

YouTube MP4 files to single track audio WAV format. One

advantage of using YouTube as the primary source of content

is that live mono audio recordings are typically stored with

one of only a few sampling rates (22.05kHz or 44.1kHz), and

this parameter can be read from meta data. We identify the

maximum length vector, and zero-pad the remaining vectors

such that all vectors are of equal length. Let this equal length

be denoted L, for later use.

B. Reference Selection And Synchronization

Lacking an external reference of what a “good” sample is,

we use an internal reference chosen from the sample set. This

is accomplished by computing the correlation matrix P of

the sample set and summing across rows (or columns). The

row with the largest sum represents the sample with the most



similarity to all other samples, i.e., the highest SNR, since

noise components do not correlate to each other. This sample

is designated as the reference. In practice, we have observed

that this procedure consistently selects a good quality sample.

Direct computation of P is not possible while the samples

are unsynchronized. So, we construct each entry ρij of the

correlation matrix from the maximal cross-correlation among

each sample pair. This returns both the synchronized corre-

lation ρij and the corresponding lag τij that would achieve

synchronization.

for i = 1 : N do

for j = 1 : N do
[ρij , τij] = max(xcorr(xi, xj))

end

end

Then, sum along rows (or columns) of P ,

for i = 1 : N do

rowi =
∑N

j=1
ρij

end

where i corresponding to max(row) identifies the reference

sample. We call this sample xref, and perform a circular

vector shift of each remaining sample according to the already

computed τref,j . Now all samples are synchronized to the

reference.

C. Windowing

In practice, a sample’s noise power may vary with time.

For example, an audience member may move his cellphone

such that a low-noise recording suddenly changes to high-

noise, or vice versa. This is a form of low-frequency noise

that contributes to an unstable sample being treated as more

noisy overall. To help avoid penalizing the low-noise segment

of such a sample, the algorithm may optionally process

synchronized sample sets as a sequence of shorter-duration

windows. Each window effectively becomes a new instance

of the fusion problem. This stabilizes the noise power within

each window’s duration while creating freedom for adjacent

windows to return a composite output uniquely “best” for

its time period within the overall recording. The composite

outputs of each window are concatenated prior to playback.

Recall that all N synchronized samples are of equal length

L, as a result of Section III-A. With the windowing op-

tion enabled, the samples are segmented into shorter-duration

windows of length L/Wt data points, where Wt indicates

windowing in the time domain. This results in Wt adjacent

windows, each containing N synchronized excerpts, or sub-

samples, of the original full recordings. Each window then

becomes its own instance of the fusion problem (Fig. 2).

Subsequent processing steps apply unchanged, without loss

of generality, to each individual window of length L/Wt, for

Wt = 1 . . . L. Adjacent windows may then return different

Figure 2. N = 3 synchronized time-series samples xi of total length L =

40, 000 data points, segmented into Wt = 4 windows (a), (b), (c), (d) of
length L/Wt = 10, 000.

composite outputs based on the noise conditions specific to

that time period.

Note that there is a trade-off as windows become exceed-

ingly short in duration, in that uncorrelated noise tends to

become increasingly correlated with fewer data points. This

implies there should be an optimal window size that balances

noise correlation against time-dependency. Recommending the

optimal window size is the subject of ongoing work, and for

now window size is left as a tunable parameter.

Figure 2 depicts an approximately 1s excerpt (40,000 data

points sampled at 44.1kHz) of three synchronized audio

samples. In this example, segmenting each time-series into

windows of 10, 000 data points results in four instances of the

fusion problem. Each instance operates on three synchronized

audio samples with a duration of approximately 1

4
s.

D. Normalization and Ranking

All windowed samples are now of equal length L/Wt data

points (Wt = 1 if windowing is not enabled) and time-

synchronized to a reference, but with unequal total powers and

unknown SNRs. Absolute SNR cannot be known, but total

power can be used to infer relative noise power among the

samples under certain conditions. Specifically, this is possible

only when all samples’ signal powers are equal, as defined in

Section II-B, Case II. Thus it is necessary to scale samples

and measure whether the signal components are of equal

power. Correlation as applied in Section III-B is insensitive to

scale, i.e., multiplying a sample by a scaling factor does not

change ρij . Instead, we use covariance as the measurement. If

noise is uncorrelated, then covariance between two samples is

proportional to the signal components’ strengths. This leads to

a novel iterative approach to normalizing signal powers and

consequently measuring relative SNR among samples when

absolute SNR is unknown.



(a) Samples xi (b) Line up non-ref xi

(c) Line up xref, rank by σ2

xi
(d) σ2

xi
implies σ2

ni

Figure 3. Normalization & ranking of unknown signal powers.

Given Cov(xref, xi) = ci, and Cov(xref, xj) = cj ,

Cov(xref, xi) = ci ≡ hj · cj (9)

= hj · Cov(xref, xj) (10)

= Cov(xref, hjxj) (11)

Scaling xj by hj (the ratio of the covariances) results in xi

and hjxj having equal covariance to the reference, xref. This

relationship can be used to scale all non-reference samples

such that they have equal covariance to xref. Without loss of

generality, assume xref = x1 and Cov(xref, x2) = c2. Finding

hj such that Cov(xref, hjxj) = c2 for 2 ≤ j ≤ N results in

all scaled non-reference samples having the same signal power

(Fig.3b). Finally, xref = x1 must be scaled such that its signal

power equals that of the non-reference samples. Now note

Cov(hixi, hjxj) = constant ≡ C, for i, j = 2 . . . N, i 6= j.

We temporarily select the scaled non-reference sample with

lowest total power as a new reference, xtemp, and find h1 such

that Cov(xtemp, h1x1) = C.

Now all samples have equal signal power, though the exact

value of the signal power remains unknown (Fig.3c). This

process is loosely inspired by [6].

With signal power normalized, it is straightforward to rank

the samples in order of increasing total power, and thus

increasing noise power, completing the prerequisites of Case

II (Fig.3d).

E. Combining

With all samples normalized and ranked, we compute the

average of the first M samples such that total power σ2

x is

minimized. This is the new “best” composite, x. Ranking

eliminates the need to evaluate many combinatorial subsets,

as there are no more than M = N averages to consider, and

M = 1 is simply xref itself. If M = 1, then no composite

was successful in surpassing the SNR of the original “best”

sample, xref.

(a) Sample1 vs. sample2 (top), noise1 vs. noise2 (bottom)

(b) Sample1 vs. noise2 (top), sample2 vs. noise1 (bottom)

Figure 4. Cross-correlation ρ vs. lag τ .

for m = 1 : N do

power-of-avgm = Var( 1

m

∑m

i=1
hixi)

end

[σ2

x, M ] = min(power-of-avg)

Recall that the composite only offers improvement when

the threshold (M2/
∑M

i=1
ki) > 1 is met, as described in

Section II-B. An attractive outcome of the algorithm is that

even when the threshold is not met, the original “best” sample

is identified. This feature alone is of value to users who

would otherwise manually search through many poor quality

recordings before finding one of good quality.

IV. CHARACTERIZATION OF NOISE REDUCTION

These processes depend on noise being uncorrelated among

samples. Inspection of real samples suggests this assumption

is imperfect but acceptable. Figure 4 shows an example of

cross-correlations between two typical song samples. Sample-

to-sample correlation is strong, whereas noise-to-sample and

noise-to-noise correlation is weak. Noise-only clips come from

the song samples just before or after music is performed.

We have applied the algorithm to samples with real

noise and to studio recordings with artificial noise. In

both cases, synchronization and normalization are effec-

tive. Artificial noise is noticeably reduced. On real sam-

ples, perceived noise reduction varies depending on the

sample set and listener. Interested readers may visit

networks.cs.northwestern.edu/∼aaron/fusion to hear before-

and-after examples.

To visually illustrate blind noise reduction, Figure 5 (top)

shows six waveforms ranked and concatenated left to right in

order of decreasing noise power. A noiseless studio recording

was corrupted with varying levels of noise to generate four



Figure 5. Identical time-series interval of 100 data points repeated six times
with differing amounts of noise (top), and corresponding RMSE (bottom). (a–
d) Left to right, clips ranked in order of decreasing noise, (e) noise-reduced
composite, and (f) noiseless studio recording

noisy samples. These noisy samples were fed through the

fusion algorithm, resulting in a noise-reduced composite. Each

window of Figure 5 represents 100 data points excerpted from

the same respective time interval of each sample recording.

Intervals (a) through (d) are the ranked noise-corrupted input

samples. Interval (e) is the noise-reduced composite returned

by the signal fusion algorithm. Interval (f) is the original

noiseless studio recording. Figure 5 (bottom) indicates each

interval’s root mean squared error (RMSE) relative to the

noiseless studio recording. The fused composite of interval

(e) offers the least RMSE relative to the noiseless reference.

V. EXTENSION INTO THE FREQUENCY DOMAIN

Though the technique presented in this paper operates in

the time-domain, it is also instructive to consider the noise

spectrum. Noise uncorrelated in the time domain remains

uncorrelated in the frequency domain. This noise need not be

strictly white, and its energy may appear stronger in certain

frequency ranges. So long as the threshold (M2/
∑M

i=1
ki) >

1 is satisfied in a given frequency range, noise reduction is

possible in that frequency range regardless of the spectrum’s

overall shape. Figure 6 shows frequency responses of selected

real music and noise samples. The sampling rate represented

is 44.1kHz, thus frequency content ceases beyond 22.05kHz.

Noise occupies the entire bandwidth of the music-plus-noise

samples. Noise energy is fairly flat but exhibits a consistently

“pink” character [13], having a stronger low frequency com-

ponent that smoothly rolls off toward the higher frequencies.

This is a characteristic typical of speech and audio that persists

across samples.

Now consider a case where noise does not exhibit a con-

sistent overall spectral shape among the samples (e.g., not all

white or all pink). For example, assume a particular sample

has almost no low frequency noise, but considerable high

frequency noise, while all other samples’ noise is pink. This

sample’s high quality audio content in the lower frequency

(a) Sample1, music with noise

(b) Sample2, music with noise

(c) Noise1, no music

(d) Noise2, no music

Figure 6. Frequency spectrum of real music and noise samples, 0–22.05
kHz. Phase plots not shown.

range will not benefit from fusion with other noisy samples.

However, its noisy high frequency content could benefit from

fusion with the high frequency noise of the other samples.

To accommodate this, we adapt the time-domain fusion

algorithm to operate separately on frequency sub-bands. This

is analogous to Section III-C’s time-domain windowing. Note

that a performance advantage over the pure time-domain

approach is not expected unless noise exhibits inconsistent

spectra among samples.

Let L be the length of each synchronized input sample

vector xi, and let Wf be the number of windows in the

frequency domain. Let F and F−1 indicate the FFT and

IFFT operators, respectively.

for i = 1 : N do
Xi = F{xi}
for j = 1 : Wf do

Xij = Xi[(j − 1) L
Wf

+ 1 : j L
Wf

]

xij = F−1{Xij}
end

end

Figure 7a illustrates where this new stage fits in the overall

block diagram. After synchronization, all samples are pro-

cessed through FFT, windowed into Wf frequency sub-bands

of width L/Wf , and then converted back to the time domain

by IFFT. Each original sample xi has now been decomposed

into Wf time domain sub-samples xij , with j indicating which

frequency sub-band is represented. For each j, the set of



(a) Block diagram with frequency-domain extension

(b) Frequency-domain stage with x1 flow highlighted

Figure 7. Each incoming xi undergoes FFT, followed by segmentation into
Wf = 3 frequency ranges. In this example, low, mid, and high ranges are
defined (phase not shown). Each frequency segment undergoes IFFT, followed
by sorting into groups corresponding to like ranges. The three groups, xi,low ,
xi,mid, and xi,high are treated as distinct fusion instances fed separately to
the normalization stage.

sub-samples xij , i = 1 . . . N constitutes a distinct instance

to be processed by the fusion algorithm. The outputs of the

combining stage become xj , the new “best” representations of

each particular frequency sub-band. Figure 7b illustrates the

decomposition of three input time series into nine time series

grouped according to low, medium, and high frequency. These

sub-samples xj , still synchronized, are ultimately recombined

by weighted addition in the time-domain, where any reason-

able weighting scheme may be applied (not illustrated). For

example, each sub-sample xj may be scaled such that the

overall spectrum of the final recombined output x adheres to

a white or pink shape.

Returning to the example of a sample with little low

frequency noise, its good quality audio from the low frequency

range may be returned unaltered by the algorithm, while the

noisy high frequency component may be fused with other

samples for noise reduction. The preceding discussion assumes

equal-width windows, but this is not required. Variable win-

dows, e.g., by octave corresponding to a pink spectrum, are

possible but beyond the scope of this paper. Importantly, the

frequency-domain extension gives the algorithm the ability

to address a wider variety of noise characteristics while still

operating fundamentally in the time-domain.

VI. CONCLUSION

This paper takes advantage of real-world user behavior and

statistical signal processing to achieve signal enhancement

without conventional inputs. No reference signal, waveform, or

SNR is known beforehand. Samples are successfully synchro-

nized, normalized by signal power, and combined such that

the composite’s SNR is maximized. If no composite achieves

improvement, the best original sample is returned.

Audio quality enhancement is of clear benefit to users.

Equally important is the automation of an otherwise manual

search for the “best” single sample among many. Users save

time while getting the assurance of a listenable recording. In

addition, the ability to equalize signal powers among multiple

receivers without prior knowledge of SNR may be useful in

many other areas of statistical signal processing. It is hoped

that the availability of this service will encourage more user-

generated sharing of sample recordings, leading to further

improvements in audio quality.
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