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Abstract
Understanding how popular (or not) a given Web ser-

vice or application is, is an important question whose rel-
evance only continues to grow with the Internet’s com-
mercialization. The state-of-the-art systems (e.g., Alexa,
comScore) rely on “crowd-sourcing” methods that at-
tempt to answer this question indirectly, by collecting
browsing statistics of a subset of Internet users. In this
paper, we take the opposite approach and devise End-
point Web Monitor (EWM), a novel method capable of
measuring a Web server’s popularity directly from an
endpoint.

The key mechanisms unique to EWM are a combina-
tion of HTTP HEAD requests, TCP pings, and a conserva-
tive control mechanism to estimate the number of active
connections attached to a Web server. We implement the
EWM system and demonstrate that it (i) achieves a high
measurement accuracy, (ii) places a negligible compu-
tational and bandwidth overhead on the monitored Web
servers, and (iii) has a short convergence time which en-
ables it to monitor the popularity trends over short time
scales. We deploy EWM on the Internet and demonstrate
its practicality in estimating the popularity trends of sev-
eral Web services (a blogging Web site, eBay auctions,
and antivirus software updates) by monitoring accesses
to the corresponding server clusters.

1 Introduction

Knowing how many clients are accessing a Web server
at any point in time is a useful measure for a number of
reasons. In addition to helping with classical network
or Web-server traffic engineering and capacity planning
tasks, it also reflects the popularity of a given service or
application hosted at a Web server. A high popularity (or
a lack thereof) directly affects the marketing potential of
a given application or service. Given that online adver-
tising has become the de facto business model of today’s

Web, the popularity measure directly affects the cost of
advertisements at a given service, which further directly
impacts its revenues.

Monitoring the number of client accesses to a Web
server is straightforward when one has an administrative
access to either server or network logs (e.g., [14,19,23]).
The hard problem lies in independently auditing popular-
ity, i.e., without any administrative privileges. The com-
mon, yet inherently inaccurate, approach to this problem,
applied by services such as Alexa [2], comScore [8], or
Google Trends [11], is “crowd-sourcing”: a subset of
Internet clients installs free toolbars and other software
to collect user browsing statistics in exchange for virus
scanning software, Internet data storage, etc.

The problem with crowd-sourcing methods is that they
are necessarily not comprehensive since they rely only
on a subset of end users. Consequently, such methods
can provide estimates with unknown error bounds. It
is thus not a surprise that the corresponding measure-
ment results are often questioned for their accuracy (e.g.,
[6, 15]). Empirical measurements have shown that such
methods (i) can generate striking discrepancies relative
to the ground truth data, and (ii) have a fundamental in-
ability to accurately estimate popularity trends [6, 15].

In this paper, we present Endpoint Web Monitor
(EWM), a system capable of accurately estimating the
number of active connections established to a Web server
at any point in time. Unique to our approach is its abil-
ity to directly and independently estimate the number of
active connections to a Web server, without any large-
scale “crowd-sourcing” client software distribution. Our
method incurs a negligible computational and bandwidth
overhead, which makes it practical to deploy. More-
over, contrary to other approaches [2, 8, 11], our system
is capable of accurately estimating popularity trends over
short time scales.

Our approach uses a combination of HTTP HEAD re-
quests and TCP pings to decouple network latency and
server processing time. To accurately detect the num-
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ber of active connections attached to a server, the sys-
tem injects additional “artificial connections” to the mea-
sured Web servers in order to increase the server load
over short time scales. Similarly to the related network-
ing approach [25], our system utilizes a multiplicative
increase multiplicative decrease (MIMD) control system
as well as historical information to achieve fast conver-
gence time. It is essential to understand that our system is
capable of quickly converging towards the “knee” point
of the Web server’s accept queue, thus making no impact
on regular clients’ browsing performance.

We extensively evaluate EWM in our controlled
testbed environment and on the Internet with real world
Web traffic patterns and Web clients. In particular, we
evaluate EWM on a three-tier Web service, which is a
stereotype architecture for many Web sites such as social
networking, e-commerce and news Web sites. Next, we
explore EWM’s performance using real-world accesses
to a blogging Web site. Finally, we utilize EWM to ex-
plore eBay clients’ accesses during online auctions.

Our evaluations reveal the necessary trade-off be-
tween the measurement accuracy and convergence time.
Nonetheless, we show that our system is capable of
achieving a desirable point between the two: the aver-
age measurement accuracy of 85% and the average con-
vergence time of 13.5 seconds. Most importantly, we
demonstrate that EWM’s peak measurement overhead
during the convergence period is negligible, i.e., it is
4.37 kb/s, which makes little to no impact to the daily op-
erations of a Web server. Indeed, our empirically demon-
strate that EWM’s impact on regular clients’ transaction
times is negligible, i.e., response times increase on aver-
age by about 2% relative to the scenario when EWM is
not used. Moreover, we have verified that EWM does not
exhaust any computational resources of the monitored
Web server, i.e., CPU, memory, or network bandwidth.

We also analyze the scalability properties of our sys-
tem. We demonstrate that the small measurement over-
head induced by EWM enables extraordinary scalability
properties. In particular, a conservative analysis shows
that a cluster of 315 servers and access bandwidth of
96 Mb/s can effectively monitor as many as 1 million
Web servers over time scales of 10 minutes.

In addition to monitoring any of a large number of
autonomously hosted Web sites, our system is capa-
ble of monitoring any autonomously-hosted Web-based
services and applications on the Internet. Necessarily,
in this paper we focus an several example scenarios to
demonstrate the practicality of our approach in the wild.
In particular, we monitor the short time-scale popularity
trends of well-known antivirus and open-source software
vendors by measuring the corresponding server clusters.
These experiments clearly demonstrate EWM’s ability to
directly monitor real-world Web services and measure

the Web traffic that they are attracting.

2 Design Goals

Endpoint Client Support

Own the Web
Sites

Web Log
Analysis [5, 22],
Network Traffic

Monitoring [7, 20]

Page
Tagging [9, 16, 21],

Google
Analytics [10]

Independent
Measurement EWM

Alexa [2],
comScore [8],

Google
Trends [11]

Table 1: Web Traffic Measurement Design Space

Table 1 outlines the design space for Web traffic mea-
surement systems. Different methods and associated
tools (that we explain in detail below) can be classified
in different categories based on two key parameters. The
first parameter is the administrative authority, i.e., one
can (i) own the Web sites and thus can directly access
server or network logs; otherwise, one must perform (ii)
external independent measurements to estimate the traf-
fic volumes. The second parameter is client support, i.e.,
the question is whether (iii) Web clients’ support is re-
quired in obtaining measurements, as it is the case with
the “crowd-sourcing” example outlined above. Alterna-
tively, if no clients’ support is required, the measurement
can be obtained (iv) directly from an endpoint. To the
best of our knowledge, EWM is the first Web traffic mea-
surement system that requires neither ownership of Web
sites nor Web clients’ support, i.e., it can perform exter-
nal measurements independently from an endpoint. The
key design goals for EWM are the following:

• High accuracy. It is desirable that the measure-
ment system reports the Web traffic accessing a Web
server with a high accuracy. In addition, the accu-
racy should not be affected by the network distance
between the measuring vantage point and the moni-
tored Web server.

• Negligible measurement overhead. The measure-
ment overhead of the measurement system should
not impact the daily operations of the monitored
Web server. It should neither consume a large net-
work bandwidth nor extensive Web server’s compu-
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tational resources (e.g., CPU cycles, memory or file
I/O).

• Fast convergence time. The average time required
to complete a valid estimation should be as small
as possible. Not only it can minimize the impact to
the observed Web server but also enable the mea-
surement system to monitor the dynamics of a Web
server with a finer granularity, i.e., over short time
scales.

• Non-intrusive measurement methodology. The
measurement system should not attempt to obtain
the privilege to enter the monitored system nor to
eavesdrop packets from the internal network or the
Internet. In addition, the measurement system and
its methods should not be misinterpreted as a denial-
of-service attack by the monitored system.

• Independent endpoint measurements. The mea-
surement system should be completely independent
from the monitored system, i.e., it should rely on ex-
ternal measurements. In addition, the measurement
system should be executable from an endpoint, i.e.,
it should not rely on any large-scale crowd-sourcing
efforts.

The first four goals of Web traffic measurement can be
easily achieved if one owns a Web site [14,27]. Accurate
estimates could then be obtained from an endpoint, by
analyzing either server log files or network traces. Ta-
ble 1’s upper left quadrant shows this point in the de-
sign space. There are several well-established related
approaches that enable webmasters to track the traffic ac-
cessing their Web sites.

Web log analysis software, e.g., [5, 22], extracts Web
traffic information from the Web servers’ access logs.
While this approach is certainly accurate, reporting real-
time Web traffic from Web logs is not as trivial a task
as it may appear. It is often the case that Web servers’
log files are stored locally and taken out for offline pro-
cessing on another server that runs the analysis software.
Network traffic monitors, e.g., [7, 20], capture Web traf-
fic to a Web server by monitoring network packets that
are transferred toward a server. One advantage of this ap-
proach is that Web server’s network load can be captured
instantaneously. Still, in practice, not many webmasters
have the privilege to deploy a sniffer in the network to
collect packets because such sniffers may sometimes vi-
olate a company’s privacy policy.

While the above approaches that rely on server or
network administrative access privileges certainly have
their advantages, i.e., they provide accurate results, the
key challenge lies in developing a method to indepen-
dently audit Web servers’ popularity. Alternatively, an

obscure Web site can report that it attracts millions of
users daily; the question is how to independently vali-
date such claims.

We next move to the second quadrant in the design
space shown in Table 1, i.e., the one where both admin-
istrative privileges and client support are available. With
Web clients’ support, there are additional opportunities
for a webmaster to collect information about the Web
traffic and clients. Page Tagging [16, 21], a method also
known as a “Web Bug” [9], involves placing a piece of
javascript code on each Web page of a Web site. Every
time a tagged page is opened by a Web client’s browser,
the script is processed and the visitors’ information (such
as cookies, browser and hardware information) is col-
lected. While this approach is capable of collecting much
more detailed information about end users, it still de-
pends on the willingness of end users to share such in-
formation with Web sites. If clients disable javascripts,
which they typically do for security reasons, this ap-
proach is ineffective. In addition, page tagging cannot
track “non-pages” including media files, pdf and zipped
files etc.

Another approach that we place in the second quad-
rant of Table 1 is the one applied by Google Analyt-
ics [10]. A webmaster that subscribes to this service can
gather information about clients that are redirected from
the Google search engine to the Web site administered by
the webmaster. Client support is needed in the sense that
clients must actively click links on the search engine in
order to be accounted using this method. Necessarily, in-
formation obtained in this way is limited to click-through
requests that come to the site. Hence, such traffic reports
are limited to the search engines’ users and cannot reflect
the total Web traffic accessing the Web server.

Common for the approaches in the second quadrant
is the additional information about clients collected by
Web sites. Still, such information is available only to the
Web sites, not the general public. Moreover, information
collected in this approach is not comprehensive because
it either requires explicit clients’ support [16, 21] or de-
pends solely on click-through requests [10].

The demand for systems capable of independently au-
diting Web site’s popularity is currently fulfilled by the
ones shown in the fourth quadrant of Table 1. In par-
ticular, these are Alexa [2], comScore [8], and Google
Trends [11]. As discussed above, such systems require
a large-scale deployment of client software that collects
user browsing statistics. They then extract user brows-
ing statistics from a subset of end users that install such
software, and project such results to all Internet users. It
is not a surprise that such data can be biased to a subset
of Internet users and its accuracy is often being ques-
tioned [6, 15].

Our approach is to explore the opposite (third) quad-
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rant in Table 1. Is it possible to achieve the five goals of
Web traffic measurement without owning the Web sites
and without any clients’ support? In doing so, we design
EWM to probe a Web server directly, i.e., without relying
on necessarily incomprehensive statistics collected by a
subset of end users, and report the popularity of a Web
server in real time. We next present the EWM details
below.

3 Methodology

In this section, we present the EWM design and describe
its elements. We first provide the necessary background
and explain how a Web server works. Then, we present
the EWM system architecture and its probing and con-
trol mechanisms that enable us to measure the number of
active connections to a Web server. Finally, we analyze
EWM’s measurement overhead.

3.1 Dynamics of a Web Server
Here, we provide the necessary background relevant for
this paper on how a Web server works. When a Web
client tries to request service from a Web server, it first
establishes a TCP connection to the Web server. The con-
nection is then queued in the Web server’s listen socket’s
accept queue to wait for an available Web server sub-
process or thread to process the request. If the Web
server has a spare process waiting to serve the request,
the request is assigned the spare process and it is exe-
cuted immediately. When all the processes in the service
pool are occupied to serve the existing connections, the
new coming request has to wait in the Web server’s ac-
cept queue for a Web server’s process to free up. In this
case, the service time of the request will increase with
the number of connections waiting in the accept queue.

Figure 1: Server’s Service Time vs. no. of Active Con-
nections

Figure 1 shows the relationship between the ser-
vice time and the number of active connections to the
Web server. When the number of active connections
does not exceed the limitation of maximum connections
(Max Conn),1 the request is processed immediately, i.e.,
it is not queued in the accept queue. Hence, the entire
request service time equals the request processing time.
For the same type of requests that we use in our probing
methodology (to be explained in detail below), the ser-
vice time is small and identical when the system operates
below the “knee” point shown in the figure. When the
number of active connections increases and exceeds the
Web server’s limitation of maximum concurrent connec-
tions, the Web requests start to accumulate in the listen
socket’s accept queue and the request service time starts
to increase due to the queuing delays.

The key idea standing behind the EWM method is to
estimate the number of active connections attached to a
Web server by gently shifting (over short time scales)
the Web server’s operating point close to the knee point
shown in Figure 1. Such an approach enables accurate
estimates of the number of active connections to the Web
server, as we demonstrate below.

3.2 System Architecture

Figure 2: System Architecture

Figure 2 depicts the EWM system architecture. It con-
sists of two main components: (i) a probing system that
sends probing packets to the monitored Web server, and
(ii) an artificial connection generator, a cluster of ma-
chines used to shift the Web server’s operating point to
the “knee” service point shown in Figure 1. The probing
machine sends a combination of TCP and HTTP probe
packets to the monitored Web server. These probe pack-
ets measure the Web server’s service time and monitor

1A Web server sets a limit for the number of connections
(Max Conn) that it can process concurrently (e.g., MaxClients in
Apache Web server’s configuration).
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the queue length in the Web server’s accept queue. In
addition, the probe machine sends control messages to
the artificial connection generator to control the num-
ber of artificial connections sent to the monitored Web
server. We explain the probing and the artificial genera-
tion mechanisms in more detail below.

Figure 3: EWM Probes

Figure 3 depicts how the EWM probes work. The TCP
ping probe (a TCP ACK / RST pair, explained in detail
below) travels from the probe machine to the monitored
Web server’s TCP layer. EWM measures the round trip
time of this probe and records it as the network latency
from the probe machine to the Web server. The HTTP
probe sends an HTTP HEAD request from the probe ma-
chine to the Web server. The round trip time of this
probe equals the network latency plus the server’s service
time. EWM estimates the Web server’s service time by
subtracting the TCP ping probe latency from the HTTP
probe’s latency. As explained above, when the server’s
operating point is below the knee point, the measured
service time will not be affected by the accept queue de-
lay. Consequently, the distance between the two probes
is minimal.

EWM expects to detect when the service pool is full,
i.e., when the service time starts to increase due to re-
quest accumulation in the accept queue. The artificial
connection generator is used to shift the system to this
operating point over short time scales. It generates unfin-
ished (or incomplete) HTTP HEAD requests to the moni-
tored Web server (e.g., an HTTP header without the last
carriage return and the line feed symbols). The Web
server will keep the connection alive because it has to
wait for the complete header. The unfinished HTTP re-
quests place a negligible demand for a server’s compu-
tational resources. However, they hold service slots for
the monitored Web server. In addition, the Web server
keeps the connection alive until the artificial generator
disconnects or the Web servers’ connection timeout ex-
pires (typically 300 seconds). In practice, the EWM sys-
tem keeps artificial connections alive over time scales of
several seconds, which is the time required for our algo-
rithm to converge.

Once the algorithm converges (we explain the exact

condition in Section 3.3.2 below), the total number of
connections attached to the Web server is approximately
Max Conn. Hence, we compute the number of active
connections (generated by real Web clients shown in Fig-
ure 2) by subtracting the number of artificial connec-
tions established by the connection generator from the
Max Conn number. EWM estimates the Max Conn pa-
rameter by monitoring the maximum number of artifi-
cial connections that can connect to the Web server over
longer time scales, i.e., 24 hours. We also keep the
Max Conn parameter as part of the history information
for a Web server. Our experiments on the Internet show
that the Max Conn is typically set by default to 256.
Nonetheless, we have observed other values (e.g., 150)
as well.

3.3 EWM Design
3.3.1 Probe Packets

Figure 4: EWM Probing Epoch

Figure 4 illustrates two EWM probing methods, TCP
ping probes and HTTP HEAD probes. Next, we explain
these probing types in detail.

TCP ping packets. A probing machine sends a TCP
ACK packet with an arbitrary ACK number to the mon-
itored Web server. Since the Web server cannot recog-
nize this TCP ACK packet, it responds with a TCP RST
packet to the sender. We use TCP ACK packets instead
of UDP or ICMP probes for two reasons. First, many
routers and firewalls drop UDP or ICMP probes, or treat
them with lower priority than TCP packets, which would
impact our system’s accuracy. Second, TCP ACK probes
raise fewer security alarms than other probes [34]. EWM
measures the round trip time (RTT) of the corresponding
ACK and RST packets and estimates the network latency
from the probe machine to the monitored Web server.

HTTP HEAD probes. An HTTP HEAD probe con-
sists of a HTTP HEAD request that is sent to the mon-
itored Web server. The HTTP HEAD request asks for
the HTTP header of a Web page and it is often used to
test recent modifications of the Web page. It is a light-
weighted HTTP message because the protocol transfers
only an HTTP header of an HTTP object (without the
HTTP body). Hence, the overhead of this message is
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small for all file types (e.g., music, zip, pdf, etc). The la-
tency of this probe accumulates the network latency and
the server’s service time. When the server operates be-
low the knee point, the service time is minimal and the
latency of the HTTP probe will be very close to the la-
tency of a TCP ping probe. On the other hand, when the
queue is building up in the Web server’s accept queue,
the HTTP HEAD probe’s service time will accumulate
accordingly.

EWM probes. As illustrated in Figure 4, EWM sends
three back-to-back TCP ping packets (one TCP ping
probe) in front of and behind an HTTP HEAD probe.
This is done in order to accurately detect potential net-
work congestion events (reflected in an increased RTT
variance) that may interfere with a Web server’s service
time measurements, as we explain below.

In particular, for each round of the measurement, the
probe machine sends three probes to the monitored Web
server including: one TCP ping probe, one HTTP HEAD
probe, and another TCP ping probe, respectively. The
three probes are sent back-to-back to the monitored Web
server and EWM measures the response time of each
request. The two TCP probes estimate the network la-
tency from the start of the measurement to the end of
the measurement. If network congestion happens during
our measurement, the difference of the two sets of TCP
pings will be significant and EWM will simply disregard
this round because it cannot tell how much of the delay is
contributed from the Web server’s service time. If there
is no network congestion variance, the Web server’s ser-
vice time can be accurately estimated by subtracting the
RTT of the TCP ping probe from the turn around time of
the HTTP HEAD request.

3.3.2 Artificial Connections Control

EWM generates artificial connections to the monitored
Web server in an attempt to shift the system into the knee
operating point shown in Figure 1. Here, we explain the
control mechanisms that EWM uses to reach this goal.

In each measurement round, EWM applies a conser-
vative multiplicative increase and multiplicative decrease
(MIMD) control mechanism to control the number of ar-
tificial connections to a Web server. Denote by OldConn
the number of artificial connections established to the
Web server in the previous measurement round. Next,
denote by m the scaling parameter. Further, denote by
Rand a random integer between -5 and 5 excluding 0.
Then, the number of connections that will be established
to the server in the current measurement round, New-
Conn, becomes

NewConn = m ∗OldConn + Rand. (1)

The m parameter is set separately in multiplicative in-

crease and decrease phase. We set m = 1.5 when in
MI phase and m = 0.75 when in MD phase. An exten-
sive experimental evaluation (that we omit here for space
constrains) has shown that this provides desirable con-
vergence properties (details below). Likewise, our ex-
periments show that the Rand parameter effectively helps
avoid synchronization effects, also common for network
controlled systems [33].

Convergence condition. Here, we explain the condi-
tion we use to stop the control procedure and disconnect
all artificial connections. The key trade-off that we face
here is the one between the convergence time and the
accuracy of our estimates. We set parameters with the
goal of achieving short convergence times, and reason-
able accuracy. In particular, denote by Cd the maximum
number of artificial connections for which we measure
no queuing delay in the server’s accept queue. Next, de-
note by Ci the minimum number of artificial connections
for which we do measure queuing delay in the server’s
accept queue. Necessarily, Ci > Cd. Then, we consider
that the system has converged once the following condi-
tion is achieved

Ci − Cd

MaxConn
< 0.15. (2)

Thus, when we bound the range in which the number
of artificial connections reside around the knee point to
within 15% relative to the maximum number of connec-
tions, we converge. Finally, we estimate the number of
active connections as MaxConn− (Ci +Cd)/2. In this
way, we necessarily introduce error, yet we reasonably
bound it. Our experiments later in the paper confirm that
this is indeed the case. At the same time, this approach
enables fast convergence, which is an important goal we
were striving for.

3.3.3 History Information

Using historical information to set the initial probing rate
is a well-known concept in computer networking [25].
We apply this concept in the EWM design as follows.
First, we keep the history information about the num-
ber of artificial connections needed to trigger the knee
operating point. When the history information is avail-
able, we use it to set the initial number of artificial con-
nections. Second, EWM also caches the information
about the MaxConn parameter for a Web server. Given
that this parameter is unlikely to change over long time
scales, caching it is certainly beneficial. We experimen-
tally evaluate the benefits of using the history informa-
tion below.

6



3.4 Measurement Overhead
Here, we analyze the measurement overhead incurred by
our system. As shown in Figure 3, in each measure-
ment round we send one TCP ping probe, followed by
an HTTP HEAD probe, followed by another TCP ping
probe. For TCP ping probes, the overhead for each probe
is approximately 0.32 kBytes. For each HTTP HEAD
probe, the overhead is 1 kByte. Therefore, the measure-
ment overhead for each measurement round is approx-
imately 1.64 kBytes. Given that EWM’s average con-
vergence time is approximately 4.5 rounds (as we will
demonstrate later in the paper), the measurement over-
head for the 4.5 rounds is 7.38 kBytes. Given that each
measurement round is upper bounded by 3 seconds, the
duration of a typical convergence epoch is 13.5 seconds.
Thus, the bandwidth overhead placed on the monitored
server is 4.37 kb/s during the measurement epoch. Note
that the 4.37 kb/s overhead would not increase if EWM
needs more rounds to converge because EWM paces it-
self for 3 seconds per round and the overhead of the
probe packets is fixed.

In general, EWM can schedule probing epochs over
arbitrary time intervals (≥ 13.5 seconds), depending on
the time scales at which an endpoint desires to estimate
the popularity trends. For example, in scenarios when
EWM is measuring a large Web server infrastructure
(e.g., mirror sites of a Web service, Section 5), EWM
can schedule measurement intervals over longer time
scales (e.g., 5 minutes) in a round robin fashion. In this
case, the average measurement overhead is necessarily
lower. Therefore, the EWM’s overhead will not disturb
the monitored Web server’s daily operations and the net-
work overhead is negligible.

4 Evaluation

In this section, we experimentally evaluate EWM. Com-
mon for all scenarios in this section is the existence of
ground-truth information, i.e., real server logs, which en-
ables us to systematically evaluate EWM’s accuracy.

4.1 A Three-Tier Web Service Experiment
Here, we evaluate EWM in a three-tier Web service
testbed. The three-tier Web service is a stereotype ar-
chitecture for many Web sites such as social networking,
e-commerce and news Web sites. It consists of a Web
server, an application server and a database, as illustrated
in Figure 5.

We deploy an eBay-like auction service, RUBiS [17],
on our three-tier testbed and generate different workload
scenarios using RUBiS’s workload generator. The work-
load generator spawns a different number of concurrent

Figure 5: Three-Tier Web Service

Web clients with a series of transactions such as brows-
ing, search, and bidding. The transactions produce dy-
namic arrival and service times to simulate the realistic
Web traffic. In the experiments, we initiate a different
number of Web clients ranging from 32 to 512. Web
clients in the experiment can disconnect and pause for a
certain amount of time, thus simulating the ”think” pro-
cess common for real Web clients. We deploy EWM
to monitor the active connections to the Web server in
the three-tier Web service testbed and evaluate its accu-
racy by comparing our estimations to the Web server’s
log files.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  10  20  30  40  50  60  70  80  90  100

C
D

F

Prediction Accuracy (>= X%)

Figure 6: EWM’s Accuracy in the Testbed Experiment

Figure 6 shows EWM’s accuracy for our testbed ex-
periments under different workload. In this figure, the x-
axis represents the prediction accuracy of the estimated
number of active connections relative to the ground-truth
data, i.e., connections recorded in the Web server’s log.
The y-axis represents the cumulative distribution func-
tion of accuracy in all experiments. The figure shows
that in all of the workload scenarios, the EWM accuracy
is greater than 80% and the average accuracy is 85%.
This result is a direct consequence of our design deci-
sion outlined by Eq. (2) above. In particular, our goal
is to reasonably bound the estimation error while achiev-
ing fast convergence. Below, we evaluate EWM’s con-
vergence time in addition to accuracy in real-world Web
traffic scenarios.
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4.2 Monitoring Blogging Web Patterns
Here, we evaluate EWM by replaying a real-world one-
hour-long Web server log obtained from a blogging Web
site. According to Alexa, this blogging Web site ranks
approximately at top 8,500 Web sites in the world and
allegedly attracts non-negligible Web traffic every day.
This experiment helps us understand EWM’s accuracy
in measuring a popular real-world Web site. The log we
obtained contains timestamps of Web clients that send
requests as well as the duration of the requests. The re-
quests correspond to a combination of accesses to files
of different sizes (e.g., html, image, and music) and dif-
ferent types of requests (e.g., search, browsing, and post
requests).

Figure 7: Replay Web Server Log Experiment Setup

Figure 7 shows the experimental setup. We set up a
Web server in our testbed to replay this Web log and
monitor the active connection to this Web server using
EWM. To replay a single request from the log, we initiate
a Web client to the Web server at the given timestamp in
the log and send the processing time (e.g., n seconds) as
a parameter in the URL to the Web server. Once the Web
server receives the HTTP request, it parses the URL and
keeps the Web client for the amount of time indicated
in the processing time (i.e., n seconds in our example).
After the processing time expires, the Web server sends
back a HTTP 200 OK reply to the Web client. Similarly,
we repeat the process until all the Web traffic log is re-
played. Simultaneously, EWM probes the Web server
every 30 seconds to monitor the number of active con-
nections to the Web server. We record the results and
compare with the Web server’s log file after the experi-
ment is completed.

Figure 8 shows the results of the experiment in which
we replay the one-hour-long Web server log. The x-
axis shows the timestamps of the experiment in seconds
and the y-axis shows the number of active connections.
The figure demonstrates that the recorded active con-
nections from the Web log are closely approximated by
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Figure 8: Monitoring Blogging Web Patterns

EWM’s estimations. Though EWM tends to underesti-
mate the number of active connections in this case be-
cause it misses some very short-lived Web requests, its
average accuracy is 87.5%.

Next, we study the advantage of using history infor-
mation. We compare the number of rounds required for
convergence in two scenarios: with history information
and without history information. When history informa-
tion is used, EWM utilizes the number of artificial con-
nection observed in the previous convergence round to
jump start the new measurement. When history informa-
tion is not used, EWM selects a random number between
32 and MaxConn as the initial number for artificial con-
nections.
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Figure 9: Advantage of History Information

Figure 9 plots the CDF of the number of rounds
needed for the algorithm to converge in the above ex-
periment. The figure shows that when history informa-
tion is used, more than 50% of measurements converge
within 4 rounds, and the average number of rounds is
4.53. Given that the theoretical minimum for the algo-
rithm to converge is 2 rounds (i.e., at least two estimates
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are needed to compute the convergence condition, Eq.
(2)), this is indeed a short convergence time. The figure
also shows that when history information is not used, the
average number of rounds needed for the system to con-
verge increases by 50% approximately, i.e., to 6.45. The
experiment clearly shows the power of using the history
information to shorten EWM’s convergence time.

4.3 Monitoring eBay Clients

Figure 10: eBay Experiment Setup

Here, we extend the EWM evaluation to measure real
Web clients in real time. In particular, we posted 10 auc-
tions with very close auction end times on eBay. In addi-
tion, we hosted images in the auction pages on our testing
Web server. As shown in Figure 10, when a bidder is ac-
cessing (or reloading) the auction page, the bidder will
be redirected to our testbed Web server to download the
image. As such, we can measure the Web traffic access-
ing those auction pages indirectly by measuring accesses
to the Web server in our testbed using EWM. Of course,
we can measure eBay’s servers directly. The benefit of
the setup shown in Figure 10 is that we have the ground-
truth information from our Web server, while at the same
time we measure real Web clients in real time.

Figure 11 depicts the number of active connections
from EWM’s measurement results when the auction is
closing. The x-axis is the timestamp relative to the auc-
tions closing time (i.e., 0 is auctions’ end time). Our
measurement results confirm the last-minute bidding be-
havior described in several studies (e.g., [41, 42]) that
online bidders tend to bid at the last minute before auc-
tions end. When the auctions are closing, EWM moni-
tors a peak of Web traffic accessing the Web server that
hosts the auction images. After the auctions end, the Web
traffic drops significantly because bidders leave after the
auction winner is declared. The key point is that EWM is
capable of effectively estimating non-stationary popular-
ity trends over short time scales and with high accuracy.
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Figure 11: Monitoring Web Traffic from Ebay Clients

5 Case Studies

5.1 Monitoring Antivirus Update Server
Clusters

With the prevalence of endless computer viruses and
malware, antivirus programs have become an indispens-
able software in every computer. While some users
choose their antivirus software by reputation or cost, oth-
ers choose the software based on its popularity. How-
ever, the popularity of an antivirus software cannot be
easily measured. In particular, some Web sites provide
the count of software downloads, but such numbers can-
not be independently verified. Moreover, even if accu-
rate, such numbers can be far from the real number of
”live users”. For example, a user can download a piece
of software but never install it or stop using it (e.g., re-
place with the competitors’ antivirus software).

Here, we provide an alternative method to evaluate
the popularity of antivirus software. We utilize EWM to
monitor the virus definition update Web servers of an-
tivirus software. Essentially, an antivirus software in-
stalled on a computer will connect to the update Web
server to update its virus definitions periodically. There-
fore, the volume of Web traffic to the update server can
indirectly show the popularity of the antivirus software.
In this case study, we focus on two popular free antivirus
software vendors, Avira [4] and Avast [3].

To monitor the antivirus software update servers, we
first obtain the hostname of the update Web server
by sniffing the packets sent out from our computer
to the server. Next, we perform DNS lookups for
the hostnames we obtain. For Avira, the hostname
(personal.avira-update.com) resolves to 30
unique IP addresses that are associated with 30 Web
servers. For Avast, we obtain 50 hostnames (e.g.,
download824.avast.com) and each hostname is
associated with one unique IP address.

9
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Figure 12: Monitoring Antivirus Software Update
Servers

Figure 12 shows the aggregated number of active con-
nections from the update servers of the two antivirus soft-
ware vendors. The figure shows that the two software
vendors have comparable popularity with Avira’s up-
date Web servers attracting slightly more Web traffic.
This is despite the fact that Avira is hosted at a smaller
number of Web servers (i.e., 30) relative to Avast (i.e.,
50). In addition, the figure also shows the time of day
effect. For example, both server clusters have the lowest
traffic between 03:00 and 06:00.

We note that our results in this particular case are rela-
tive in the sense that they simply show the aggregate Web
traffic to the corresponding server clusters. Indeed, how
often an antivirus software updates its database can im-
pact the Web traffic to its update servers. In that sense,
the comparison of the two software vendors shown in
Figure 12 may not be fair. To fairly compare the popu-
larity, we can estimate the update frequency for different
systems by simply monitoring software behavior at an
endpoint. We do not pursue this avenue here because it
diverts from our key point: that EWM provides a means
to directly monitor Web services and measure the Web
traffic that they are attracting. In addition, monitoring
these Web servers over long time scales can reveal a soft-
ware popularity trend, i.e., if it is attracting more users or
getting unpopular.

5.2 Monitoring SourceForge Mirror Sites
SourceForge is a Web-based source code repository that
hosts many of the most popular open source software
projects (e.g., Ghostscript, BitTorrent and Wireshark).
SourceForge depends on its 31 mirror servers located
globally to distribute Web traffic generated by software
downloads from its Web site. In this case study, we de-
ploy EWM to monitor two of the SourceForge’s mirror
servers and analyze the results.
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Figure 13: Monitoring SourceForge Mirror Sites

Figure 13 shows the number of active connections to
mirror servers located at US East Coast (New York) and
West Coast (Seattle). The first insight from the figure is
that the server on the West Coast often attracts twice as
much users than the one at the East Coast. Given that
SourceForge redirects Web clients to its closest mirror
sites according to their IP addresses, we can say that our
measurements to some extent “confirm” the stereotype
that people on the West Coast are more “techy” than on
the East Coast. Next, the figure also shows a time of day
effect of the Web traffic to these mirror servers. We also
observe the time difference between the two mirror sites.
For the US East mirror server, its traffic starts to increase
around 6:05 Eastern Daylight Time (EDT) and the US
West mirror server’s Web traffic starts to increase around
9:45 EDT which is 6:45 Pacific Daylight Time (PDT).
Internet users can use the monitoring results provided by
EWM as one of the important inputs (in addition to RTT
and bandwidth measurements) to select a mirror server
that has less traffic to avoid busy or overloaded mirror
servers.

6 Discussion and Additional Evaluation

Active connections vs. active clients. Modern Web
browsers can accelerate the loading of a Web page by ini-
tiating multiple HTTP connections to a Web server and
downloading multiple HTTP objects concurrently [29].
As such, it is possible that one Web client has multiple
active HTTP connections to the same Web server. At a
high level, this behavior does not conflict with our goal of
measuring the popularity of a Web server. Indeed, more
active clients generate more active connections. While
establishing the number of active clients based on the
number of active connections to a Web server is beyond
the scope of our work here, we note that such a relation-
ship is possible to establish.
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In particular, we have already developed methods to
effectively and scalably profile arbitrary Web sites by ac-
counting for the size of Web objects hosted by a server,
their cacheability and locality [39], all of which affect the
relationship between the number of active connections
and active clients. For example, for Web servers that host
(i) short text files vs. (ii) large pictures and videos, the
same number of measured active connections correspond
to a larger number of active users in the text server sce-
nario relative to the corresponding pictures and videos
case. Thus, based on the characteristics of the content
hosted at a Web site, and based on understanding of how
modern Web browsers (all disable pipelining and enable
caching [39]) utilize multiple connections,2 it is possible
to develop models to compute the most likely number
(and a distribution) of active clients based on the number
of active connections. We are currently developing such
models.

The impact of load balancers. Large Web sites that
host a cluster of Web servers may deploy a load balancer
to manage a set of Web servers for reliability and load
balancing purposes [13]. EWM can monitor the Web
server cluster as a single Web server and measure the ag-
gregated active connections to the cluster. Given that the
load balancer uniformly distributes the Web requests to
its associated Web servers [26,30], EWM works properly
in this scenario. We evaluated this issue in our testbed
using a load balancer implemented as a software Web
proxy - HAProxy [12] and two Web servers. We omit
the results here since they are well expected. Monitor-
ing larger-scale clusters (beyond our current setup) cer-
tainly requires more measurement resources. We discuss
EWM’s scalability properties below.

DoS attack concerns. The amount of artificial HTTP
connections generated by EWM may be misinterpreted
as a denial-of-service attack by the monitored system.
There are several issues with respect to this concern.
First, EWM has short convergence time and low net-
work overhead that should not be misinterpreted as DoS
attacks. Our experiments from Section 5, in which we
monitored production Web services on the Internet over
long time scales without any obstacles, confirm that this
is the case. Moreover, flash crowds are a well known
phenomenon for Web services [35, 36]. Any anti-DoS
scheme that interprets EWM’s measurement as DoS at-
tacks will necessarily reject connections during flash
crowds, which is certainly an undesirable behavior.

EWM’s Impact on a Web Server. To explore
EWM’s impact on a Web server, we study EWM’s im-
pact on transaction times experienced by regular Web
clients. We conduct experiments using the experimen-
tal setup from Section 4.2, depicted in Figure 7 above.

2Somewhat outdated studies on this topic do exist, e.g., [32, 38].

We compare the transaction time of Web requests with
and without EWM measuring the Web server. During
EWM’s measuring epoch, the Web clients only experi-
ence queueing delays when the total number of connec-
tions generated by EWM and Web clients exceeds the
Web server’s MaxConn (in the MI phase). This typically
happens only in a single round during the measurement
epoch. Otherwise, EWM does not impose additional de-
lays to the Web requests.
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Figure 14: EWM’s Impact on Transaction Times

Figure 14 plots the CDF of transaction times per-
ceived by the Web clients. The figure shows that with-
out EWM the average transaction time is 2.19 sec-
onds. With EWM’s measurements, the average transac-
tion time slightly increases to 2.28 seconds when EWM’s
probing interval is 5 minutes. Moreover, when EWM’s
probing interval is 10 minutes, the average transaction
time increases to 2.24 seconds relative to 2.19 seconds
when no EWM measurements are conducted. We con-
clude that EWM’s impact on regular clients’ transac-
tion times is negligible. Moreover, we have verified that
EWM does not exhaust any computational resources of
the monitored Web server (i.e., CPU, memory, or net-
work bandwidth) by closely monitoring our testbed’s
machines.

Synchronized measurements issue. If multiple enti-
ties are deploying EWM to measure the same Web server
concurrently, the artificial connections generated by one
EWM instance will be counted as Web traffic by another
one. A similar problem also exists in related computer
networking scenarios, e.g., [25, 31], where probes gen-
erated by one endpoint can be misinterpreted as the real
background traffic by other endpoints.

There are fundamental differences between EWM on
one hand, and such networking scenarios on the other.
Contrary to related networking scenarios in which it is
assumed that each and every endpoint massively and reg-
ularly probe the Internet, this is not the case with EWM.
We envision that only one (or several at most) entities
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will adopt EWM to enable popularity auditing services
to the public. Any individual entity can appropriately
schedule probes to avoid synchronization. Any synchro-
nization effects among potential different entities are un-
likely to happen. Indeed, as long as the intervals in-
between two consecutive measurements are reasonably
spaced (e.g., 10 minutes), the synchronization is unlikely
given the short EWM’s convergence times. The synchro-
nized measurement issues can be further alleviated by
randomizing the intervals between measurements.

Shared-hosting and Content Distribution Network
(CDN) services. In shared-hosting Web server scenar-
ios, i.e., when multiple sites are co-hosted on a single
Web server, EWM is able to measure the aggregated Web
traffic to the server, not to individual Web sites. While
the traffic to such individual Web sites is small by de-
sign, we are capable of providing accurate upper bounds
for traffic to such Web sites.

Some Web sites use CDNs to replicate their content to
many locations on the Internet, thus making it closer to
end users. The question is if and how EWM can mea-
sure the popularity of such Web sites. To answer this
question, we proceed as follows. We take the list of the
top 1 million most popular Web sites from Alexa, and
search for the Web sites hosted on Akamai [1], the largest
CDN provider. We find 6,415 Akamai-hosted Web sites
among the top 1 million, i.e., 0.64% of the top 1 million
Web sites are hosted on Akamai. Next, we analyze a ran-
dom subset of such Web sites. We find that despite the
fact that the most “heavy” content (e.g., pictures, videos
etc) is indeed served by Akamai, in the vast majority of
cases we find that pieces of content (e.g., typically text)
is still served exclusively from origin, non-CDN, servers.
EWM can accurately monitor such origin Web servers
thus revealing the popularity of the corresponding sites.
Moreover, such measurements typically require moder-
ate resources, as we explain in detail below.

EWM’s scalability. Consider a scenario in which
EWM needs to monitor 1,000 Web servers concurrently
during a single convergence period that lasts 13.5 sec-
onds on average. The measurement overhead thus equals
to 1,000 * 4.37 kb/s = 4.27 Mb/s. This network band-
width is certainly within the range that most servers
connect to the Internet. Therefore, a single probe ma-
chine with multiple probing processes is sufficient. As
for the artificial connection generators, assume conserva-
tively that measuring each Web server requires 256 artifi-
cial connections, which corresponds to the default maxi-
mum number of concurrent connections for a Web server.
Then, the total number of artificial connections required
for 1,000 servers is 256,000. Given that a typical Linux
server can generate 20,000 concurrent sockets [18], it
follows that 12.8 artificial generators is enough to han-
dle the task. Note that once an artificial connection is

established to the Web server, no packets will be trans-
ferred until the connection is closed. Therefore, network
bandwidth is not a problem for artificial generators.

In sum, EWM measurement system with a total of
approximately 14 servers (1 + 12.8) can monitor 1,000
Web servers in the Internet during a single convergence
epoch. Considering a realistic scenario in which the
inter-measurement interval is set to 10 minutes, and that
each convergence interval lasts for 13.5 seconds on aver-
age, it follows that 14 servers can concurrently measure
1,000*(10*60/13.5) = 44,444 Web servers. Extrapolat-
ing to larger numbers, it follows that a measurement clus-
ter of approximately 315 servers, and aggregate band-
width of 96 Mb/s can effectively monitor as much as
1,000,000 Web servers concurrently.

6.1 “What If” Scenarios
Manipulating the probing system? Here, we evaluate
hypothetical scenarios in which a Web server administra-
tor would intentionally prolong HTTP probes. Indeed,
EWM is a delay-based measuring system that is sensi-
tive to irregular increase of Web server’s service time.
After EWM is widely deployed, it is possible that Web
server administrators would want to manipulate EWM’s
measurement data to artificially increase the popularity
of their services. This can be done by uniformly or
randomly prolonging HTTP probes sent by EWM. Note
that uniformly prolonged HTTP probed can easily be de-
tected and calibrated by EWM using statistical measures.

To detect and filter the intentional randomly prolonged
HTTP probes, EWM can deploy multiple probing ma-
chines to “audit” the probe machine’s measurement re-
sults. The monitoring (main) probing machine sends
probes and controls the artificial generators as explained
above. The auditing probe machines also probe to the
monitored Web server at a random time within EWM’s
measurement epoch to cross-validate the HTTP probe
measurement results from the main probe machine. The
auditing probe machines should request random Web ob-
jects from the Web site to avoid detection. Hence, EWM
can prune unreliable measurement records from its data
set if there are mismatches between the monitoring and
auditing probe machines.

Dependence on TCP ping probes? In its current im-
plementation, EWM uses TCP ACK and RST pairs to es-
timate network-level RTTs. While most servers support
such probes [34], one might be concerned that disabling
this feature can affect EWM. This is not the case. EWM
can use regular (TCP SYN - SYN ACK) pairs to estimate
RTT. While such a probe temporarily allocates server re-
sources, the resources can be immediately released by
promptly reseting the connection. In summary, EWM is
independent from TCP ping probes.
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Dependence on HTTP HEAD probes? Here, we dis-
cuss another hypothetical scenario in which the HTTP
HEAD protocol is disabled by the Web server’s adminis-
trator. Web proxies and browsers rely on HTTP HEAD
protocol to determine the freshness of a Web object. If a
Web server administrator disables the HTTP HEAD pro-
tocol on the Web server, the browsers and proxies will
have no choice but to download the whole HTTP objects
to check the freshness of the corresponding HTTP ob-
jects in their cache. Further, some proxies and browsers
may not even work properly because they assume that the
HTTP HEAD protocol is supported by the Web servers.
In addition, when the HTTP HEAD protocol is disabled,
the network usage of these Web servers will necessarily
grow because Web clients have to transfer the entire Web
objects. The increased network bandwidth will accord-
ingly cost revenue to the Web administrator.

If the HTTP HEAD protocol is disabled (or if HTTP
HEAD packets are intentionally delayed to manipulate
measurements), EWM can adopt an alternative method
to send its HTTP probes. EWM can use HTTP GET to
transfer one of a large number of small and frequently
accessed Web object (e.g., the “favorite icon” image of
a Web site).3 Small and frequently accessed Web ob-
jects are likely to be cached in the Web server’s memory,
hence little processing time and computation resources
are required for the Web server to transfer the object.
In addition, downloading the small HTTP objects will
not considerably increase the measurement overhead for
EWM and we do not foresee any impact on EWM’s ac-
curacy.

As for artificial connections, similarly, the HTTP GET
protocol can be used in place of the HTTP HEAD proto-
col. The artificial generators can send an HTTP GET re-
quest with unfinished HTTP header to generate an artifi-
cial connection. Furthermore, if a Web server sets a very
short connection expiration time that may disconnect the
generated artificial connections before EWM converges,
the artificial generators can simply connect to the Web
server and fetch a series of small HTTP objects during
EWM’s measurement epoch.

Summary. Using regular TCP packets and Web
requests to random Web objects can effectively mask
EWM measurement signatures and hinder manipula-
tion. Any attempt to systematically delay responses is
detectable and necessarily degrades a server’s perfor-
mance.

3The icon (favicon.ico) will be requested by the browser every time
the browser opens a page from the Web site.

7 Related Work

We presented EWM’s related methodologies in detail in
Section 2 above. We outline other related work below.

Previous work [24, 37, 45] has discussed benchmark-
ing Web servers in terms of behavior, performance, and
capacity. However, contrary to EWM, these research ef-
forts also assume that the Web servers’ log is available
for analysis. In [27, 40], the authors proposed method-
ologies to generate Web traffic and evaluate Web servers’
capacity. Our work here is different because we address
the problem of measuring the “live” traffic load of a Web
server. Baryshnikov et al. [28] present a predictor for
forecasting Web servers’ congestion scenarios, yet this
work is limited to predicting hotspots where Web traf-
fic is congested. EWM can measure the Web traffic in
real time independently from a Web server’s congestion
status, i.e., whether it is congested or not. Urgaokar et
al. [43, 44] analyze the performance of a multi-tier Web
service under various workloads and they focus on evalu-
ating the response time of Web requests. EWM is able to
decouple response time into service time and network la-
tency. In addition, EWM estimates the number of active
connections to a Web server by monitoring its service
time.

8 Conclusions

In this paper, we presented the design and implemen-
tation of EWM, a novel measurement methodology for
monitoring the popularity of Web services. Contrary to
existing approaches, EWM neither requires network or
Web server administrative privileges nor large-scale Web
clients’ support, which places it at a unique position in
the Web traffic monitoring design space. By using a com-
bination of TCP ping and HTTP HEAD probes, EWM
is able to accurately measure Web servers’ service time
by effectively removing the network latency component.
Furthermore, using artificial connections and an MIMD
probe control, EWM can quickly converge to the knee
point of the Web servers’ accept queue and measure the
active connections to the Web servers. Our evaluations
show that EWM can attain a valid measurement on an
average of 13.5 seconds with a negligible measurement
overhead of 4.37 kb/s. These properties enable EWM
both to monitor popularity trends over short time scales
and to achieve extraordinary scalability properties.

We evaluated EWM in a number of realistic scenar-
ios, including a three-tier Web service, a real-world blog-
ging scenario, and an online auction scenario. In all
cases, we demonstrated EWM’s ability to achieve a de-
sirable point between accuracy and fast convergence. Fi-
nally, we conducted larger-scale case studies and demon-
strated EWM’s practicality in monitoring antivirus and
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open source software vendors, by measuring the corre-
sponding server clusters. These measurements provide
the proof-of-concept results and represent only the first
two among many other Web services that we plan to eval-
uate. Most importantly, our key contribution lies in de-
vising a deployable system capable of directly, indepen-
dently, accurately, and fairly assessing Web servers’ pop-
ularity. Such a system has the potential to earn high cred-
ibility and public trust, hence benefit the Internet com-
munity as a whole.
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