
Pollution Attacks and Defenses for Internet

Caching Systems ?

Leiwen Deng, Yan Gao, Yan Chen and Aleksandar Kuzmanovic

Northwestern University, Department of EECS

2145 Sheridan Road, Evanston, IL, 60208, USA.

Abstract

Proxy caching servers are widely deployed in today’s Internet. While cooperation
among proxy caches can significantly improve a network’s resilience to denial-of-
service (DoS) attacks, lack of cooperation can transform such servers into viable
DoS targets. In this paper, we investigate a class of pollution attacks that aim to
degrade a proxy’s caching capabilities, either by ruining the cache file locality, or by
inducing false file locality. Using simulations, we propose and evaluate the effects of
pollution attacks both in web and peer-to-peer (p2p) scenarios, and reveal dramatic
variability in resilience to pollution among several cache replacement policies.

We develop efficient methods to detect both false-locality and locality-disruption
attacks, as well as a combination of the two. To achieve high scalability for a large
number of clients/requests without sacrificing the detection accuracy, we leverage
streaming computation techniques, i.e., bloom filters and probabilistic counting.
Evaluation results from large-scale simulations show that these mechanisms are
effective and efficient in detecting and mitigating such attacks. Furthermore, a
Squid-based implementation demonstrates that our protection mechanism forces
the attacker to launch extremely large distributed attacks in order to succeed.

Key words: proxy-cache-targeted, locality-disruption, false-locality

1 Introduction

Caching has proven to be one of the most valuable and widely-applied tech-
niques in computer systems. The idea is simple: the first time a query is run

? A subset of this work appears in the Proceedings of IEEE ICNP 2006 [1].
Email addresses: karldeng@cs.northwestern.edu (Leiwen Deng),

ygao@cs.northwestern.edu (Yan Gao), ychen@cs.northwestern.edu (Yan
Chen), akuzma@cs.northwestern.edu (Aleksandar Kuzmanovic).

Preprint submitted to Computer Networks 14 June 2007

for data, the results are saved in a cache; the next time the query is run
for the same data, the data are retrieved from the cache without going to
higher-latency memory. Because it can significantly enhance overall system
performance, the same idea has been widely applied in the Internet. Instead
of retrieving data from a distant server, the data can be retrieved from a proxy
cache. This decreases the number of requests arriving at servers, reduces the
amount of traffic in the network, and improves the client-perceived latency.

Unfortunately, like other systems in today’s Internet, proxy caches can be used
as efficient tools in the hands of malicious users. In particular, open proxy
caches can invite traffic from malicious clients for various abuse-related ac-
tivities: spamming, bulk data transfers, unauthorized downloading of licensed
content, or for originating malicious outbound requests from the proxy [2].
However, little attention is given to scenarios in which proxy caches, both
opened and closed, themselves can become victims of malicious clients.

In contrast to the thriving Content Distribution Network (CDN) business
(e.g., Akamai [3]), which is based on server-side cooperative caching, such
cooperation is largely nonexistent at the client side. Thus, such proxies are
highly vulnerable to DoS attacks in which the caching mechanism itself can
become the primary target of the attack. This holds not only for widely-
deployed web proxy caches, but also for thriving peer-to-peer (p2p) proxy
caches. [4] shows that with a relatively small cache size, less than 10% of the
total traffic, byte hit rate of P2P system is up to 35%. Recently, ISPs started
caching p2p content at their boundaries [5], as p2p traffic accounts for the
vast majority of the network’s total bandwidth [6].

In this paper, we propose and study a class of pollution attacks targeted
against Internet proxy caches. The attackers’ goal is to severely degrade the
caching service by polluting the cache with unpopular content. Even a sin-
gle cache-miss to a large object can often require a large amount of data to
be fetched from its distant origin server. A larger number of cache misses
can further congest the network access link, particularly when p2p caches
are targeted. Even a moderate degradation of the hit ratio can cause addi-
tional hundreds of TBytes of data to be transferred over an access link on
a daily basis. Long periods of severe service reduction, in which both traffic
load and file download time increase by several orders of magnitude, can on
average degrade service more than classical high-rate DoS attacks are capable
of. Moreover, the proposed attacks can be launched against low-level DNS
servers. In such a scenario, a set of malicious attackers may pollute the lo-
cal DNS server’s cache with unpopular entries, thus significantly reducing the
performance experienced by regular clients.

The proposed pollution attacks pose a challenging problem for the entire In-
ternet community. First, such attacks have stealthy nature: they are capable

2

of degrading overall network performance without flooding network resources.
Second, they possess a dangerous level of indirection: while both clients and
servers are affected by the attack — neither clients nor servers are directly at-
tacked. Third, they pollute the cache with unpopular, rather than bogus files,
making them much harder to detect. Finally, no counter-pollution mechanisms
exist in Internet caches; thus, even simple, brute-force pollution attacks can be
quite successful. Indeed, while some Internet caching systems do apply sim-
ple mechanisms to mitigate the effects of unintentional cache pollution, we
demonstrate that such mechanisms are fundamentally limited in their ability
to thwart systematic, intentional pollution attacks; while being much more
effective, such attacks are much harder to detect.

We propose and analyze two generic classes of attacks: locality-disruption
and false-locality attacks. Locality-disruption attacks continuously generate
requests for new unpopular files, thus ruining the cache file locality. False-
locality attacks repeatedly request the same set of files, thus creating a false
file locality at proxy caches. We conduct an extensive set of simulations, both
with p2p and web workloads. To accurately represent the effects of pollution
attacks, we define a metric, byte damage ratio, which successfully summarizes
multiple statistics in the presence and absence of attacks.

Further, we demonstrate that the cache resilience to pollution attacks funda-
mentally depends on the replacement algorithm deployed. However, we show
that a replacement algorithm alone is not capable of fully protecting the sys-
tem against pollution attacks. In particular, we isolate scenarios in which all
examined replacement algorithms exhibit extreme vulnerability to a subclass
of pollution attacks. The Greedy Dual-Size Frequency (GDSF) algorithm is
vulnerable to a class of low-rate size-targeted locality-disruption attacks. For
example, an aggregate attacker rate that represents approximately 4% of the
total network bandwidth is capable of almost fully degrading the caching ser-
vice. The Least Frequently Used (LFU) algorithm is vulnerable to a class
of false-locality attacks. And the Least Recently Used (LRU) replacement
scheme exhibits a vulnerability to a class of false-locality attacks that exploit
the strong seasonal behavior of the examined Internet content delivery sys-
tems.

The cache pollution attacks are very stealthy because they can be easily mixed
with and regarded as normal clients’ requests. Thus, no existing schemes is
capable of detecting such attacks. We propose two cache pollution detection
mechanisms to detect false-locality and locality-disruption attacks, respec-
tively. Both are based on the inherent features of each attack. For the former,
the key metric is the repeated requests from a relatively small set of clients (at-
tackers) which are essential to keep the false locality of unpopular files. For the
latter, the key metric is the small average duration/life-time of files in cache
and a relatively small number of clients (attackers) who make these requests.

3

These two schemes can be further combined to detect an even more stealthy
combination of false-locality and locality-disruption attacks. Since large ISPs
may have millions of clients and/or millions of cached files, we further lever-
age data streaming computation techniques, bloom filters [7] and probabilistic
counting with stochastic averaging (PCSA) [8,9] to significantly reduce the
amount of state needed to maintain for detection. It not only improves the
detection scalability, but also makes the detection system itself resilient to DoS
attacks. Once any attack is detected, we ignore the requests from attackers
and/or remove cached files with “false locality” for mitigation.

Simulation with large traces (100,000 clients and 100,000 files) show that we
can effectively detect the intrusions unless there is a very large number of
attackers or the attack damage is very limited. The bloom filters and PCSA
dramatically reduce the memory consumption without sacrificing the accuracy.

2 Motivation and Scope

In this section, we present pollution scenarios, attack classes, and targeted
replacement algorithms.

2.1 Pollution-Attack Scenarios

Internet Cache

Customer network
Downloaded traffic

Forward Proxy

Cache

Content
Provider

Cache

Content Server

Client

Reverse Proxy

Requests

Fig. 1. Forward and reverse proxies

In general, there are two types of proxies: forward proxies and reverse proxies
as shown in Figure 1. The former is the most common proxy: it performs
as an intermediate server that sits between the client and the origin server.
The latter appears to the client just like an ordinary web server. It is usually
located close to a back-end server behind a firewall and provides Internet
users access to such a server. Many popular websites nowadays rely heavily on
reverse proxies when provisioning their back-end servers. Although polluting
a reverse proxy cache tends to be technically more difficult than polluting a

4

forward proxy, polluting reverse proxies is highly feasible. We will focus on the
forward proxies in this paper though the pollution techniques proposed apply
well to both. In Section 4, we will discuss their differences and implications.

Internet

Cache

Campus network

Downloaded traffic
Requests

(a) Attacking a web cache

Cache

ISP1 ISP2

Attacker
Normal client

(b) Attacking an ISP cache

Fig. 2. Proxy-cache-targeted pollution attacks

Here, we explore proxy-cache-targeted attack scenarios. The first is shown
in Figure 2(a). An attacker can compromise a number of machines on an
institutional or a corporate network and launch malicious requests to pollute
the cache with unpopular content. The result of the attack is a lower hit
ratio for legitimate clients, leading to reduced performance. Even a single
cache-miss to a large file can cause large data transfers from distant origin
servers. In such a scenario, the bottleneck capacity may be reduced by several
orders of magnitude (e.g., from 1 Gbps to less than 1 Mbps), thus dramatically
degrading file-download performance.

A larger number of cache misses can further congest the network access link.
More seriously, a larger-scale deployment of such attacks can cause an uncon-
trolled increase of the Internet traffic volumes and more frequent flash crowds
at servers [10]. For example, a report on NLANR web caches pointed out that
inappropriate settings of Expires and Last-Modified header fields prevent
ordinary caches from effectively dealing with flash crowds [11].

While there is no evidence that proxy-cache-targeted pollution attacks are ac-
tively conducted in the Internet, another scenario is depicted in Figure 2(b). It
is related to the dispute between the music industry and p2p file-sharing net-
works over the copyrighted content distributed on these networks. Recently,
the music industry abandoned purely legal actions [12], and started launching
denial of service attacks against p2p networks [13,14]. At the same time, ISPs
started caching p2p content at their boundaries as p2p traffic accounts for the
vast majority of the network’s total bandwidth [6]. However, caching copies
of pirated files made ISPs accomplices in illegal file trading, at least according
to the music industry views [5]. Given the aggressive behavior that the music
industry demonstrated against p2p file-sharing networks, it would be no sur-
prise if the former started launching cache-targeted pollution attacks against

5

the ISP caches.

Root DNS server

TLD DNS server

Authoritative

DNS server

Local DNS server

End user

Pollution attack

2

1
8

3

4 5

6

7

Fig. 3. Pollution attack against a local DNS server

Another scenario is the potential pollution attack against local (low-level)
DNS servers as shown in figure 3. Such servers resign in each ISP and they are
central to the DNS architecture. A set of malicious attackers may pollute the
local DNS server’s cache with unpopular entries, thus significantly reducing
the performance experienced by regular clients. As shown in the figure, a cache
miss will introduce a series of iterative queries to root, top-level-domain, and
authoritative DNS servers. This adds annoying initial delays to web clients,
significantly degrading their browsing experiences. Moreover, the study from
[15] showed that hit ratios at low-level DNS servers are typically over 80%.
Thus, reducing these ratios can dramatically overload low-level DNS servers,
additionally impacting system’s performance.

There are currently over 87 millions valid DNS entries [16], corresponding
to GBytes of data, while typical cache size of local DNS servers is relatively
small[17]. Even if we adopt the recent ideas to store all DNS entries in the
cache [18], pollution attacks are still feasible. This is because the number of
possible entries to be cached is infinite due to the following two reasons. One
is the use of wildcard – a special record that is setup to resolve any query
that does not match an existing authoritative record in the zone. The other
is the use of negative caching – a server caches the resulting name error when
a queried name does not exist. Thus, cache pollution attacks are possible no
matter how large the system resources are. In this paper, we do not evaluate
pollution attacks against DNS servers, simply because we were unable to find
a representative workload for the DNS traffic. Still, we demonstrate below that
our results are largely independent of the workload, thus generally applicable
to all caching systems, including DNS.

Cooperation among proxies can improve a network’s resilience to DoS at-

6

tacks [19]. However, in the absence of such cooperation, proxy caches them-
selves can become DoS targets. In contrast to the thriving server-side cooper-
ative caching (e.g., Akamai [3]), the client side largely lacks such cooperation.
Despite the initial enthusiasm in developing hierarchical web caching systems
(e.g., [20–23]), the lack of trust among different institutions and companies has
impeded deployment of client-side cooperative caching [24]. Another reason is
the fact that the benefits of such cooperation are quite limited; in particular,
it has been shown that the hit ratio increases only logarithmically (i.e., very
slowly) with the client population [15,25]. Finally, deploying a non-distributed
proxy cache at an ISP edge is much simpler than deploying a proxy network.
Thus, proxy caches are typically isolated, making them particularly vulnerable
to DoS attacks.

2.2 Pollution-Attack Classes

By recognizing generic strategies that the attacker can exploit to pollute a
cache with unpopular content, we characterize pollution attacks into the fol-
lowing categories: (i) locality-disruption and (ii) false-locality attacks.

Locality-disruption attacks aim to degrade cache efficiency by ruining its file
locality. An attacker continuously generates requests for new unpopular files
and disrupts the correlation structure of the original arrival request stream;
this alters the cache contents, decreases the hit ratio experienced by regular
clients, and eventually degrades their performance. For example, robots and
crawlers deployed by search engines have a referencing pattern that can com-
pletely disrupt the locality assumptions and significantly increase the miss
ratio of a server-side cache [26]. We will show below that malicious crawlers
are capable of disrupting the proxy-based caches even more severely.

False-locality attacks aim to degrade the hit ratio experienced by regular
clients by repeatedly requesting the same set of files, thus creating a false
file locality at proxy caches. The key advantage of this attack is the ability to
quickly refresh the polluted files in the cache. For example, consider the LAN
scenario depicted in Figure 2(a). Assume that the LAN link rate is 1 Gbps,
the access link rate is 100 Mbps, and the cache size is 100 GBytes. In such a
scenario, it takes approximately 2-4 hours for malicious clients to populate
the cache with irrelevant content, and only around 10 minutes to fully refresh
the entire polluted content in the cache. 1 Thus, once the attackers manage to
“freeze” the cache, it becomes easier to keep it in such a state.

1 When initially polluting the cache, the attacker is limited by the access link rate.
However, when refreshing the content, it is limited by the local LAN rate, 1 Gbps
in our scenario.

7

Both pollution-attack classes presented above require attackers not only to
generate requests, but also to fully download the requested files. While it may
appear attractive for the attackers to generate “drop connection” attacks, 2

such attacks are not feasible. This is because caching servers (e.g., Squid [27])
buffer no more than 16 kB ahead of what has been seen by the client, and also
evict files that have not been fully downloaded by clients.

2.3 Targeted Replacement Algorithms

A replacement algorithm defines which of the cached files is replaced by a
new one, when a new file is added to a full cache. Below, we present cache-
replacement algorithms widely deployed in the Internet today, whose resilience
to pollution attacks we evaluate later in the paper.

The two most popular caching policies are Least Recently Used (LRU) and
Least Frequently Used (LFU) [28]. LRU evicts the least recently accessed
document first, on the basis the traffic exhibits temporal locality. Intuitively,
the farther in time a document has last been requested, the less likely it will
be requested in the near future. On the other hand, LFU evicts the least
frequently accessed document first, on the basis that a popular document
tends to have a long-term popularity profile.

In addition, we also evaluate the Greedy Dual-Size Frequency (GDSF) replace-
ment policy [27,29,30]. GDSF discriminates against large documents, allowing
for smaller documents to be cached. It also uses a dynamic aging policy at
the same time.

Beyond the fact that all three replacement algorithms are operational in the
current Internet [27,29,30], GDSF policy is of particular interest. This is be-
cause it employs a dynamic aging policy, which addresses the problem of un-
intentional pollution; such pollution arises when old popular objects reside for
a long time in a cache and degrade the hit ratio. For example, pages that are
accessed a large number of times during flash-crowd events may remain in the
cache long after their popularity expires. Below, we explore the performance of
the aging mechanism in presence of intentional pollution attacks. Finally, we
examine the pollution-resilience properties of the three replacement policies
both for web and p2p workloads.

2 In such scenarios, an attacker would drop a connection soon after requesting a
file, thus forcing only the cache server to download the file.

8

3 The Effects of Pollution

We present an extensive set of simulation experiments to explore the key
system factors that influence pollution resilience of Internet caching servers.

3.1 Experimental Methodology

Simulator. We implement a discrete-event simulator for a caching system
with the following capabilities/parameters: (1) support for LFU, LRU, and
GDSF replacement algorithms, (2) variable cache size, (3) multiple DoS be-
haviors, and (4) multiple workloads characterizing behavior of regular clients.
In addition, we simulate the effects of access and local network capacities on
system performance. The access link capacity refers to the link capacity that
is utilized in the case of cache misses, e.g., a link between the two edge routers
depicted in Figure 2(a). The local link capacity refers to the network capacity
“in front of the cache”, e.g., the campus network in Figure 2(a). It is utilized
both in cases of cache hits and misses. Discrepancy between the two capaci-
ties impacts the effectiveness of pollution attacks in a non-trivial way, as we
explain in detail below.

Workloads. We generate p2p workloads by utilizing a model from [6]. Al-
though this model is evaluated by only using file-sharing traffic, it is based
on features (e.g., fetch at most once) common for many other P2P traffic
types (e.g., video, bit torrent). As such, it characterizes P2P traffic in a more
general way. The model captures key parameters of p2p workloads, such as
request rates, number of clients, number of objects, and changes to the set
of clients and objects. In addition, we generate web workloads by applying a
version of the same model and by fitting a set of empirically-extracted dis-
tributions [31]. We also integrate parameters for network address translators
(NAT) and time-of-day effects in our model. By varying model parameters,
we are able to change workload characteristics (e.g., hit ratio, aggregate bit
rate) and to explore how changes to the parameters affect system’s resilience
to pollution attacks. Table 1 summarizes the typical settings of parameters.

Our web workload is generated as follows. Web clients may fetch a popular
page (e.g., Google) thousands of times; this behavior is best modeled by fetch-
repeatedly systems [6]. We generate web object sizes by fitting the empirically-
measured heavy-tailed distribution reported in [31]. While the majority of files
are very short, such that the mean file size is approximately 7kBytes, web files
on the order of GB’s in size are also generated. Clients select objects from
a Zipf distribution in an independent and identically distributed fashion. By
changing the Zipf parameter α, we are capable of controlling the correlation

9

Parameters p2p web

Number of objects 10000 5000000

Average object size 50 MB 10 kB

Number of clients 2000 10000

Aggregate request rate (objects/hour) 180∼900 900k∼4.5M

New object arrival rate (objects/month) 10 n/a

Zipf parameter α 0.95 0.65

Percentage of clients behind NAT boxes 20%

Maximum multiplex ratio of every single NAT IP address 10

Table 1
Model parameters for regular clients

structure of the web request stream. Finally, we model the client request rates
according to a heavy-tailed distribution, which is extracted from a represen-
tative web trace [32,33]. About 85% clients have a request rate lower than
the average rate, yet 1% clients have a request rate 50∼85 times that of the
average. This distribution corresponds to the regular-client behavior.

P2p and multimedia workloads in general are best modeled by fetch-at-most-
once systems [6]. While the underlying popularity of objects in such systems is
still driven by Zipf’s law, the resulting workload does not follow Zipf any longer
due to the fetch-at-most-once effect. 3 We distribute p2p file sizes according to
the empirically-measured distribution reported in [6]; the majority of the files
(approximately 90%) are smaller than 10 MBytes, yet very large files (e.g.,
larger than 100 MBytes) are also fetched. We model the clients’ request rate
according to measurements reported in [34]. The corresponding distribution
has the following characteristics: about 90% clients have a request rate lower
than the average, yet 1% clients have a request rate exceeding 8 × average,
0.1% clients exceeding 36×average and 0.01% clients exceeding 400×average.
However, 50% clients have a request rate lower than 1

40
× average. Finally, by

varying the number of clients and objects in the system, we are capable of
tuning the nominal network load and hit ratio experienced by clients, as we
explain in detail below.

Methodology. Our main goal is to gain basic understanding about the ef-
fectiveness of the proposed cache-targeted pollution attacks. Thus, we focus
on the primary consequences of the attack — the degradation of the hit ra-

3 P2p clients rarely fetch the same object more than once. As a result, the creation
of new objects, and the addition of new clients to the system are the primary
forces that drive multimedia workloads; hence, the corresponing distribution does
not follow Zipf’s law.

10

tio during attacks. Moreover, we explore the aggregate malicious and regular
clients’ request rates as the key system parameters that influence the effects
of pollution attacks.

To summarize multiple statistics in the presence and absence of attacks, we
define the byte damage ratio as the key measure of the effectiveness of the
attack. It is defined as (BHR(n)−BHR(a))/BHR(n), in which BHR(n) and
BHR(a) denote the byte hit ratios of regular clients in the absence/presence
of an attack respectively. When the byte damage ratio is zero, the attack is
completely ineffective; when the byte damage ratio equals one, the caching
service is completely overrun. 4

3.2 Baseline Experiments

We first consider a baseline scenario for two classes of pollution attacks de-
scribed in Section 2.2: the locality-disruption and false-locality attacks. The
majority of our experiments reveal similar trends both for p2p and web work-
loads. Thus, we present p2p results by default, and show web results only
when they indicate different trends. Unless otherwise indicated, the average
aggregate throughput generated by p2p clients is 20 Mbps, the cache size is
set to 100 GBytes, and the Zipf parameter α is set to 0.95. In addition, at-
tackers’ aggregate request rate remains constant over time in all experiments;
however, the per-client request rate is not uniform, and deviates based on the
parameter setting. Table 2 summarizes parameter settings for the attacker.

Parameters p2p web

Number of bogus objects 1k (FL)
100k (LD)

10M (FL)
100M (LD)

Average object size 10 MB 10 kB

Number of clients 1∼100 1∼100

Aggregate request rate (objects/hour) 900∼45k 900k∼45M

Deviation of request rate among clients

Average per−client request rate 0.8

FL - false locality attack, LD - locality disruption attack
Table 2
Model parameters for attacker clients

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

H
it

ra
tio

Attackers’ aggregate request rate (k req/day)

GDSF
LFU
LRU

(a) Locality-disruption attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

H
it

ra
tio

Attackers’ aggregate request rate (k req/day)

GDSF
LFU
LRU

(b) False-locality attack

Fig. 4. Total hit ratio in presence of attacks

3.2.1 Locality-disruption and false-locality attacks

Locality-disruption attackers ruin the cache file-locality by generating mali-
cious requests for new unpopular files. Figure 4(a) depicts the effects of the
attack on the total hit ratio (of both malicious and regular clients) as a function
of the aggregate malicious clients’ request rate. The total hit ratio dramati-
cally degrades in the presence of the attack. For example, when the malicious
request rate changes from 0 to only 10 k req/day, the total hit ratio reduces
significantly; when the malicious request rate is 50 k req/day, the total hit
ratio becomes almost zero. As a point of reference, the aggregate request rate
of regular clients is approximately 250 k req/day. A small percent of malicious
requests (e.g., below 4% of total number of requests) is capable of significantly
degrading the overall hit ratio. This is because the attackers simultaneously
(i) increase the total number of cache misses, and (ii) pollute the cache with
unpopular content. While the degradation of the total hit ratio may appear to
be a reliable attack signature, this is not the case with false-locality attacks.

False-locality attackers request unpopular files from a predetermined list. In
this way, they create a false file-locality at the cache, and consequently degrade
the hit ratio experienced by regular clients. Figure 4(b) depicts the effects of
the attack on the total hit ratio as a function of the aggregate attackers’ request
rate. Contrary to the locality-disruption scenario, the total hit ratio increases
when the attackers’ aggregate request rate increases. Indeed, when the attack-
ers’ request rate is high, they manage to populate the cache with unpopular
content. Consequently, the total number of cache hits increases because the
number of “false” hits increases; at the same time, the number of “true” hits
dramatically decreases, as we indeed demonstrate below. Thus, the total hit
ratio cannot be used as a good indicator that the attack is taking place. For
example, in the LFU case, the total hit ratio is 0.6 both in the absence of
attack, and when the system is severely attacked (aggregate attackers’ rate is
100 k req/day).

Figure 4(b) indicates initially, when the aggregate attackers’ request rate is

4 A negative byte damage ratio refers to the abnormal scenario in which the byte
hit ratio of regular clients improves in presence of attack.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

B
yt

e
da

m
ag

e
ra

tio

Attackers’ aggregate request rate (k req/day)

GDSF
LFU
LRU

(a) Locality-disruption attack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350 400 450

B
yt

e
da

m
ag

e
ra

tio

Attackers’ aggregate request rate (k req/day)

GDSF
LFU
LRU

(b) False-locality attack

Fig. 5. Byte damage ratio

low (e.g., 10 k req/day), the total hit ratio decreases. In such a scenario, the
attackers do not manage to successfully build a false locality. This is because
false unpopular files are evicted from the cache due to requests generated by
regular files. Thus, re-requesting previously evicted files is similar to perform-
ing the locality-disruption attack. Consequently, the total hit ratio initially
decreases as in the case of the locality-disruption attacks. Finally, Figure 4(b)
reveals a dramatic difference in the performance of various cache replacement
algorithms. We analyze this issue in detail below.

3.2.2 Replacement Algorithms

Here, we evaluate the impact that the cache replacement algorithms have on
the resilience to pollution attacks. A replacement algorithm determines which
of the cached files is evicted from the cache when a new file is added to a
full cache. As a measure of the effectiveness of the attack, we apply the byte
damage ratio of regular clients, defined above.

Figure 5(a) shows the byte damage ratio of regular clients as a function of
the aggregate attackers’ request rate. The most stunning result is the extreme
vulnerability of the GDSF algorithm to low-rate pollution attacks. When the
aggregate attackers’ rate is as low as 10 k req/day, the byte damage ratio is
already close to 0.8. To understand this effect, recall that GDSF evicts files
using a key that combines size, frequency, and age of a file in the cache; larger,
less-frequently used, and “older” files are more likely to be evicted from the
cache when a new request arrives at the server. Thus, in the case of locality-
disruption attacks, in which the attacker requests new unpopular files without
building any file locality, the file-size part of the GDSF eviction key makes the
algorithm vulnerable to locality-disruption attacks. In our experiments, we set
the attackers’ file size to 1 MByte. On the other side, the mean file size in the
p2p workload is 5 MBytes. Hence, the attackers’ files are less likely evicted
from the cache, and pollution effects are magnified. We evaluate the file-size
effects in more depth below.

On the other hand, Figure 5(a) indicates that LRU and LFU are more resilient
to attacks, because the attackers are required to generate a larger number of

13

requests in order to increase the level of pollution. Nevertheless, the damage
ratio can still be quite high. Moreover, since no counter-pollution mechanisms
are currently implemented in Internet proxy caches, even higher-rate pollution
attacks are quite feasible.

Figure 5(b) reveals somewhat different trends in the case of false-locality at-
tacks. First, the GDSF’s aging mechanism limits the damage ratio to 0.4 in
this scenario. Because the attackers build a false locality by re-requesting the
same set of files, the files’ age increases over time, leading to their eviction from
the cache. However, even a relatively moderate damage ratio can dramatically
degrade the system’s performance. For example, because p2p traffic accounts
for the vast majority of the network’s total bandwidth [6], a slight drop in hit
ratio of a p2p cache will result in a large increase in network traffic. A simple
calculation reveals that when the hit ratio is 0.6 in the absence of attack, a
byte damage ratio of 0.4 can cause an additional hundreds of TBytes of data
to be transferred over the access link on a daily basis. 5 Second, Figure 5(b)
indicates that false-locality attacks more severely degrade the LFU algorithm.
Indeed, as the number of malicious requests increases, the frequency count for
falsely popular files increases, and the pollution becomes more significant.

3.3 System Factors

3.3.1 Attackers’ file size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

B
yt

e
da

m
ag

e
ra

tio

Attackers’ file size (MB)

GDSF
LFU
LRU

Fig. 6. The role of attackers’ file size

The file size used by attackers influences the effectiveness of pollution attacks
in a non-trivial manner. The above experiments indicate that the use of small
files can be a particularly efficient attack strategy against certain replacement
algorithms (e.g., GDSF). Here, we explore such effects in more depth.

Figure 6 depicts the byte damage ratio as a function of the file size used
in locality-disruption attack. The aggregate attackers’ throughput (in bps) is

5 Assume a nominal traffic load of 100 Mbps on the access link. The Byte damage
ratio of 0.4 degrades the hit ratio from 0.6 to 0.36. This increases traffic by 24 Mbps,
resulting in an increment of 260 TBytes daily.

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

B
yt

e
da

m
ag

e
ra

tio

Bottleneck capacity (Mbps)

GDSF
LFU
LRU

(a) Locality-disruption attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

B
yt

e
da

m
ag

e
ra

tio

Bottleneck capacity (Mbps)

GDSF
LFU
LRU

(b) False-locality attack

Fig. 7. The role of the access link capacity

kept constant, approximately to 20% of the throughput achieved by regular
clients. Despite the attackers’ much lower request rate, the byte damage ratio is
significantly larger in the case of GDSF, as explained above. As the attackers’
file size increases, the damage ratio decreases. Indeed, the larger the attackers’
files, the sooner they get evicted by GDSF, and the damage ratio becomes
less pronounced. The knee in the GDSF curve arises around 5 MBytes, which
corresponds to the mean file size for the p2p trace.

The attackers’ file size affects the LFU and LRU algorithms less dramatically.
First, the absolute byte damage ratio is much lower than in the GDSF case;
second, as the attackers’ file size increases, the byte damage ratio decreases for
LFU. This is because we keep the throughput constant; thus, increasing the
attackers’ file size means decreasing the attackers’ request frequency, which
weakens the attack. Finally, the impact of the attackers’ file size is smallest
for LRU.

3.3.2 Access link capacity

A large discrepancy between local and access network capacities is one of the
key reasons for implementing proxy caches: they reduce traffic on typically
bandwidth-scarce access links. Below, we evaluate the role that this discrep-
ancy can have on the effectiveness of pollution attacks.

In our experiments, we set the local capacity to 1 Gbps, and vary the access
capacity from 300 kbps to 100 Mbps. At the same time, we control the number
of requests generated by regular clients such that they consume 50% of the
access bandwidth on average, whereas the rest is utilized by attackers. While
not representative of an actual scenario, our main goal here is to illustrate the
impact of limited access capacity on the effectiveness of the attack.

Figure 7(a) depicts the byte damage ratio as a function of the access link
capacity in the presence of locality-disruption attacks. The key observation
is that the effectiveness of the attack is reduced for lower access capacities.
Because the locality-disruption attack considers downloading new unpopular
files, the attackers have to share the access link with regular clients. Conse-

15

quently, when the access link capacity is the system bottleneck, the power of
the attack is significantly reduced. For example, for LRU and LFU, the byte
damage ratio is only 0.2 when the access link capacity is limited to 300 kbps.
This doesn’t hold for GDSF, which is vulnerable to low-rate pollution attacks.
As the access link capacity increases, the attackers manage to make a larger
number of requests, and hence the pollution becomes more pronounced for all
replacement algorithms.

Figure 7(b) shows opposite effects for false-locality attacks: increasing the
access capacity weakens the effectiveness of the attack. The key reason for
such a behavior is the fact that malicious clients manage to build a false
locality over longer time intervals despite limited access capacity. Once this
is achieved, the access rate is no longer a limitation, and the attack becomes
powerful. This holds particularly for LFU and LRU, where the byte damage
ratio is approximately one for moderate link capacities. Again, the GDSF case
is different, because this replacement mechanism limits the pollution level for
false-locality attacks. Finally, as the access capacity increases, the effects of
the attack slightly weaken. This is because we increase the request rate of
regular clients, as explained above.

3.3.3 The Impact of the Zipf parameter α

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

B
yt

e
da

m
ag

e
ra

tio

Zipf parameter alpha

GDSF
LFU
LRU

Fig. 8. The impact of the Zipf parameter α

We explore the impact of the Zipf parameter α, which we use to generate the
web traces. Breslau et al. [35] showed that the distribution of page requests
generally follows a Zipf-like distribution; the relative probability of a request
for the i-th most popular page is proportional to 1/iα, with α varying from
trace to trace, ranging from 0.64 to 0.83.

Figure 8 shows the byte damage ratio as a function of α. For smaller α, the
effects of the attack are more devastating, particularly for LFU and LRU. This
is because the correlation structure of requests is “weaker” when α is small,
such that the regular users do not manage to build strong file locality. As α
increases, the requests become more and more correlated, such that the effects
of the attack become less pronounced. On the contrary, the byte damage ratio
is almost flat in the GDSF case. The key reason is GDSF’s aging mechanism

16

which weakens the level of pollution. Unfortunately, the aging mechanism is
not perfect: for larger α, it starts evicting regular popular files, such that the
byte damage ratio becomes larger than it is in the cases of LRU and LFU.

4 Counter-Pollution Techniques

In this section, we examine how to effectively and efficiently detect the pro-
posed cache pollution attacks and mitigate their effects.

The cache pollution attacks are hard to detect because all requested files are
uncorrupted. Thus, one cannot base the detection scheme on the contents of
the cached files. Another and even more serious challenge is the following.
The traditional detection schemes usually observe the clients’ access patterns
and detect anomaly/attacks when such patterns change significantly. These
schemes have to identify the clients by their IP addresses. However, many
residential users (and even some business users) obtain their IP address dy-
namically through the DHCP protocol (especially in Asia). That is, for any
client, the IP address it obtains may differ from one day to the other. Given
very long time-scales of pollution attacks, it is very challenging to identify
the history patterns for any of the clients. Consequently, to the best of our
knowledge, no existing detection scheme applies to the proposed pollution
attacks.

To address these challenges, we analyze the inherent characteristics of these
attacks and design several schemes to detect false-locality attacks and locality-
disruption attacks separately, initially proposed in [1]. We can further detect
these two attacks even when they are combined and mixed together. Again,
we focus on the attack detection in forward proxies, including pollution at-
tacks against local DNS servers. Attacks against reverse (server-side) proxies,
in general, are harder to achieve because such proxies are usually only re-
sponsible for the objects served by corresponding back-end servers. Thus, it is
hard to upload unpopular files to such caches, especially for locality-disruption
attacks, which require a large number of such files. However, false-locality at-
tacks are still quite applicable. In addition, reverse proxies usually serve much
more clients relative to forward proxies, hence more potential attackers. We
will demonstrate that our proposed solutions, based on bloom filters and prob-
abilistic counting, are highly scalable. As such, they are equally applicable to
both types of proxies.

17

4.1 Detecting False Locality Attacks

In Section 3.2, we found that the false-locality attack is more effective than
the locality-disruption attack, especially when the LFU replacement policy is
used and/or when there is limited access link bandwidth connecting the cache
server to the Internet. In this section, we attempt to detect such attacks.

The false-locality attack often involves distributed attackers making requests
to the same set of files. Our first attempt is to use such a correlation to detect
distributed attacks. That is, we look for clients that request a similar set of files
that normally always reside in the cache. However, there are two heavy-tailed
distributions in normal traffic patterns that hamper this method: 1) a small
number of clients send a large number of requests; and 2) a small number of
popular files are requested by a large number of clients. These two patterns will
cause some clients to request a similar set of popular files which are always
in the cache. These scenarios will raise false positives for correlation-based
detection. These are validated with popular cache and Web server logs, e.g.,
from MSNBC [36].

The above discussion inspires us to analyze the fundamental characteristics of
false locality attacks: the repeated requests from the same IP to the unpopular
files. Unless there are an extremely large number of attackers, they cannot
keep the false locality without having each attacker making repeated requests
for the same files. However, it is rare for a normal client to reload the same
file multiple times in a short period, e.g., a few hours or a day. As shown in
several web/cache traces, the real popular files are accessed by a large number
of regular clients (tens of thousands or more), and the number of such regular
clients should be much larger than the number of attackers.

While some clients may keep loading certain search engines and news web sites,
such dynamic content is uncacheable. Indeed, Bent et al. found that about 60%
of HTTP requests are generated for dynamic content and are thus uncacheable
[37]. The second caveat is that certain programs, e.g., web crawlers, repeatedly
request the same file until a successful download occurs. The cache server and
our detection system can recognize such failed requests and exclude them from
counting. Finally, it is also possible for some clients to solely keep loading the
same web page, e.g., “http://www.google.com,” without placing any queries.
However, there is only a small number of such popular web pages and the
access patterns for those pages tend to be stable. Our approach to the problem
is to create a “white list” of such pages, characterized by a large ratio of
requests vs. the number of unique IPs that placed these requests.

Based on these observations, we design two detection mechanisms for false-
locality attacks: one is to detect attackers each of whom has a large number

18

and percentage of repeated requests. The other is to detect the cached objects
with false locality.

4.1.1 Attacker-based Detection

In this scheme, we record the files that each client requests over longer time
scales, and calculate the following statistics: (i) the number of repeated requests
and (ii) the percent of repeated requests (ratio of repeated requests vs. the total
request hits in the cache). Only when both metrics exceed given thresholds,
we mark such a client as the attacker. The goal is to avoid false positives
while successfully detecting large pollution attacks. For example, some benign
client IPs can generate a large number of requests, and consequently a rela-
tively large number of repeated requests e.g., due to NAT effects. However,
the percent of repeated requests from the same IP is small in general. On the
other hand, other clients could generate a small number of requests, but with
relatively high percent of repeated requests (again, due to the NAT effects).
Still, they are unlikely to be attackers. Also, note that for the second met-
ric, we use “the number of total request hits in cache” as the denominator
instead of “the number of total requests.” This is to prevent an attacker from
potentially evading the detection mechanism by launching false-locality and
locality-disruption attacks simultaneously.

The key issue with this scheme is the memory consumption. We apply two
methods to reduce it. First, we filter the requests by applying a threshold on
the request rate before counting the repeated requests. Second, we use bloom
filters to record the files requested over longer time scales, and significantly
reduce the amount of states needed for counting repeated requests.

Scalable Detection with Bloom Filters. A bloom filter is a computa-
tionally efficient hash-based probabilistic scheme that can represent a set of
unordered keys with minimal memory requirements, while answering mem-
bership queries with zero probability for false negatives and low probability
for false positives [21]. In our case, the keys are requested URLs for web or
requested files for p2p applications.

Given a Bloom filter m, an element e is inserted into m by hashing e with
k different hash functions Hi, i = 1...k, and setting the corresponding bits,
m[Hi]. Checking if an element belongs to the set involves hashing the element
again as described above, and checking if all the corresponding bits are set.
The accuracy depends on the size of m and k. In our case, even with 1 million
attackers’ files with false locality, we use 1B for each key such that the size of
m becomes 1 MB. We set k = 4, while the percent of false positives for the
membership test is 2%. Note that such an error rate does not directly translate
to the detection error rate. In fact, our detection threshold is very insensitive

19

to such small errors as we will demonstrate below. In fact, we can tolerate
even larger errors with less memory consumption. Assuming 100 attackers
and another 100 normal clients making a large number of requests, currently
the total memory consumption becomes 1MB×200 = 200MB.

4.1.2 Object-based Detection

Our second scheme is to detect objects with false locality. As discussed before,
normally one client requests each file a small number of times to get the
content. Thus the ratio of number of requests vs. number of unique IPs
is small. However, for the false-locality attack, each attacker will request the
same file multiple times to achieve false locality. Otherwise the attack will not
be effective. So for the false-locality attack, the ratio of number of requests vs.
number of unique IPs will be relatively large. Thus we design our detection
scheme with the following two steps.

Step 1: Find cached files with locality. It is in fact very tricky to find
cached files with locality. Usually, the effectiveness of a cache is measured by
the hit ratio, i.e., the number of hit requests divided by the total number
of requests. However, it is hard to apply this metric directly to measuring
the locality of each individual file because the technique strongly depends on
the number of requests toward that file and the request patterns. Next, we
considered adding the total hit/request number as a supplementary metric to
measure the file locality. That is, a file is considered to have good locality
when the hit ratio is larger than a certain threshold (e.g., 90%) and the total
request number is above a certain threshold (e.g., 50 per hour). However,
the threshold depends on the replacement policy and is difficult to set. For
example, for LRU, even if the file has a large hit request number in the past
minute, or even the past hour, it may be evicted in the next time interval
when there is a large number of requests for different files; on the other hand,
the file may have much better locality for LFU.

To overcome these limitations, we count the duration of a file’s presence in the
cache within certain time interval (e.g., an hour) as its locality. We use two
hash tables: one for counting the cache duration for each file, and the other for
recording the most recent entry time for each file. For each file, we keep track
of its cache duration and its last entry time. When a file is placed in the cache,
we record its entry time. When it is evicted, we update the duration table by
adding its duration within a predefined interval, e.g., the most recent hourly
interval (3pm - 4pm), and set its entry time to a special value, such as zero.
At the end of each interval (e.g., 4pm), we check for files that have been in
the cache for certain percentage (e.g., 80%) as files with locality. Meanwhile,
we reset all the duration values to zero. Since we still keep the most recent
entry time, if a file has been in the cache during the previous interval, we can

20

set its occupancy to 100%.

The state to maintain for each file is only 4B for the duration and 4B for the
last entry time. However, we may need to maintain state for files that are not
currently in the cache, and this can result in significant overhead over time.
To reduce such overhead, at the end of each time interval, we remove entries
of files that are not currently in the cache.

Step 2: Detect based on average requests per unique IP. After finding
files with locality, we need to check if these are real popular files, or faked
ones. As mentioned previously, we believe most users will request each file
only once. Even if we consider the network address translator (NAT) effect,
since most NAT users are consumer/home users, there is usually only a small
number of clients behind each NAT. Thus for each file with locality, if the
ratio between number of requests and number of unique IPs is larger than
a certain threshold (e.g., 4), we report this file is a false popular file and remove
it from the cache.

The major challenge for this scheme is to count the unique number of IPs for
each of the files with locality. Each popular file may be requested by hundreds
of thousands of clients, so it is too costly to keep track of all of them. Since we
need only an estimated value of the number of unique IPs, we leverage proba-
bilistic counting [9,8], which we will discuss in the next section, to significantly
improve scalability.

Scalable Detection with Probabilistic Counting. The problem of count-
ing unique IPs can be abstracted as the problem of estimating the number of
distinct elements n, i.e., the cardinality, of a very large data set of size s. The
traditional solution is to store everything in memory and sort data afterwards.
Such algorithms have memory consumption in O(n) and time consumption of
O(s log n). Given that a large ISP of a class A network can have up to 224

clients (i.e., n), and that we need to count the number of unique IPs for every
cached file with locality, such algorithms are clearly far too costly in terms
of both storage consumption and processing time. In contrast, probabilistic
counting provides a method to count the cardinality by using constant mem-
ory and doing only one pass on the data, i.e., a runtime of O(s). The tradeoff is
that it never gives the exact cardinality, but rather an estimate with a certain
precision.

Here we adopt a variant of probabilistic counting algorithm named Proba-
bilistic Counting with Stochastic Averaging (PCSA, Figure 9) which employs
stochastic averaging to increase the accuracy. When using 32-bit words for the
hashed values, PCSA can count cardinalities well up to 108 with a standard
error of 14% for a memory consumption of 128 bytes and 10% for 256 bytes
of memory usage. Since we only need a rough estimate of the cardinality, we

21

bitmaps ..
.

..
.

a good
hash function

stochastic
averaging

highest 5 bits

Select
bitmap

Update

lower 27 bits 32-bit IPv4 addresses

output

input

estimated cardinality

Fig. 9. Probabilistic Counting with Stochastic Averaging (PCSA)

choose the 128-byte PCSA for detection.

However, PCSA is not suitable for counting small cardinalities due to its
inability to sense variations in this setting. From our experience, with 128-
byte PCSA, when the actual cardinalities are less than 50, it gives extremely
inaccurate estimates. Thus we use a hash table to record the IP addresses for
each file first, and turn to PCSA counting only when the number of unique
IPs exceeds 50. At that point, we simply add the existing 50 records to PCSA
and remove the hash table. As a result, the maximum memory consumption
for each cached object is 50×4B = 200B.

4.2 Detecting Locality Disruption Attacks

For locality disruption attacks, attackers keep requesting different unpopular
files to destroy the locality of real popular files. There are two inherent symp-
toms for such attacks. First, the hit ratio is low. Second, the average life-time
of all cached files is short. We design our detection scheme based on these
two signatures. For each cached file, we record its entry time. Periodically, we
compute the average durations for all files in the cache. When the average du-
ration is very low, we detect the attacks. However, to mitigate such attacks, it
is crucial to additionally detect the attackers. Thus, for each file in cache, we
record the client IP making the most recent access request. When we detect
the locality disruption attack, we check the IP addresses in the cache table
and search for those that make most of the requests. Again, the assumption is
that the number of attackers is much less than the number of normal clients
[38]. Then, for locality disruption attacks to be successful, each attacker needs
to request a relatively large number of unpopular files, and such amount is
much larger than that of a normal client.

For example, for a cache of 100GB, even when the average file size is 100KB, it
needs 1 million files to fill it. Thus, even for a distributed false-locality attack
with 100 attackers, each attacker needs to have on average of 10,000 files
loaded in the cache with its IP as a requestor. On the other hand, a typical

22

client will not exclusively request such a large number of files in the cache.
Regular clients usually request popular files, and requests toward these files
are often shared by many different clients. That is, when counting the number
of requested files in the cache by the requestor IP, the attackers will surface
with a large number of requested files in cache. This is precisely because the
number of attackers is much lower than the number of regular clients.

4.3 Detecting Attack Combinations

Attackers can launch both false-locality attacks and locality-disruption attacks
at the same time. For instance, the same set of attackers can launch false-
locality attacks to occupy 50% of the cache space, and at the same time they
start locality-disruption attacks to interfere the file locality in the rest 50% of
the cache.

Such attacks are stealthier because the false-locality attacks will increase the
average life time so that locality-disruption attacks may not be detected. The
existence of locality-disruption attacks will not affect the detection of false-
locality attacks discussed in Section 4.1. For attacker-based detection, both
metrics need to be high enough for creating false locality even for 50% of the
cache. Hence, our general detection strategy is as follows.

First, we try to detect false-locality attacks, and once detected, we exclude
the files with false locality from calculating the average life time. Then the
locality-disruption attacks can be detected separately.

5 Pollution-Detection Evaluation

In this section, we use simulation to evaluate the effectiveness of the detection
techniques discussed above.

5.1 Simulation Methodology

We use web and p2p traces as follows.

• Web trace: There are 10,000 regular clients and the cache size is set to
10GB. The average file size is 10KB. There are 5 million files accessed by
regular clients, and 1 million attackers’ files for false-locality attacks; also,
there are 100 million attackers’ files for locality-disruption attacks.

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 75 50 25 1

T
P

 r
at

io
 fo

r
at

ta
ck

er
s

de
te

ct
io

n

Number of attackers

Byte damage ratio=0.72, Total attack Bw = 1Gbps
0.56 100Mbps
0.34 50Mbps
0.11 20Mbps

(a)web trace (detecting attackers)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 75 50 25 1

T
P

 r
at

io
 fo

r
at

ta
ck

er
’s

 fi
le

s
de

te
ct

io
n

Number of attackers

Byte damage ratio=0.72, Total attack Bw = 1Gbps
0.56 100Mbps
0.34 50Mbps
0.11 20Mbps

(b)web trace (detecting attackers’ files)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100 75 50 25 1

T
P

 r
at

io
 fo

r
at

ta
ck

er
’s

 fi
le

s
de

te
ct

io
n

Number of attackers

Byte damage ratio=0.65, Total attack Bw = 1Gbps
0.41 100Mbps
0.30 50Mbps
0.20 30Mbps
0.09 20Mbps

(c)p2p trace (detecting attackers’ files)

Fig. 10. The true positive (TP) ratio of attacker-based false locality attack detection

• P2p traces: There are 2,000 regular clients and the cache size is set to 10GB.
The average file size is 10MB. There are 2,000 files accessed by regular clients,
and 1,000 attackers’ files in the case of false-locality attacks; also, there are
100,000 attackers’ files for locality-disruption attacks.

Here, we choose 10GB cache size because a previous study shows that even
one week of NLANR cache traces in 2002 has only 15.6GB unique bytes;
moreover, the study shows that setting a cache size to be 30% of the total
unique bytes provides close-to-optimal hit ratio [28]. We also expect similar
simulation results to hold for larger cache sizes with larger network bandwidth.

Given that false-locality and locality-disruption attacks have different effects
on the external access links, we have different bandwidth for normal clients and
attackers for these two cases. For false-locality attacks, the total bandwidth
for regular clients is 100Mbps, while the bandwidth for attackers changes from
20Mbps to 1Gbps. We assume that the external link is 100Mbps and the
internal link capacity is 1Gbps. For false locality attacks, attackers’ request
rates are only limited by the internal link capacity. For locality-disruption
attacks, since almost all the requests have to be fetched from external servers,
the total bandwidth for regular clients and attackers is 100Mbps. And we
assume that the internal link capacity is larger than that and thus is not a
constraint. The rest of the attack parameters are the same as described in
Section 3.1.

24

In our experiments, we consider the worst case, i.e., the stealthiest attacks
where attackers are well coordinated so that each of them simultaneously
request different files. We further consider the network address translation
(NAT) effect. Note that with NAT, there may be multiple clients requesting
the same file from the same source IP address. Hence, this must be considered
when calculating the repeated requests. It was reported that 17% to 25%
of Internet access is through a NAT-enabled gateways [39] and we randomly
assign 20% of the regular clients to be behind the NAT. Since most NAT users
are consumer/home users, the multiplex rate is usually small. We assume that
on average there are 10 clients sharing the same NAT and have the same IP.

The evaluation metrics include: (i) the true positive ratio, defined as the per-
centage of real attacks detected, (ii) the number of false positives, defined
as mis-detected attacks, (iii) detection time, and (iv) the memory consump-
tion. The evaluation results for web traces and p2p traces are very similar.
Due to space limitations, we only demonstrate the attacker-based false local-
ity detection results for web traces, and report all the results based on p2p
traces.

5.2 Results for False-locality Attacks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100 75 50 25 1

T
P

 r
at

io
 fo

r
at

ta
ck

er
’s

 fi
le

s
de

te
ct

io
n

Number of attackers

Byte damage ratio=0.65, Total attack Bw = 1Gbps
0.41 100Mbps
0.30 50Mbps
0.20 30Mbps
0.09 20Mbps

Fig. 11. The true positive (TP) ratio of object-based false locality attack detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 75 50 25 1

T
P

 r
at

io
 fo

r
at

ta
ck

er
s

de
te

ct
io

n

Number of attackers

Byte damage ratio=0.66, Attack Bw = 90Mbps, Ruser Bw = 10Mbps
0.41 80Mbps 20Mbps
0.13 50Mbps 50Mbps
0.10 30Mbps 70Mbps

(a)Detecting attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 75 50 25 1

T
P

 r
at

io
 fo

r
at

ta
ck

er
’s

 fi
le

s
de

te
ct

io
n

Number of attackers

Byte damage ratio=0.66, Attack Bw = 90Mbps, Ruser Bw = 10Mbps
0.41 80Mbps 20Mbps
0.13 50Mbps 50Mbps
0.10 30Mbps 70Mbps

(b)Detecting attackers’ files

Fig. 12. The true positive (TP) ratio of locality disruption attack detection.

(“Ruser Bw” = regular users’ bandwidth; “Attacker Bw” = attackers’ bandwidth.)

25

1) Attacker-based Detection

Results for web traces. The first step for detection is to find suspicious
clients which make a large number of requests. For the web trace simulation,
we assume all normal users’ traffic is web traffic. Given 10,000 regular users
and a total bandwidth of 100Mbps, on average each normal user sends out 450
requests/hour. Considering the heavy-tail distribution of normal user request
rates (see Section 3.1), we set the threshold as 5,000 requests/hour. This is
247 clients out of a total of 10,100 (normal clients plus attackers).

After the filtering, we set 5,000 as the threshold for the number of repeated
requests per hour, and conservatively set 30% as the threshold for the ratio
of repeated requests vs. total requests hit in cache. Figure 10(a) demonstrates
the number of attackers detected by our scheme, while Figure 10(b) presents
the number of attackers’ files detected from these attackers. Because there is
up to 80% fluctuation to the number of requests sent by each attacker, some
of attackers may have a small request rate, smaller than the 5,000 threshold.
Still, we can always detect those attackers with large sending rates, which is
precisely why the result of Figure 10(b) is better than that of (a). Figure 10(b)
also shows the power of mitigation once we block the traffic from the attackers.
For all configurations, there is no false positive in these detections.

For attacks with different total bandwidth, the average detection varies from
two to ten hours. The more total bandwidth an attack sends, the less detection
time we need. Actually the mildest attack that we spend 10 hours to detect
needs more than 20 hours to fully have the damage take into effect. But during
this period, we already detect the attacks and mitigate them before they can
fully pollute the cache.

In terms of memory consumption, when using bloom filter to record 1M differ-
ent request files, as discussed in Section 4.1, we allocate 1MB bloom filter for
each suspicious client, and only use a total memory of 1MB× 247 = 247MB.
On the other hand, without bloom filters, we have to record all the files re-
quested by suspicious clients. We represent each URL with a 16-byte MD5
hash of the URL to record them. Assuming that those heavy hitter clients on
average make requests for 1M different files as each of the attackers does, the
total memory consumption is 16B×247× 1M = 3.952GB. When the number of
suspicious clients and number of requested files increase, the detection system
can easily run out of memory.

We implemented both methods and they achieve the same accuracy as shown
in Figure 10. Since we only need a rough estimate on the number of repeated
queries, the 2% false positive of bloom filters does not cause any detection
inaccuracy.

Results for p2p traces. Because the average file size for p2p traces is 1,000

26

times larger than that of web traces, with the same bandwidth, the request rate
from both attackers and normal clients are reduced proportionally. Thus we
set the threshold of request rate per hour and the number of repeated requests
per hour as 10, but leave the repeated request ratio metric unchanged as 30%.
Again, we achieve accurate results as shown in Figure 10(c). There is only one
false positive for each detection because the client is a heavy user who keeps
loading a small set of popular files. In fact, such false positives can be filtered
by applying the “white list” approach discussed in Section 4.1.

2) Object-based Detection

In this subsection, we evaluate the object-based detection and compare it
with the attacker-based detection. Due to space constraints, we only show the
results for p2p traces.

First, we set the duration threshold for a file to have good locality as 80%
of one hour. In such a case, there are 813 files passing the locality test when
total attack bandwidth is 1Gbps and the byte damage ratio is 0.65. With
the decrease of attack rate and byte damage ratio, the number of attacker’s
unpopular files passing the locality test also decreases, e.g., to 158 when the
total attack bandwidth is 20Mbps, and the byte damage ratio becomes 0.08.
Then we detect with the number of requests per unique IP. Given that 20%
of IPs are behind a NAT, and on average 10 clients are behind each NAT, the
average number of normal requests per unique IP is 0.8 × 1 + 0.2 × 10= 2.8.
We conservatively set the detection ratio threshold to 4.

Figure 11 demonstrates the accuracy of our object-based detection scheme.
When the byte damage ratio is greater than 0.3, our system can detect 88% of
attackers’ files within 10 hours. All detection results have zero false positives.
The accuracy degrades as the byte damage ratio decreases. For attacks with
small sending rates, the detection is less accurate than the attacker-based
detection essentially because the repeated requests tend to be more dispersed
and less obvious. For such light damage attacks, the longer the detection time,
the better the detection results are.

To count the number of unique IPs, we implement both hash-table based ac-
curate counting and PCSA to record the access IPs for each file with locality.
Their detection results are exactly the same, but PCSA significantly reduces
memory consumption. Given a 10GB cache, for web traces, the average file
size is 10KB, there can be up to 1 million files with good locality. Even when
each file is accessed by 10,000 clients (the maximum can be 224 clients), we
need 1M ×10000× 4B = 40GB of memory to record and update online. How-
ever, for PCSA-based recording, for each cached file, we either need to record
the first 50 unique IPs (200B) or use PCSA for counting (128B). The mem-
ory consumption in the worst case is 1M×200B = 200MB. In our detection

27

experiments of web traces, PCSA uses only about 2-5% of the memory as com-
pared to that of the per-IP counting technique without noticeably sacrificing
of detection accuracy.

5.3 Results for Locality-disruption Attacks

For locality-disruption attacks, the total bandwidth available to regular clients
and attackers is 100Mbps. We vary the ratio of regular clients and attackers
to obtain different byte-damage ratios as shown in Figure 12. The normal hit
ratio varies from 0.5 to 0.6, and the average lifetime for those files in cache is
about 5,000 seconds. Thus, to determine whether a locality disruption attack
happens, we set the threshold for hit ratio to 0.3 and the threshold for average
lifetime to 3,000 seconds. Once it occurs, we search for the IP addresses which
account for the majority of the requests. On average, there are 1,000 files in
the cache; given that the number of regular clients is approximately 2,000,
each regular user has the hit rate of around 0.5. Still, given the heavy-tail
distribution of normal client request rates, we set the threshold to 10; thus,
when an IP address in the cache table appears more than 10 times, we report
it as an attacker.

Figure 12 shows the number of detected attackers and blocked requests. Simi-
larly to the false-locality detection results, the percent of blocked files is larger
than the percent of blocked attackers. This is because all high-rate attack-
ers are successfully detected and thwarted. For example, even when the byte
damage ratio is as small as 0.10, the proposed scheme can detect more than
88% of unpopular file requests.

5.4 Results for Combination Attacks

We also simulate the detection for the combination attacks described in Sec-
tion 4.3. In addition to varying the attacker and normal user total bandwidth
as we did in the locality-disruption attacks, we vary the attacker bandwidth al-
location to false-locality vs. locality-disruption attacks as shown in Figure 13.
We obtain accurate results with no false positives. It demonstrates that our
detection schemes are resilient to the mixture of attacks.

6 A Prototype Implementation

We implement and test our counter-pollution mechanisms by upgrading a
Squid 2.5.11 caching server [27]. A detailed description of our implementation

28

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100 75 50 25 1

T
P

 r
at

io
 fo

r
at

ta
ck

er
’s

 fi
le

s
de

te
ct

io
n

Number of attackers

Byte damage ratio=0.45, F/L=7:3, Attack Bw=80Mbps, Ruser Bw=20Mbps
 0.39 7:3 50Mbps 50Mbps
 0.26 1:1 50Mbps 50Mbps
 0.20 3:7 20Mbps 80Mbps

Fig. 13. The true positive (TP) ratio of combination attack detection.

and testing efforts is provided in [40]. Below, we briefly highlight the main
components of our solution.

6.1 Anti-pollution Engine System

Figure 14 depicts the detection mechanism, which we implement by developing
an add-on program called Anti-pollution Engine (AE) system.

Squid

AE

AE
Daemon

AEI

Spawn

Spawn

Signal

Signal
Triggered
Module

File

FileDetection Module
(Main part)

Auxiliary part of
Detection Module

A pair of pipes

Fig. 14. Anti-pollution Engine system

The system consists of two parts: the AE and the AE Interface (AEI). The
core part of the AE is the AE Daemon. It communicates with the AEI through
a pair of pipes. The AE Daemon operates in the blocking mode for both pipe
reading and pipe writing, while AEI operates in the non-blocking mode. AEI
intercepts access information such as the client IP, requested URL, object size,
reference count from Squid, and sends it to the AE Daemon. If the Detection
Module infers polluted objects, the AE Daemon issues “block-entry” com-
mands to the AEI through the pipe. Likewise, if the attackers’ IP addresses
are detected, the AE Daemon issues “block-client” commands to the AEI.
Upon receiving “block-entry” or “block-client” commands, the AEI executes
corresponding operations to counter the attack.

The main part of the Detection Module is embedded directly into the AE
Daemon. In addition, the AE Daemon spawns one or more Triggered Modules
at startup and sends signals to Triggered Modules to trigger operations when-
ever necessary. A Triggered Module is designed to run the auxiliary part of the

29

Detection Module in parallel with the AE Daemon. Upon receiving a signal
from the AE Daemon, a Triggered Module reads data from a file generated by
the AE Daemon, executes auxiliary operations and outputs results to another
file. When exiting, it sends back a signal to the AE Daemon which in turn
reads the output file and performs corresponding operations.

The AE Daemon is implemented as a process spawned by Squid at startup
and the AEI is a module directly embedded in the Squid. The pair of pipes
between AE Daemon and AEI can be easily replaced with a TCP/UDP socket,
such that the AE can run on a separate machine.

6.2 Experiment Methodology

B:/
+7;9 5;CG;C,

D;CG;C ?8:<=@;
+7;9 08:<;,

+38>=:=AFD 6D;CD,
B:-

1F??H@;E

2@E;C@;E

B:.
+4AC?8> 6D;CD,

Fig. 15. Testbed topology

Figure 15 depicts the testbed, which consists of three PCs and one server
machine running FreeBSD 5.3. We develop a simple tool to generate HTTP
requests based on trace files. To simulate requests from different source IPs, we
piggyback IP addresses in the URL part of requests and add corresponding
codes into Squid to extract and remove the piggybacked IPs before Squid
handles the requests. The web cache serves web requests both from regular
and malicious clients. If a regular request cannot be served by the cache,
the cache forwards the request to the origin server on the Internet. When a
malicious request cannot be served by the cache, the request is forwarded to
the web server, which hosts unpopular files used in the attack. The web server
runs Apache software [41]; in addition, it runs Dummynet [42], an IP-layer
network emulation package which mimics WAN bandwidth variations on the
link between the web server and the cache.

6.3 Experiment Results

The results from the testbed experiments line up well with simulations. To
demonstrate the basic system functionality, we show a sample result below.

Figure 16 plots the hit ratio of normal users in presence of a false-locality

30

Number of normal objects 20000

Average size of normal objects 14 kB

Number of polluted objects 70

Average size of polluted objects 2 MB

Aggregate request rate of attackers
Aggregate request rate of normal users

2

5

Cache size 100 MB(Squid’s default)

Replacement algorithm LRU

Table 3
Experiment parameters

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

H
it

ra
tio

 o
f n

or
m

al
 u

se
rs

 (
%

)

Time (sec)

AE enabled
AE disabled

Fig. 16. Experimental results

attack. Parameters related to the traces and settings of the web cache are
listed in Table 3. To achieve the steady state operating point, we let the system
“warm up” such that the normal users experience high hit ratio, around 80%
in this scenario. After about 100,000 normal requests, we launch the attack.
In absence of any protection, the hit ratio of normal users drops quickly to
approximately 20%. When the AE is enabled, it detects and blocks polluted
objects, thereby restoring the hit ratio back to 80% in a short time period.

7 Related work

A class of file-level pollution attacks arises in p2p networks. For example,
injecting a massive number of corrupted files into a p2p network is used as a
common technique to decrease the availability of a specific item (e.g., movie or
software distribution) [43,44,14]. The key difference between p2p- and proxy-
cache-targeted pollution attacks is that in the latter case, the attackers pollute
the cache with unpopular, rather than bogus files, making them much harder
to detect. In addition, the proxy caching pollution problem can affect a much
broader Internet community, not only p2p networks.

The problem of unintentional caching pollution has been addressed in [26].
The authors find that referencing patterns of robots and crawlers, deployed

31

by search engines, can disrupt the cache file locality and increase the miss ra-
tio of server-side web caches. Similarly, our locality-disruption attacks have a
referencing pattern that intentionally disrupts the file locality of proxy caching
servers. Also, unintentional caching pollution can arise during flash-crowd
events. Thus, some cache replacement algorithms apply aging policies to dis-
criminate against old popular objects [29,30]. Unfortunately, our preliminary
results clearly indicate that such mechanisms are unable to protect the cache
against intentional pollution attacks.

Malicious clients can send a large number of requests to pollute a proxy server.
While it may appear possible to simply re-apply solutions designed to protect
web servers from DoS attacks (e.g., [45,46]), this is not the case. The key reason
is a large gap in request rates between web-server- and proxy-cache-targeted
attacks; cache-targeted attacks operate on longer time-scales and can pollute
the cache without exhausting any proxy-server’s resource. Thus, such attacks
are simply invisible to the state-of-the-art web-server protection mechanisms.

Precisely due to crucial importance of the DNS infrastructure for the web, it
is often a target of malicious clients [47–50]. In such scenarios, the attackers
choose to flood the root or top-level domain name servers attempting to deny
service to its clients. Our research differs in that it proposes a new class of pol-
lution attacks targeted against the low-level DNS server’s caching mechanism.
Note that low-level DNS servers do have a default mechanism which limits
the number of recursive queries within an interval it will support. However,
its purpose is to minimize the recursive state the server has to keep while it
fetches answers. As such, it is far from being capable of solving the problem
of low-rate cache-targeted pollution attacks.

8 Conclusions

Internet caching servers are providing a tremendous service to the entire Inter-
net community. In this paper, we argued that the lack of cooperation among
proxy caches makes them vulnerable to a class of pollution attacks. We pro-
posed and evaluated two such attacks: locality-disruption and false-locality
attacks. Using representative web and p2p workloads, we showed that there ex-
ists a high variability in resiliency to pollution of investigated replacement al-
gorithms (LRU, LFU, and GDSF). Yet, we demonstrated that replacement al-
gorithms alone are fundamentally limited in their ability to protect the system
against attacks. We developed, implemented, and evaluated a set of scalable
counter-pollution mechanisms based on streaming computation techniques.
Due to the high detection accuracy of the proposed solutions, attackers must
launch highly distributed attacks in order to elude detection, which strongly
removes incentives for conducting such transgressions.

32

References

[1] Y. Gao, L. Deng, A. Kuzmanovic, Y. Chen, Internet cache pollution attacks and
countermeasures, in: Proceedings of IEEE ICNP, Santa Barbara, California,
USA, 2006.

[2] V. Pai, L. Wang, K. Park, R. Pang, L. Peterson, The dark side of the Web: An
open proxy’s view, in: HotNets, 2003.

[3] Akamai, http://www.akamai.com/.

[4] O. Saleh, M. Hefeeda, Modeling and caching of peer-to-peer traffic, in: IEEE
ICNP, 2006.

[5] CNET News.com, P2p caching: Unsafe at any speed?, 2003,
http://news.com.com/2100-1025 3-1027508.html.

[6] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, J. Zahorjan,
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload,
in: ACM SOSP, 2003.

[7] B. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of ACM 13 (7) (1970) 422–426.

[8] P. Flajolet, G. N. Martin, Abc, in: the 24th Annual Symposium on Foundations
of Computer Science, 1983, IEEE Computer Society Press.

[9] P. Flajolet, G. N. Martin, Probabilistic counting algorithms for data base
applications, Journal of Computer and System Sciences 31 (2) (1985) 182–209.
URL citeseer.ist.psu.edu/flajolet85probabilistic.html

[10] J. Jung, B. Krishnamurthy, M. Rabinovich, Flash crowds and denial of service
attacks: Characterization and implications for CDNs and Web sites, in: ACM
WWW, 2002.

[11] D. Wessels, Report on the effect of the independent council report on the
NLANR Web caches, http://www.ircache.net/Statistics/ICreport/ (1998).

[12] Australian IT, Music industry raids KaZaA offices., 2004,
http://www.afterdown.com/news/archieve/4948.cfm.

[13] BBC News, File swappers fight back, 2003,
http://news.bbc.co.uk/1/hi/technology/3013065.stm.

[14] J. Liang, R. Kumar, Y. Xi, K. Ross, Pollution in p2p file sharing systems, in:
IEEE INFOCOM, 2005.

[15] J. Jung, E. Sit, H. Balakrishnan, R. Morris, DNS performance and the
effectiveness of caching, IEEE/ACM Transactions on Networking 10 (5) (2002)
589–603.

33

[16] Verisign. the domain name industry brief,
http://www.verisign.com/Resources/Naming Services Resources/Domain
Name Industry Brief/ (Nov. 2005).

[17] D. Bernstein, How to adjust the cache size, http://cr.yp.to/djb.html.

[18] M. Handley, A. Greenhalgh, The case for pushing DNS, in: Proceedings of
HotNets, College Park, Maryland, 2005.

[19] J. Wang, X. Liu, A. Chien, Empirical study of tolerating denial-of-service
attacks with a proxy network, in: Usenix Security Symposium, 2005.

[20] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, K. Worrell, A
hierarchical Internet object cache, in: USENIX Technical Conference, 1996.

[21] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: A scalable wide-area
Web cache sharing protocol, in: ACM SIGCOMM, 1998.

[22] M. Rabinovich, J. Chase, S. Gadde, Not all hits are created equal: Cooperative
proxy caching over a wide area network, in: WWW Caching Workshop, 1998.

[23] J. Touch, The LSAM proxy cache - a multicast distributed virtual cache, in:
WWW Caching Workshop, 1998.

[24] R. Tewksbury, Is the Internet heading for a cache crunch?, 1998,
http://www.isoc.org/oti/printversions/0198prtewks.html.

[25] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, H. Levy, On the
scale and performance of cooperative Web proxy caching, in: ACM SOSP, 1999.

[26] V. Almeida, D. Menasci, R. Riedi, F. Ribeiro, R. Fonseca, W. Meira, Analyzing
robot behavior and their impact on caching, in: Workshop on Web Caching and
Content Delivery, 2001.

[27] Squid Web proxy cache, http://www.squid-cache.org/.

[28] A. Balamash, M. Krunz, An overview of Web caching replacement algorithms,
IEEE Communications Surveys & Tutorials 6 (2) (2004) 44–56.

[29] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, T. Jin, Evaluating content
management techniques for web proxy caches, in: HP Labs TR, 1999.
URL http://www.hpl.hp.com/techreports/1999/HPL-1999-69.html

[30] J. Dilley, M. Arlitt, S. Perret, Enhancement and validation of Squid’s cache
replacement policy, in: HP Labs TR, 1999.
URL http://www.hpl.hp.com/techreports/1999/HPL-1999-69.html

[31] F. Smith, F. Campos, K. Jeffay, D. Ott, What TCP/IP protocol headers can
tell us about the Web, in: ACM SIGMETRICS, 2001.

[32] Y. Chen, L. Qiu, W. Chen, L. Nguyen, R. Katz, Efficient and adaptive
Web replication using content clustering, IEEE Journal on Selected Areas in
Communications 21 (6) (2003) 979–994.

34

[33] L. Qiu, V. Padmanabhan, G. Voelker, On the placement of Web server replica,
in: IEEE INFOCOM, 2001.

[34] S. Sen, J. Wang, Analyzing peer-to-peer traffic across large networks,
IEEE/ACM Transactions on Networking 12 (2) (2005) 219–232.

[35] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and Zipf-like
distributions: Evidence and implications, in: IEEE INFOCOM, 1999.

[36] MSNBC, http://www.msnbc.com.

[37] L. Bent, M. Rabinovich, G. M. Voelker, Z. Xiao, Characterization of a large web
site population with implications for content delivery, in: International World
Wide Web Conference, 2004.

[38] M. Walfish, H. Balakrishnan, D. Karger, S. Schenker, DoS: Fighting fire with
fire, in: HotNets, 2005.

[39] G. Armitage, Inferring the extent of network address port translation at
public/private internet boundaries, Tech. Rep. CAIA TR 020712A (2002).

[40] Anti-pollution engine system, http://tough.cs.northwestern.edu/AE/.

[41] The Apache Software Foundation, http://www.apache.org/.

[42] Dummynet, http://info.iet.unipi.it/~luigi/ip dummynet/.

[43] N. Christin, A. Weigend, J. Chuang, Content availability, pollution and
poisoning in peer-to-peer file sharing networks, in: ACM E-Commerce
Conference, 2005.

[44] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, W. Zwaenepoel, Denial of
service resilience in peer-to-peer file sharing systems, in: ACM SIGMETRICS,
2005.

[45] S. Kandula, D. Katabi, M. Jacob, A. Burger, Botz-4-Sale: Surviving DDoS
attacks that mimic flash crowds, in: ACM NSDI, 2005.

[46] W. Morein, A. Stavrou, D. Cook, A. Keromytis, V. Misra, D. Rubenstein, Using
graphic turing tests to counter automated DDoS attacks against Web servers,
in: CCS, 2003.

[47] k. claffy, Nameserver
DoS attack, http://www.caida.org/projects/dns-analysis/oct02dos.xml
(Oct. 2002).

[48] D. Moore, G. Voelker, S. Savage, Inferring Internet denial-of-service activity,
in: Proceedings of Usenix Security Symposium, Washington, DC, 2001.

[49] N. Brownlee, k. claffy, E. Nemeth, DNS measurement at a root server, in:
Proceedings of Globecom, San Antonio, TX, 2001.

[50] J. Hu, Blackout hits major web sites,
http://news.com.com/Blackout+hits+major+Web+sites/2100-1038 3-5234500.html.

35

