
De-Kodi: Understanding the Kodi Ecosystem
Marc Anthony Warrior

Northwestern University
warrior@u.northwestern.edu

Yunming Xiao
Northwestern University

yunming.xiao@u.northwestern.edu

Matteo Varvello
Brave Software

mvarvello@brave.com

Aleksandar Kuzmanovic
Northwestern University

akuzma@northwestern.edu

ABSTRACT
Free and open source media centers are currently experiencing a
boom in popularity for the convenience and flexibility they offer
users seeking to remotely consume digital content. This newfound
fame is matched by increasing notoriety—for their potential to serve
as hubs for illegal content—and a presumably ever-increasing net-
work footprint. It is fair to say that a complex ecosystem has de-
veloped around Kodi, composed of millions of users, thousands of
“add-ons”—Kodi extensions from 3rd-party developers—and content
providers. Motivated by these observations, this paper conducts the
first analysis of the Kodi ecosystem. Our approach is to build “crawl-
ing” software around Kodi which can automatically install an addon,
explore its menu, and locate (video) content. This is challenging for
many reasons. First, Kodi largely relies on visual information and
user input which intrinsically complicates automation. Second, no
central aggregators for Kodi addons exist. Third, the potential sheer
size of this ecosystem requires a highly scalable crawling solution.
We address these challenges with de-Kodi, a full fledged crawling
system capable of discovering and crawling large cross-sections
of Kodi’s decentralized ecosystem. With de-Kodi, we discovered
and tested over 9,000 distinct Kodi addons. Our results demonstrate
de-Kodi, which we make available to the general public, to be an
essential asset in studying one of the largest multimedia platforms in
the world. Our work further serves as the first ever transparent and
repeatable analysis of the Kodi ecosystem at large.

ACM Reference Format:
Marc Anthony Warrior, Yunming Xiao, Matteo Varvello, and Aleksandar
Kuzmanovic. 2020. De-Kodi: Understanding the Kodi Ecosystem. In Pro-
ceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3366423.3380194

1 INTRODUCTION
Kodi is an open source entertainment center that allows users to
stream both local and remote media content (videos, music, and
pictures) on a range of consumer devices, from PCs and set-top
boxes to smartphones. Kodi has recently received lots of attention
from both content providers, network operators, and the media. This
is due both to its growing popularity—according to Sandvine [24],
9% of North American households host at least one Kodi box—
as well as its increasing notoriety as the perfect vehicle for illegal
content distribution (mostly video).

Around Kodi a whole ecosystem has been built with several key
players: users, addons (plugins), and (content) providers. Kodi users
install addons via Kodi’s official repository (a collection of approved
addons) or via third party repositories and sources retrieved on

the Web—mostly specialized forums, blogposts, and social media.
Installed addons provide extra functionalities, such as easy access
to remote video libraries from which their desired content can be
streamed. This large ecosystem, consisting of millions of users and
countless user-developed add-ons, presents a uniquely wide, cross-
sectional view of the modern video streaming and various methods
of media distribution and consumption.

This work aims to study and quantify the nature of Kodi’s ecosys-
tem at large through crawling and analyzing Kodi’s addons, through
which media streaming is facilitated. Although the Kodi platform is
designed to be convenient for the typical end user, crawling Kodi’s
addon ecosystem proves extremelly challenging for several key rea-
sons. First, discovering and locating Kodi addons is non-trivial, as
there exists no global list of Kodi addons. We tackled this challenge
by building a scraper which can collect potential Kodi addons from
the Web (Github, Reddit, etc.) and quickly reduce them to a unique
set of actual addons. Next, we extend Kodi’s APIs to allow more in-
formed crawling operations, e.g., by interacting with visual elements
while tracking execution path. Finally, we leverage Docker [1] to
scale our software while isolating crawler instances from potential
malware and/or crashes. The result is a full fledged crawling system,
de-Kodi, capable of “decoding" the Kodi ecosystem.

We start by validating both the performance and the accuracy of
de-Kodi. We show that de-Kodi scales linearly with the available
underlying hardware resources (three machines located at a North
American campus network, in our setup), and that tens of thousand
of addons can be crawled per day. Further, we show that de-Kodi can
effectively explore working addons, and quickly discard erroneous,
obsolete (50% of addons in the ecosystem are more than two years
old), or otherwise dysfunctional addons which fail to install.

Next, we peform and analyze a full crawl of the Kodi ecosystem
from our setup. De-Kodi discovered 9,146 unique Kodi addons (83%
more than what is contained in the official Kodi repository) scattered
across LazyKodi, a well-known and actively maintained Kodi add-on
aggregator, as well as Reddit [12] and GitHub [6], which are known
for attracting both Kodi users and developers. Our main findings
with respect to the Kodi ecosystem are summarized in the following:

• The Kodi ecosystem largely relies on “free” hosting platforms,
such as GitHub and Google CDN.

• The majority of addons do not engage in any “suspicious”
activity, e.g., ads and malware injection.

• Very few addons are extremely popular (10x more popular
than other addons), and these addons are more likely associ-
ated with suspicious activities.

• Lots of content is “stale”, i.e., old addons not installing on
recent Kodi or unreachable URLs.

https://doi.org/10.1145/3366423.3380194
https://doi.org/10.1145/3366423.3380194


WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Warrior et al.

2 RELATED WORK
The main contribution of this paper is de-Kodi, a tool facilitating
in depth and transparent studies of the Kodi ecosystem. To the best
of our knowledge, no previous research paper has investigated this
ecosystem yet. Conversely, researchers have directed their attention
towards understanding the potential security and privacy threats of
the Kodi application [23] as it allows arbitrary code from unknown
sources to be executed. The authors show, for instance, how addons
and video subtitles can be used as backdoors to gain control on the
client device. In this work, we investigate the network traffic gener-
ated by a plethora of Kodi’s addons and comment on the presence of
suspicious activity (Section 7.1.1).

More related work can be found in the area of copyrighted video
distribution, a well explored topic over the last 10 years. Since our
work also comments on the legality of content distributed over Kodi,
we here summarize the main research papers in this area.

Back in 2007–2011, platforms like YouTube and Vimeo were
mostly used for redistributing illegal content [18], [16]. Even when
legal, the majority of the uploaded content was copied rather than
user-generated [17]. Video platforms implemented several technical
solutions to prevent copyrighted materials, which in turn triggered in-
genious evasion techniques such as reversing of the video (particular
used in sports), covering of TV logos, etc.

To avoid dealing with copyright detections, “uploaders” directed
their attention to cyberlockers, or services offering remote file stor-
ages, sometimes even for free [22]. In [21], the authors scraped
popular cyberlockers, e.g., MegaUpload and RapidShare, and show
that 26–79% of the content infringed copyright. More recently, Ibo-
siola et al. [20] study streaming cyberlockers, or illegal websites
which distribute pirated content (mostly video). The paper looks
at both cyberlockers and the content they serve. Overall, it finds a
centralized ecosystem composed of few countries and cyberlockers.
Although cyberlockers as a subject are orthogonal to our study, it
is worth mentioning that Kodi addons may utilize cyberlockers as
sources of content.

An interesting new angle was explored in [19]. In this paper,
the authors investigate a very intuitive question: why are illegal
streaming services free? They focus on illegal sports streaming and
show a huge extent of user tracking—much more than what was
done in legitimate streaming services. We also investigate the Kodi
ecosystem for signs of tracking in Section 7.1.1.

3 BACKGROUND
This section summarizes Kodi’s main components and usage model,
to provide the reader with the context driving the design of de-Kodi.
Following this, we discuss the key challenges in crawling Kodi.

3.1 Terminology

Addon – An addon is a set of files—code, content, metadata, etc.—
which together work to extend the functionality of some Kodi feature,
ranging from media access (such as YouTube and Netflix) to Kodi
GUI skins and code libraries. An addon’s properties, including the
set of Kodi features extended, are described by the addon’s respective
and mandatory addon.xml file. In addition to this, many addons

Figure 1: Diagram exemplifying the relationship between
source paths, repositories addons (labeled as “repo. addons”),
and non-repository addons (labeled as “addons”)

contain special, Kodi supported Python code to be triggered delib-
erately or automatically by events in Kodi, such as Kodi starting or
the user clicking a menu button belonging to the addon in question.
For convenient distribution, an addon is usually packaged in a zip
file; at installation, the zipped addon is extracted into Kodi’s local
addons directory.

Many Kodi add-ons are not made by official Kodi affiliates, but by
third-party developers leveraging the convenience of the Kodi plat-
form. It has been well established that a number of these third-party
add-ons engage in piracy. Kodi’s official wiki site bans promotion
of a set of add-ons, primarily consisting of add-ons dealing with
pirated content [25].

It is worth noting that, as per Kodi’s disclaimer,1 Kodi does
not provide content. Rather, Kodi is software that facilitates media
content consumption, in the same way a browser allows for browsing
the Web. Third party developers can build Kodi’s addons which
can be used to stream both legal (e.g., YouTube and Vimeo) and
illegal/pirated (e.g., SportsDevil and Neptune) content.2

Repository – A repository is a special type of addon that points to
a collection of addons such that they can be conveniently installed.
Official Kodi is distributed with a single preinstalled repository
called “kodi.tv”, which only contains addons endorsed by the Kodi
team. Anyone can create their own repository to feature the addons
of their choice. Some repositories host their content remotely, e.g.,
on Github or a personal server, as a means to share curated addon
lists while actively maintaining and updating their contents.

Sources – Sources are simply paths—local or remote—that point
to files to be used by Kodi. While some sources directly provide
consumable media (music, video, etc), many sources act as a means
to facilitate addon distribution. Some remotely accessible sources
directly host addons; others serve as hubs, providing a “one stop
shop” by elaborately pointing to the contents of a collection of other
sources via HTTP redirection techniques. Figure 1summarizes the
relationship between add-ons, repositories, and sources.

Addon manager – The addon manager is an internal Kodi tool
which allows users to install addons and repositories. Kodi’s addon
manager officially provides two approaches to installing addons:

1https://kodi.tv/about
2http://www.wirelesshack.org/top-best-working-kodi-video-add-ons.html



de-Kodi WWW ’20, April 20–24, 2020, Taipei, Taiwan

via repositories (a type of addon pointing to other addons to be
conveniently installed) and via sources (direct paths—local or via
HTTP—to addon zip files).

Kodi API – Kodi offers a built-in, JSON-RPC API for generalized
operations, such as navigating a menu or exposing the contents of
Kodi’s built-in databases. In parallel to this, Kodi also exposes many
controls exclusive to addons (for example, through built-in, Kodi-
specific Python modules that make various Kodi features accessible
to addon developers). The savvy user may be able to create an addon
to, essentially, extend the set of Kodi operations at their disposal
beyond the set provided by the outward-facing API. With de-Kodi’s
API addon, discussed in Section 4.1, we leverage both of these API
hooks to maximize de-Kodi’s ability to control Kodi.

3.2 Challenges

Visual dependent interaction: Although Kodi’s API allows some
automation, Kodi largely relies on visual information and user input
to operate. This complicates crawling operations since: 1) some
visual data is inaccessible to the software—menu text and on screen
notifications are often not exposed through any built-in Kodi API
hooks—and 2) even when this data is accessible, it can be hard for
automated software to understand and react accordingly. For clarity,
consider the following example. Suppose an add-on currently being
crawled raises a pop-up dialog in response to the first time it is
launched. This pop-up may appear at some random or inconvenient
time; perhaps while the crawler is in the midst of navigating a menu.
While, to a human, this is trivial—simply respond accordingly to the
text in the dialog—this would be devastating to the naïve crawler, as
focus is silently and unexpectedly shifted into an unknown state.

Lenient Addon Implementation Requirements: Kodi does offer
some guidelines for add-on structure, implementation, and metadata,
but adherence to many of these guidelines is arbitrary and generally
unenforced. This renders automated attempts to install, navigate, or
analyze addons to be nontrivial.

Decentralized nature: Although there are many community main-
tained repositories, there is no single “app-store-like” database from
which one can reliably obtain a comprehensive list of all Kodi add-
ons. Therefore, crawling the Kodi ecosystem implies first discover-
ing it. Further, the size of Kodi’s ecosystem is unknown, and any
attempt to explore it must take into account the potentially large size
of the space.

Malicious add-ons: Previous work has established the (realized)
potential for Kodi add-ons to carry dangerous malware. Kodi addons
are generally unrestricted from accessing content located “outside”
of Kodi’s explicit jurisdiction (i.e., scripts are not isolated from
arbitrary local or remote files). It follows that we need to ensure
any potential threats are sufficiently isolated to protect both our lab
resources as well as the correctness of our crawl from harm.

4 DE-KODI SYSTEM OVERVIEW
This section presents de-Kodi, the system we have developed to
explore the Kodi ecosystem. We first present the detail of de-Kodi’s

key components, namely the crawler and source finder. Then, we
describe the overall working flow of de-Kodi.

4.1 Crawler
The crawler is the core component of de-Kodi. At a high level,
its goal is to take an addon as an input and crawl it, i.e., install it
on a Kodi instance and navigate through its functionalities while
recording things like its structure, network traffic, etc.

Figure 2a shows a high level overview of de-Kodi’s crawler. A key
observation is that the crawler relies on Docker’s technology. The
reasons behind this choice are twofold. First, it is a convenient tool
to isolate Kodi instances without allowing debris, e.g., code/libraries
from previous addon installations or potential malware. Second, it
allows de-Kodi to inherit Docker’s scalability property.

Observe, in the aforementioned figure, that portions of de-Kodi’s
crawler run directly on the host machine, borrowing Docker termi-
nology, while others operate from inside a Docker container [1]
(on the the figure’s right-hand side). In the following, we explain
each sub-component of de-Kodi’s crawler in detail distinguishing
between its host and container component.

4.1.1 Host. We here describe the crawler’s components which run
directly on the machine without any OS virtualization (via Docker).

Crawl Manager – This a Python script whose goal is to “manage”
a crawl. At a high level, this implies 1) launching a Docker container
equipped with Kodi and additional software; 2) launching Kodi and
necessary support software, such as TSTAT, 3) managing high level
crawl operations, such as addon installations, and 4) collecting both
state data and experiment results from the crawl.

Mitmproxy Much of Kodi’s traffic is encrypted, so we use the
Mitmproxy [10] (a “man in the middle” proxy server) to expose the
contents of such traffic. We run the Mitmproxy at the host, instead
of one instance per Docker container, since it minimizes the waste
of resources (CPU and memory) and, by definition, the host has full
visibility into the traffic originated by each container. Note that this
requires installing Mitmproxy’s root/CA Certificate in our containers
to ensure proper functioning of Kodi. While this approach does not
work in presence of pinned certificates, we found no evidence of this
technology currently being used in the Kodi ecosystem.

4.1.2 Container. The crawler’s container runs a Docker image
derived from an Ubuntu 16.04 image, primed with: 1) Kodi (vrs
18.0), 2) de-Kodi’s software that runs inside the container (see the
right-hand side of Figure 2a), and 3) the zip file of at least one Kodi
addon to be tested. Kodi runs inside the container headlessly via a
virtual screen (Xvfb [15]). In the following, we describe in detail
de-Kodi’s software that runs inside the container.

API addon – Although Kodi provides several API hooks, many
“advanced” operations (e.g., adding a new data source and navigating
and interpreting complex menus) require a human user, actively
looking at the screen for visual feedback as they make decisions. De-
Kodi’s API addon is a service—meaning it starts automatically when
Kodi is launched—that extends Kodi’s API to be more automation
friendly. The API addon runs an RPC server which receives crawling
instructions, e.g., navigate to this menu, from its crawl manager.



WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Warrior et al.

(a) Crawler. (b) Crawling system.

Figure 2: A visual overview of the de-Kodi system. Figure 2a shows the structure of an individual crawler. The crawlers in 2b are
instances of the crawler shown in 2a, but in the case of 2b, we use one instance of mitmproxy per machine to capture traffic from all
crawlers.

We determined, through manual experimentation, how the API
addon can strategically react to the diverse scenarios that vary un-
predictably with each add-on (see Section 3.2), often acting with
drastically incomplete information at its disposal. Accordingly, the
API add-on is tasked to monitor Kodi’s state and notice when it
deviates from its expected path, e.g., clicking a menu entry should
open either a new menu or some playable items like a video. In case
such deviation is detected, the API add-on attempts an intelligent
“guess” at how to return to the expected path, e.g., close a dialog by
accepting a potential warning. This is often a guess as many dialogs
contain text that is only visually accessible—for our crawler, lacking
eyes, such context is out of reach.

Helper Scripts We refer to Python scripts, bash scripts, and other
Docker environment altering files we have placed within the Docker
image, but outside of Kodi, as “helper scripts”. Helper scripts serve
to enhance de-Kodi’s visibility into Kodi’s interactions with its en-
vironment. The specific purposes of each helper script vary greatly,
ranging from restarting Kodi upon getting stuck to retrieving the
URLs of playable addon content.

TSTAT [14]– TSTAT is a tool providing detailed, per-flow, statistical
analysis of TCP traffic. We chose to use TSTAT to gain high level
insights into the nature of traffic generated by Kodi addons. De-
Kodi’s copy of TSTAT is configured to log all DNS queries/answers,
and HTTP requests/responses (this often includes a domain name
and file name if unencrypted), and general connection statistics for
all observed TCP and UDP traffic.

4.2 Source Finder
The underlying assumption for de-Kodi’s crawler is that addons
are available to be tested. This is true for Kodi’s official repository,
whose addons can easily be installed from any Kodi instance. This
assumption does not hold for the larger set of unofficial Kodi addons
which are scattered around the Web. This motivates our need to build
a source finder tool.

Due to the lack of a centralized Kodi addons aggregator, avid
Kodi users are forced to socialize to exchange add-ons and sources.

We have identified three main places to search for Kodi addons
on the Web: 1) LazyKodi, a well-known and actively maintained
Kodi add-on source which aggregates collections of add-on reposi-
tories and add-ons into a convenient, single location [8], 2) Reddit,
a large online social platform with many publicly accessible com-
munities [12], and 3) GitHub, a large online software development
platform often used for hosting, maintaining, and distributing open
source code [6]. For the remainder of this paper, we refer to these
three entities as our “search seeds” or “seeds”. In Section 7.1.2, we
leverage the apparent distribution of popularity across add-ons to
assess the effectiveness of our seeds in terms of coverage.

As LazyKodi is itself designed to be a Kodi source, pointing
directly to remotely stored addon zip files, de-Kodi’s source finder
browses LazyKodi using a special crawler instance, acting as its
crawl manager and guiding the crawl across a source menu (corre-
sponding to LazyKodi) as opposed to an addon menu. Note that it
is also possible to crawl LazyKodi using an ordinary web crawler,
given that a Kodi User-Agent is used.

For our other seeds, we built a simple Web crawler which looks
for Kodi-related terms (e.g., Kodi, XBMC, etc) on both GitHub and
Reddit. These links are expected to point either directly to Kodi
addons or collections of addons (such collections are often utilized
to remotely store the addons pointed to by Kodi repository addons).
The source finder attempts to filter GitHub and Reddit results to
exclude false positive links—specifically, URLs that point to non-
Kodi content.

It is also worth noting that discovering redundant copies of an
add-on is common and difficult to avoid: popular addons may appear
in many repositories. On top of this, outmoded and defunct addon
versions can persist online, often remaining retrievable despite the
release of newer versions. We mitigate the impact of this redundancy
by 1) identifying “already crawled” addons by their addon ID and
2) always opting to re-crawl an already crawled addon if a newer
version is found.



de-Kodi WWW ’20, April 20–24, 2020, Taipei, Taiwan

4.3 System Workflow
In this subsection, we document the relationships between the afore-
mentioned components of de-Kodi and describe de-Kodi’s overar-
ching control flow and structure, which is depicted in Figure 2b.
First, we start a global controller which utilizes previously obtained
outputs of a source finder to actively discover addons. Next, we start
some number of local controllers which run several instances of
the crawler. The global controller serves as a centralized point of
contact for all local controllers , which periodically query the global
controller for overall crawl state information (for example, “Does
this addon need to be crawled, or has it already been crawled?”)
and to provide the global controller with updates concerning an
ongoing or recently completed crawl (for example, “this addon was
successfully installed, but no playable content was identified”). The
following procedure then occurs repeatedly:

(1) A local controller queries the global controller which replies
with a link, or a URL obtained by the source finder via a seed.
The local controller then downloads the resources pointed to by
the provided link and formally verifies that they contain either an
addon or a collection of addons. Specifically, the local controller
looks for addon.xml files and inspects them to ensure that they are
formatted correctly. From a properly formatted addon.xml file,
a local controller extracts, at a minimum, the addon id, the list of
Kodi features extended by the addon (which we refer to as the addon
“type” — note it is possible for an addon to have multiple types), and
the addon’s version number. Often additional details are provided,
which the local controller will also capture when present. The local
controller treats failure to capture any of the required pieces of
information about an addon from its required addon.xml file as
an indication that the downloaded material is not an addon. If no
addons are verified from the current link, the local controller repeats
this step.

(2) If addons were found in the previous step, the local controller
communicates the set of identified addons and their respective data
to the global controller. From this set, the global controller removes
addons which have been already successfully crawled. The resulting
subset of addons is then returned to the local controller which ensures
they are packaged in zip archives. Next, it creates a Docker image
which contains, in addition to default de-Kodi’s container code, the
zip files of the addons to be crawled next. If no addons were returned,
the local controller returns to the first step.

(3) If addons to crawl were obtained in the previous step, the local
controller launches up to n crawlers, where n is the maximum num-
ber of crawlers the local controller has been configured to allow in
a crawl session. Each crawler is assigned exactly one addon from
the set to be crawled. As detailed in subsection 4.1, the crawler
then launches a Docker container using the recently created Docker
image, attempts to install the addon under test, and finally attempts
to find playable media (if appropriate for the addon’s determined
type). We test discovered media URLs for reachability, geolocalize
their respective IPs, and attempt to obtain corresponding video infor-
mation using ffprobe [4]. Throughout the crawl, the local controller
communicates its progress to the global controller, e.g., whether an
addon installed successfully or not.

(4) When a crawler completes the crawl of its assigned addon (either
from running out of menu items to browse or by reaching a pre-
configured timeout capping the amount of time spent on each addon),
the local controller closes all of that crawler’s active materials (e.g.,
the Kodi instance, the Docker session, temporary state information,
etc). When the number of active crawlers drops below n, the local
controller launches new crawlers if there are remaining addons in
the current addon set to be crawled.

In some cases, an installed add-on may itself be a repository, point-
ing to many other potentially new add-ons to test. In such a scenario,
the crawler communicates newly discovered addons to its local con-
troller. The local controller then, before closing the crawler, creates
a new container image so that the newly discovered addons can be
crawled. After obtaining permission from the global controller, the
local controller then appends these addons (or some subset of these
addons, depending on the global controller’s response) to its current
set to be crawled.

(5) Once the remaining number of addons to be crawled in its current
set drops to zero, the local controller repeats the cycle, querying the
global controller again to obtain a new link.

5 DEKODI BENCHMARKING
De-Kodi aims at being sufficiently lightweight for use on commodity
hardware and readily scalable for arbitrarily large snapshots of the
Kodi ecosystem. To this end, de-Kodi was designed to be easily
parallelizable, both in terms of Docker instances and number of
machines where it can run. We setup three machines3 at a university
campus connected to the Internet via a shared Gigabit connection
(both in download and upload). Next, we instrument each machine
to run de-Kodi for 30 minutes while crawling the same set of addons.
Note that in a real crawl, each machine would focus on a different
set of addons, but the goal here is to compare their performance
while operating on the same workload. We repeat each crawl 20
times while increasing the number of Docker instances (NDocker )
used per machine from 1 to 20. Kodi’s default addon repo was used
for this benchmark.

Figure 3a shows the number of successfully crawled Kodi ad-
dons as a function of the number of Docker instances used and the
machine where the crawler ran. When NDocker ≤ 10, the num-
ber of crawled addons grows linearly (between 10 and 100 ad-
dons) and no major difference is observable across machines. When
NDocker > 10, we start observing a sublinear growth in the number
of crawled addons and more “noise” in the results. This suggests
that, eventually, the overhead of running more Docker instances on
a single machine does not pay off in term of crawling “speed”.

To further understand the previous result, we investigate the CPU
utilization during the above benchmarking. Figure 3b shows the me-
dian CPU utilization as a function of the number of Docker instances
and machine used. Error-bars relate to 25th and 75th percentiles.
Note that the CPU utilization is indeed a distribution since we sam-
ple it every 5 seconds during the benchmarking. The trend mimics
the one observed above, i.e., linear increase followed by a saturation
as we approach exhaustion of available CPU. It can be observed how

3Two machines mount an Intel i5-4590 (3.30GHz, quadcore); one machine mounts
an Intel Xeon E5-1620 (3.50GHz, quadcore). All machines are equipped with 8GB of
RAM.



WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Warrior et al.

(a) Number of installed addons. (b) CPU utilization. (c) de-Kodi primitives benchmarking.

Figure 3: de-Kodi benchmarking ; NDocker = [1 : 20] ; Crawling-duration: 30 minutes.

the distance between percentiles becomes more tight as NDocker
increases. This implies that the machines are under higher CPU
utilization for a longer time as the overall load increases (higher
NDocker ). The figure shows an overall lower CPU utilization on the
(slightly) more powerful machine (xeon-e5) which saturates at 80%
versus 90-95% for the other machines.

To understand the latter results, we benchmark low level de-
Kodi “primitives”, i.e., functions like “install_addon” or “run_addon”
which are composed together to enable crawling. Figure 3c shows
the average duration of key de-Kodi primitives as a function of
NDocker . These results refer to one of the machines, but they are
representative of all machines. The figure shows how most de-Kodi
primitives are not impacted by NDocker , i.e., their durations are
limited by Kodi’s implementation-induced constraints rather than
the machine resources. The primitive “install_addon” is the only
one impacted by the machine resources. This happens because this
primitive is more complex and requires network operations (to pull
the addon), and CPU usage (to perform its installation). However,
this operation only constitutes a small fraction of de-Kodi operations
which are instead dominated by atomic or constant time operations.

No significant difference was instead reported in term of memory
consumption. Across the machines, de-Kodi requires a minimum of
500MB (NDocker = 1) and a maximum of 4GB (NDocker = 20).
Based on these empirical results, we set for the crawler a conser-
vative NDocker = 8 which should allow us to crawl up to 11,000
addons per day while not overloading the test machines. Note that,
in practice, the rate at which distinct addons are covered will decline
in response to redundant discoveries (if an older addon version is
found first), crawl failures (discussed in Section 6.2), and lowered
performanced induced by poorly coded addons.

6 DATASET COLLECTION AND VALIDATION
6.1 Dataset Collection
We deploy de-Kodi across the three machines used for benchmarking,
enabling up to eight concurrent Docker instances per machine, which
offers high utilization of the available resources without a constant
overload. The more powerful machine is instrumented to act both as
a crawl manager and a source finder (see Section 4). We then crawl
Kodi over the course of 5 days in October 2019.

Total Distinct Installed
Search seed links 1,769 -

Total add-ons 9,146 5,265
Media add-ons 5,435 3,191

Repository add-ons 1,212 779
kodi.tv add-ons 1,008 988

XBMC banned add-ons 172 109
SafeBrowsing flagged add-ons 4 4

Ad containing add-ons 11 11
IP banned add-ons 105 105

Add-ons with media URLs discovered 423 423
Media URLs 6,117 -

Media domains 885 -
Media second-level domains 517 -
Addon zip hosting domains 116 -

Table 1: Crawl summary. Missing fields are “inapplicable”.

Table 1 gives, to the best of our knowledge, the first high level
overview of today’s Kodi ecosystem. The first column shows the total
and unique number of discovered entities, e.g., addons and media
pointing URLs. The second column, when applicable, shows the
subset of entities that properly installed on the most recent version of
Kodi running alongside de-Kodi. Remember that the source finder is
instrumented with the three source seeds introduced in Section 4.2:
LaziKodi, Reddit, and GitHub. Together, the search seeds yielded
1,769 links to potential Kodi addon sources. In addition, we seed de-
Kodi with addons from Kodi’s official repository: kodi.tv. Using
this repository and the aforementioned sources, de-Kodi ultimately
discovered 9,146 distinct addons, including 1,008 “kodi.tv” addons,
as well as 172 “banned” addons, i.e., addons associated with illicit
activity and formally denounced by the XBMC Foundation [25]. The
crawl discovered 5,435 “pluginsources“ addons, i.e., potential media
yielding addons, of which only 423 yielded at least one pointer to
streamable content. This number is a potential lower bound since
navigating Kodi addons is hard and time consuming, and was not the
main goal of this crawl. Nevertheless, the crawl yielded 6,117 URLs
pointing to audio/video content, spanning 885 fully qualified domain
names and 517 (1,147) unique second-level domains (SLDs).



de-Kodi WWW ’20, April 20–24, 2020, Taipei, Taiwan

Figure 4: UpSet plot of addons directly found across search
seeds. Each bar’s respective seeds are marked with a black dot.

6.2 Validation
We can describe the goals of de-Kodi’s functionality in terms of
three chief concerns: addon discovery, addon installation, and media
finding. We assess de-Kodi’s current abilities with regard to each of
these goals below.

6.2.1 Addon Discovery. Any attempt to crawl a large ecosys-
tem such as Kodi leans heavily on the assumption that one has a
means of traversing the space to be crawled—in the case of Kodi,
the primary space to cover is Kodi’s large and decentralized library
of addons. Lacking a global view of the set of addons comprising
Kodi’s ecosystem renders this challenge nontrivial. Therefore, under-
standing the coverage of our search seeds, introduced in Section 4.2
as de-Kodi’s gateway to addon discovery, is essential in assessing
de-Kodi’s crawling capabilities.

Figure 4 quantifies the number of addons/repos discovered di-
rectly, i.e., the first layer from the tree in Figure1, via each search
seed. We treat addons with matching addon IDs as equivalent dis-
coveries. As depicted in the figure, de-Kodi found 4,887 addons
through GitHub—more than half of our total discovered addons4—
593 through Reddit, and 132 through LazyKodi. Twenty four addons
appeared in the search results of all three seeds. The apparent bias
in addon discovery towards the GitHub seed highlights the common
practice of Kodi users to leverage GitHub as a free hosting service
for Kodi repositories. Meanwhile, Figure 4 also draws attention to
the dangers of relying on a single seed. In the case of our crawl,
only 321 of the 593 addons discovered directly through Reddit were
also found in GitHub’s results, meaning 272 addons may have been
missed without seeding Reddit in parallel to GitHub. Despite its
small size, Lazikodi still produces a handful of addons which are
not found elsewhere. Because of the popularity of the three above
services, we expect potential additional search seeds to still provide
some benefit but extremely marginal. Nevertheless. De-Kodi’s de-
sign allows for an arbitrarily large set of search seeds to be utilized
in future deployments.

4The remainder half of discovered addons lie in the successive layers of the tree in
Figure1.

Aug-2011
Aug-2013

Aug-2015
Aug-2017

Aug-2019

Last Modified Date

0

20

40

60

80

100

Pe
rc

en
ta

ge

Cumulative Failed Addons
Failed Addons

Figure 5: Percentage of failed addons as a function of their stal-
eness (gray barplot) as well as the cumulative percentage of
failed addons over time (red curve).

6.2.2 Addon Installation. Table 1 (right column) suggests a non-
negligible amount of addons are failing to install: of the 9,146 addons
discovered and tested by de-Kodi, 3,881 addons’ crawls failed to
make it beyond the installation step. The first intuition beyond such
“failed-to-install” addons is their staleness. As a byproduct of Kodi’s
own long lifespan, many addons are quite old and have multiple
release versions from different points in time. Kodi itself is now on
version 18 as of the time of this writing. Therefore, it is very possi-
ble that old addons suffer from compatibility issues with the latest
version of Kodi. To see if any installation failures are attributable
to staleness, we obtain, for each addon, the most recently modified
date—either the explicit “date modified” value returned in HTTP
headers when downloading the addon’s zip file, or, in the case of
github.com hosted addons, the date of the most recent commit
to the git repository from which the addon was obtained. In this
fashion, we were able to obtain modification dates for 6,261 out of
the total 8,485 addons we discovered.

Figure 5 shows the percentage of failed addons as a function of
their staleness (gray barplot), as well as the cumulative percentage
of failed addons over time (red curve). If we focus on addons last
modified before 2014, the figure shows failure rates between 40 and
90%. This ratio drops to 20%, on average, when we focus to the last
couple of years. This result confirms our intuition that older addons
are more prune to fail, likely due to incompatibility issues rather
than limitations of de-Kodi. The figure also shows (red curve) that
these addons constitute about 50% of total “failed-to-install” addons,
i.e., about 1,900 addons which are more than two years old.

To further understand the root causes beyond installation fail-
ures, we compare each failed addon’s dependencies (obtained via
the addon’s addon.xml file) with the set of addons accessible to
the addon’s Docker container at the time of installation. We iden-
tified 949 addons whose failed installations are attributed directly
to missing required dependencies. Next, we leverage the Tesseract
OCR engine [13] to extract text from screenshots of Kodi taken
by de-Kodi near the time of each installation’s failure. Our OCR



WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Warrior et al.

analysis revealed an extra 103 addons with additional dependency
related issues; specifically, Kodi entered a state asking the user for
permission to download additional addons in order to install the
addon or feature of interest. Although not shown due to space limi-
tations, 70% of these combined 1,052 addons date to no more than
two years back. This further strengthens our above incompatibility
claim: very stale addons are so disconnected with current Kodi APIs
that they even fail using the platform to correctly report errors.

Across these 1,052 addons, the unique set of missing dependen-
cies was only 334, and only 35 of said dependencies remained undis-
covered by de-Kodi by the end of our crawl. It is thus possible to
improve de-Kodi by retroactively addressing missing dependencies
upon discovery. This has potential to increase the scope of de-Kodi’s
overall coverage, e.g., when failing to respond to a dialog asking
permission to install some dependencies, as well as to offer a use-
ful service to Kodi users, e.g., when an addon lacks an important
dependency.

6.2.3 Media Finding. Once an addon is installed, de-Kodi at-
tempts to find playable media through the addon. An addon typed
as “xbmc.python.pluginsource” (according to its addon.xml file)
can contain music, videos, pictures, or some executable application.
Throughout this paper, we refer to such addons as media addons.
When de-Kodi encounters a media addon, it attempts to browse
that addon until it finds videos or music. It is first worth noting
that the current version of de-Kodi is not capable of identifying
when pictures or executables are opened through the addon. If an
addon does not provide music or video, it would appear that de-Kodi
failed to find content that should not be expected to exist. Additional
metadata provided by an addon’s addon.xml data often provides
this information. Of the 5,435 media addons discovered by de-Kodi,
4,123 claimed to provide video, 356 claimed to provide music, and
1,046 addons made no claims regarding video or music. Note that
the sets providing music and video are overlapping.

Beyond this, the possibilities regarding media exploration fail-
ures are broad. From manual inspection, we observed that many
addons require subscriptions to third party downloading and stream-
ing services such as Real-Debrid [11]. Others may be attempting to
dynamically pull content lists from defunct web resources. While we
do not attempt to provide or test for an exhaustive list of such scenar-
ios, we have designed de-Kodi to be easily extendable to handle new
interaction requirements. Some addons point to content not available
in the region where this experiment was performed. In the context
of this paper, all media content identified by de-Kodi was freely
accessible to de-Kodi, presenting no required sign-in, payment, or
otherwise complex barrier.

7 KODI ECOSYSTEM ANALYSIS
This section analyzes the Kodi ecosystem using the data discussed
in Section 6. As a reminder, we mostly focus on video addons, i.e.,
addons which provide an interface to access to remote video content,
since it is, by large, today’s most popular activity on Kodi.

7.1 Addons
7.1.1 Classification. The previous section has offered a classifi-
cation of addons as “kodi.tv” or “XBMC banned”, with respect to
the indication from the Kodi team. This classification only applies

Figure 6: UpSet plot of number of add-ons (y axis) with each
tag or combination of tags. Each bar’s corresponding tags are
marked with a black dot. The bar with no dots corresponds to
untagged add-ons.

to 14% of the Kodi ecosystem revealed by de-Kodi and offers no
indication on “how” it was obtained. We here “tag” addons based
on “suspicious” behaviors (ads injection, tracking, and potential
relationship to malware distribution) which are very much rumored
in the Web community.

Ads & Tracking – In order to identify tracking and ad traffic, we
match our traffic against EasyList and EasyPrivacy (both maintained
by [3]), state of the art lists of advertisement and tracking URLs, used
by most popular adbockers. We identify 5,247 add-ons that trigger
EasyList (advertisement) and 141 add-ons that trigger EasyPrivacy
(tracking).

Malware – We investigate potentially malware distributing addons
by matching the URLs they contacted against Google Safe Browsing
hash, which matches URLs against current known threats and mal-
ware [7]. Note that Google’s Safe Browsing hashes malicious URLs
generally encountered via web browsing and may not necessarily
address threats that operate outside of that space, such as botnets.
The number of add-ons triggering the Safe Browsing hash is plotted
in Figure 6 as “S.B. flag”. To increase coverage, we also compare
each observed IP against FireHOL, an automatically updated ag-
gregator of several actively maintained IP banlists [5], labeled in
Figure 6 as “flagged IPs”. We found 13 add-ons to serve URLs which
Google SafeBrowsing labels as “social engineering” threats, and 131
add-ons to access domains resolving to potentially malicious IPs.

Tag Overlap – It is possible for an individual add-on to meet the cri-
teria for multiple tags. Figure 6, formatted as an UpSet plot, shows
the extent of overlap between the add-on sets of each aforemen-
tioned tag. All shown tag combinations yielded at least one add-on.
From the figure, the stark difference between the behavior of add-
ons banned by the Kodi Team and the add-ons endorsed by the
Kodi Team becomes apparent. The add-ons available through the
repository distributed with Kodi — labeled “kodi.tv” in Figure 6 —
overlap only with two flagged IPs. Conversely, the banned add-on
set overlaps with all four tags associated with suspicious behavior:
tracking, Safe Browsing threats, advertisements, and flagged IPs.
This supports Kodi Team’s claim that their endorsed add-ons behave
in a generally legitimate fashion.



de-Kodi WWW ’20, April 20–24, 2020, Taipei, Taiwan

Add-on Rank kodi.tv ban ads track flagged S.B.
Exodus 60.7K ! ! !

Youtube 28,200 !

PlaylistLoader 19,200
Radio_de 19,100 !

Phstreams 13,500 !

F4mTester 13,100 !

ZemTV-shani 12,500 !

SportsDevil 7,450 ! ! ! ! !

Hdtrailers_net 7,130 !

Polishtv.live 5,410

Table 2: Top 10 content containing add-ons.

(a) Media containing add-ons.

(b) Repository add-ons.

Figure 7: CDFs of popularity rank.

7.1.2 Popularity. The previous analysis suggests that the Kodi
ecosystem is mostly composed by “safe” addons, i.e., addons not
showing any evident suspicious behavior like tracking or contacting
some flagged IPs. However, this does not imply that Kodi users
mostly install and use such safe addons. We are thus interested in
investigating addons popularity, both as a general research question
and to estimate the level of exposure to potentially unsafe addons.

For this measurement, we use Microsoft Azure, which provides
a web search API powered by Bing [9]. Bing was selected since
no other major search engine provides the same functionality. We
estimate addon popularity by counting the number of web search
results appearing when searching for an exact match of the addon
ID. To reduce potential for false positives, we also require the ap-
pearance of either “xbmc” or “kodi” on all web pages contributing
to the addon’s result tally. It has to be noted that this approach is an
approximation of add-ons popularity, whose ground truth can only
be collected with global knowledge of all Kodi users. In our future

work, we plan to release a Kodi addon which will help users detect
or avoid potentially unsafe addons while opting-in to anonymously
report the list of addons they have installed. This approach will help
us further corroborate on Kodi add-on popularity.

While Kodi offers a range of addon types, we opt to focus our
assessment of popularity on media addons (video, music, or images)
and repository addons (collection of addons). Our reasoning for this
is threefold. First, most non-media addons only exist to provide sup-
port to media addons, e.g., content metadata scraping and cosmetic
changes to Kodi’s GUI. Second, through manual exploration, we ob-
served that repository addons are often touted an ideal starting place
for Kodi users, as they can make the installation of all other addons
convenient. Lastly, building upon the second point, one’s choice of
repository addons is likely illustrative of one’s intended use of Kodi.
XBMC banned repositories, for example, often earn their “banned”
status for referencing other known illicit addons (e.g., addons en-
gaging in piracy and other nefarious activity). In general, our choice
to narrow the scope of our popularity measurement serves to avoid
potential noise added by addons unlikely to be directly searched for
by real Kodi users.

Figure 7a shows the Cumulative Distribution Function (CDF) of
add-ons popularity rank (Bing search ranking) as a function of their
classification tag. Overall, the figure shows very skewed distributions
with the majority (70-90%) of addons having low popularity ranks
(∼ 200), and the remaining addons having ranks up to two orders
of magnitude higher. When focusing on the tail of the distributions,
we further observe that XBMC banned and tracking addons are one
to two orders of magnitude more popular than other addons types.
A similar trend appears also in Figure 7b, which shows the CDF
of repositories popularity. The figure further shows that the most
popular repositories rank two orders of magnitude higher than the
most popular media addons. This analysis indicates that a “typical”
Kodi user (i.e., relying on a search engine to customize Kodi), has
a higher probability to stumble upon a particular repository than a
given addon.

The ranks and tags of the top 10 most popular media add-ons—
add-ons where audio or video streaming URLs were found—are
shown in Table 2. The highest ranking media add-on is Exodus,
which made headlines in 2017 for being used as a botnet. While it
is possible that news reports concerning the Exodus add-on botnet
scandal have amplified its popularity rank, that does not necessarily
account for the fact that its rank exceeds the next highest ranking
media add-on (YouTube) by more than two-fold.

Beyond Exodus, we also see that four of the top 10 media contain-
ing add-ons were banned from Kodi’s official forum. Two add-ons
(PlaylistLoader and f4mTester) although containing content of their
own, serve primarily as dependencies for other add-ons, meaning
add-ons with suspicious tags make up half of the top video add-ons.
Further, three of the remaining six add-ons are served by Kodi’s
kodi.tv repository, meaning four of the five most popular media
containing add-ons not actively endorsed by Kodi are banned by the
Kodi Team and, as their tags imply, likely engaging in illicit activity.

Finally, we pause to consider the implications of observed addon
popularity with respect to de-Kodi. The long-tailed distribution of
addon popularity suggests that, in general, most Kodi users may be
turning to the same, small handful of particularly popular addons (the
top 1–10% in terms of popularity), which we will loosely refer to as



WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Warrior et al.

(a) CDF of addon types per repository. (b) Resource obscurity. (c) Top domains.

Figure 8
“tier 1” addons. The majority of addons—most of which are orders
of magnitude less popular than tier 1—likely each individually either
serve a small minority of users or otherwise are obtained through
tier 1 repositories. By this logic, it is fair to reason that the marginal
significance of each additional addon potentially missed in de-Kodi’s
coverage decreases rapidly; the harder the addon is for de-Kodi to
find, the less likely, we postulate, it is for a given Kodi user to
stumble upon the same addon.

7.1.3 Shared Distribution. Are some addons “guilty by associ-
ation”? While slanderous to label the Kodi community at large as
nefarious actors, what may be more productive is an investigation
of smaller ecosystems and distribution channels that exist within
factions of the Kodi community. Specifically, in this subsection, we
aim to quantify the intuition that addons with similar purposes—for
example, piracy, malware, etc—will naturally congregate together.
This serves two vital functions. First, it provides the unsavvy Kodi
user with empirically backed reasoning to help them in deciding
what addons to download or install. In addition, better understanding
of how addons pool together according to their nature may advance
future work concerning threat detection and online content analysis.

For this analysis, we refer to five of our addon tags—S.B flags,
advertisement, IP ban, and XBMC ban—as undesirable flags. For
each line in Figure 8a, we plot the number of undesirably flagged
addons distributed through a repository where at least one addon of
the line’s indicated tag was observed. In other words, if we see a
repository has an addon tagged for XBMC, we want to know how
many undesirably flagged addons in general are provided by that
repository. The figure shows that any one undesirably flagged addon
in a repository has a very low probability of being the only addon.
In more than 85% of cases, undesirable addon container repositories
and sources contained at least two such addons. Most notably, the
presence of a single SafeBrowsing flag is a strong indicator of 10 or
more undesirably flagged addons cohabiting the same repository.

7.2 Content Providers
We here investigate the providers behind Kodi content, i.e., the
domains where Kodi content (addons, repositories, and media) is
hosted. We obtain, for each add-on, the set of domains it accesses.
Next, we use Cisco’s Umbrella top 1 million [2]—which ranks do-
main names by the frequency with which the Cisco Umbrella global
network receives queries for each name—to rank the domains con-
tacted by Kodi. Figure 8b plots the median Umbrella rank per addon.

A clear pattern emerges, dividing our add-on tags into two behav-
ioral groups. We see that, in general, add-ons tagged for flagged IPs,
Safe Browsing threats, and advertisements all tend towards using
very unpopular domain names. Much of the fourth quartile (beyond
the 75th percentile) of these add-ons use domains so obscure that
their medians fall beyond the least popular domains ranked by the
Umbrella top 1 million (i.e., their Umbrella rank falls outside of 1
million). We postulate that the providers of the content consumed by
these add-ons place high priority on deliberate obscurity (to avoid
detection of nefarious activity) and low costs (as opposed to using
potentially more expensive, well known infrastructure platforms).

Conversely, Figure 8b shows that only a small fraction of add-ons
with other tags (kodi.tv, XBMC banned, and untagged) have median
domains less popular than the top 1 million. More than 40% of the
add-ons in this latter group of tags have median domain ranks that
fall within the top 10,000. Surprisingly, along this dimension we see
banned add-ons behaving similarly to kodi.tv add-ons, suggesting
they may have comparable or even overlapping infrastructure. To in-
vestigate this, we plot the number of media containing add-ons using
each of the top 10 media serving second level domains (ranked by the
number of media containing add-ons using at least one media URL
from each domain) in Figure 8c. Add-ons tend to have little overlap
in the set of domains hosting their content, as seen in the figure.
However, we see that over 200 add-ons employ “googlevideo.com”,
an alias utilized by YouTube for streaming related network requests.

8 CONCLUSION
This paper introduces the first formal approach to dissecting the
behavior of Kodi, today’s most popular open source entertainment
center. By leveraging features of the Kodi platform itself, we were
able to build de-Kodi, a full-fledge crawling system for the Kodi
ecosystem, spanning thousand of addons and content providers. We
demonstrate tool’s effectively tunable levels of crawl depth, breadth,
and speed, with scalability at the heart of our design, and we make
tool publically available to other researchers for future work.

Using de-Kodi, we discover, install, and test 9,146 unique add-ons
within a matter of days, yielding about 6 thousand URLs pointing
to video content. We characterize such addons with respect to their
potentially suspicious activities, namely tracking, ads and malware
injection. We found that most addons are “safe”, but the most popular
ones tend to engage in suspicious activities.



de-Kodi WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] 2018. Docker. https://www.docker.com/.
[2] 2019. Cisco Umbrella Top 1 million. https://umbrella.cisco.com/blog/2016/12/

14/cisco-umbrella-1-million/.
[3] 2019. EasyList. https://easylist.to/.
[4] 2019. ffprobe Documentation. https://ffmpeg.org/ffprobe.html.
[5] 2019. FireHOL IP Lists. http://iplists.firehol.org/.
[6] 2019. GitHub. https://github.com/.
[7] 2019. Google Safe Browsing. https://safebrowsing.google.com/.
[8] 2019. LazyKodi. http://lazykodi.com/.
[9] 2019. Microsoft Azure. https://azure.microsoft.com/en-us/.

[10] 2019. mitmproxy. https://mitmproxy.org/.
[11] 2019. Real-Debrid. https://real-debrid.com/.
[12] 2019. Reddit. https://www.reddit.com/.
[13] 2019. Tesseract Open Source OCR Engine. https://github.com/tesseract-ocr/

tesseract.
[14] 2019. Tstat - TCP STatistic and Analysis Tool. http://tstat.polito.it/.
[15] 2019. XVFB. https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml.
[16] Andrew Clay. 2011. Blocking, tracking, and monetizing: YouTube copyright

control and the downfall parody. Institute of Network Cultures: Amsterdam.
[17] Yuan Ding, Yuan Du, Yingkai Hu, Zhengye Liu, Luqin Wang, Keith Ross, and

Anindya Ghose. 2011. Broadcast yourself: understanding YouTube uploaders. In
Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference. ACM, 361–370.

[18] Lucas Hilderbrand. 2007. YouTube: Where cultural memory and copyright con-
verge. FILM QUART 61, 1 (2007), 48–57.

[19] Luke Hsiao and Hudson Ayers. 2019. The Price of Free Illegal Live Streaming
Services. CoRR abs/1901.00579 (2019). arXiv:1901.00579 http://arxiv.org/abs/
1901.00579

[20] Damilola Ibosiola, Benjamin Steer, Alvaro Garcia-Recuero, Gianluca Stringhini,
Steve Uhlig, and Gareth Tyson. 2018. Movie Pirates of the Caribbean: Exploring
Illegal Streaming Cyberlockers. In Proc. INTERNATIONAL AAAI CONFERENCE
ON WEB AND SOCIAL MEDIA.

[21] Tobias Lauinger, Kaan Onarlioglu, Abdelberi Chaabane, Engin Kirda, William
Robertson, and Mohamed Ali Kaafar. 2013. Holiday Pictures or Blockbuster
Movies? Insights into Copyright Infringement in User Uploads to One-Click File
Hosters. In Proceedings of the 16th International Symposium on Research in
Attacks, Intrusions, and Defenses - Volume 8145 (RAID 2013). Springer-Verlag
New York, Inc., New York, NY, USA, 369–389. https://doi.org/10.1007/978-3-
642-41284-4_19

[22] Aniket Mahanti, Niklas Carlsson, Martin Arlitt, and Carey Williamson. 2012.
Characterizing cyberlocker traffic flows. In 37th Annual IEEE Conference on
Local Computer Networks. IEEE, 410–418.

[23] Alexios Nikas, Efthimios Alepis, and Constantinos Patsakis. 2018. I know what
you streamed last night: On the security and privacy of streaming. Digital Investi-
gation 25 (2018), 78–89.

[24] Sandvine. 2018. Global Internet Phenomena Spotlight - Kodi.
https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-
phenomena-spotlight-kodi.pdf.

[25] XBMC. 2019. Official:Forum rules/Banned add-ons. https://kodi.wiki/view/
Official:Forum_rules/Banned_add-ons.

https://www.docker.com/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://easylist.to/
https://ffmpeg.org/ffprobe.html
http://iplists.firehol.org/
https://github.com/
https://safebrowsing.google.com/
http://lazykodi.com/
https://azure.microsoft.com/en-us/
https://mitmproxy.org/
https://real-debrid.com/
https://www.reddit.com/
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
http://tstat.polito.it/
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
http://arxiv.org/abs/1901.00579
http://arxiv.org/abs/1901.00579
http://arxiv.org/abs/1901.00579
https://doi.org/10.1007/978-3-642-41284-4_19
https://doi.org/10.1007/978-3-642-41284-4_19
https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf
https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf
https://kodi.wiki/view/Official:Forum_rules/Banned_add-ons
https://kodi.wiki/view/Official:Forum_rules/Banned_add-ons

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Terminology
	3.2 Challenges

	4 de-Kodi System Overview
	4.1 Crawler
	4.2 Source Finder
	4.3 System Workflow

	5 DeKodi Benchmarking
	6 Dataset Collection and Validation
	6.1 Dataset Collection
	6.2 Validation

	7 Kodi Ecosystem Analysis
	7.1 Addons
	7.2 Content Providers

	8 Conclusion
	References

