
ISP-Enabled Behavioral Ad Targeting without Deep
Packet Inspection

Gabriel Maciá-Fernández Yong Wang Rafael Rodrı́guez Aleksandar Kuzmanovic
University of Granada University of Electronic Science University of Granada Northwestern University

Granada, Spain and Technology of China, China Granada, Spain Evanston, IL, USA
gmacia@ugr.es ywang@uestc.edu.cn rodgom@correo.ugr.esakuzma@cs.northwestern.edu

Abstract—Online advertising is a rapidly growing industry
currently dominated by the search engine ’giant’Google. In an
attempt to tap into this huge market, Internet Service Providers
(ISPs) started deploying deep packet inspection techniques to
track and collect user browsing behavior. However, such tech-
niques violate wiretap laws that explicitly prevent intercepting
the contents of communication without gaining consent from
consumers. In this paper, we show that it is possible for ISPs
to extract user browsing patternswithout inspecting contents of
communication.

Our contributions are threefold. First, we develop a metho-
dology and implement a system that is capable of extracting
web browsing features from stored non-content based records of
online communication, which could be legally shared. When such
browsing features are correlated with information collected by
independently crawling the Web, it becomes possible to recover
the actual web pages accessed by clients. Second, we system-
atically evaluate our system on the Internet and demonstrate
that it can successfully recover user browsing patterns with high
accuracy. Finally, our findings call for a comprehensive legislative
reform that would not only enable fair competition in the online
advertising business, but more importantly, protect the consumer
rights in a more effective way.

I. I NTRODUCTION

Online advertising is a $20 billion industry that is growing
rapidly [1]. Examples of online advertising include contextual
ads on search engine results pages, banner ads, rich media
ads, social network advertising, online classified advertising,
advertising networks, and e-mail marketing. Google [2], who
originally controlled 35% of the ad server market recently
acquired DoubleClick [3], a 34% market share holder, giving
the combined online ad firm more than 69% of the market [4].

Internet Service Providers (ISPs) have for years looked on
jealousy as Google has grown rich on their subscribers’ web
browsing, while the ISPs have been reduced to “dumb pipes”,
ferrying internet traffic for subscribers but unable to win their
online spending [1]. In an attempt to reverse this trend, some
ISPs started cooperating with companies such as Phorm [5],
NebuAd [6], and FrontPorch [7]. These companies use deep
packet inspection techniques,i.e., inspect a packet payload, to
intercept web page requests and responses generated by ISPs’
subscribers as they roam the net, and then apply behavioral
ad targeting [8].

A major problem in the above arrangement between ISPs
and companies that deploy deep packet inspection based data

This work is supported by Spanish MEC project TEC2008-06663-C03-
02 (70% FEDER funds), NSF CAREER Award no. 0746360, and China
Scholarship Council.

collection systems is alegal one:1 unlike Google (not a
broadband provider), ISPs that provide broadband servicesare
not exempt from the Federal Wiretap Act, originally enacted
in 1968 to protect against phone wiretapping and amended
in 1986 to cover computer network communications. It states
a simple prohibition:thou shalt not intercept the contents of
communications (see 18 U.S.C§2411(1))[11]. Violations can
result in civil and criminal penalties.Indeed, this prohibition
has clearly been violated by deep packet inspection techniques
[12]. The law predicts several exceptions,e.g., security reasons
(see 18 U.S.C.§2511(2)(a)(i) [11]) or user consent (see 18
U.S.C.§2511(2)(d) [11]) but behavioral advertising is certainly
nowhere on the exception list.

Pressed by the legal constraints on one side, and by huge
market opportunities on the other, ISPs (e.g., [13], [14]) started
addressing the legal issue by altering their customer-service
agreements to permit monitoring by describing it as “perfor-
mance advertising services” [1]. Each company allows usersto
opt out of the ad targeting, though that permission is buriedin
customer service documents’ footnotes. Still, there is a strong
concern that these approaches opt the user out of targeted
ads, butnot the online data collection. Hence, there is a
fear that ISP-enabled ad targeting with deep packet inspection
techniques is highly vulnerable to lawsuits [15], which is why
many ISPs are reluctant to deploy this technology.

The key finding of this paper is that it is possible to design
a methodology and a system that would make ISP-based user
tracking and behavioral advertisinglegal, even without user
consent. Leaving for the moment many important implications
of this finding (that we discuss at the end of this section), we
argue that such a system could be a ’game changer’ in the
contention between established Web-based and emerging ISP-
based behavioral advertisers: it can remove the legal concerns
that currently fundamentally constrain ISP-based behavioral
ad targeting.

The main idea lies in abandoning controversial deep packet
inspection techniques and reverse engineering user browsing
patterns using alternative methods. We refer to the Electronic
Communications Privacy Act [16] which defines the sharing
of particular types of stored records of online activities.It
states that any provider can hand-overnon-contentrecords to
anyone except the government (see 18. U.S.C.§2702(c)(6)

1In this paper, we focus on the U.S. Federal Law. Still, many international
laws are similar to the U.S. Federal law [9], since laws have been harmonized
through treaty and convention [10].

2

[16]). Consequently, sharing non-content-based stored headers
— such as TCP headers — with anyone except a government
body is legal [9].

The key challenge and the main research question we
attempt to address then become if it is possible, and how
accurately and scalably, to recover user browsing access
patterns based solely on fairly limited information provided
in TCP headers? We demonstrate that web browsing patterns
stay highly visible at the TCP layer, and we design a method
to automatically extract such features. Next, we profile the
websites by extracting relevant features such as object size,
cacheability, location, link information, transfer modesetc.
Finally, we design an algorithm that correlates the two sources
of data to detect the pages accessed by clients.

We extensively evaluate our algorithm and show that it
achieves high detection rates,i.e., 86%, with false positive
rates below 5%. The fundamental reason for such performance
is its ability to extract and exploit significant statistical page
diversity available at all sites we explored. Most importantly,
we demonstrate that the algorithm is resilient to data staleness,
i.e., when either network traces or web profiles are outdated.
While the page properties necessarily change over time, we
show that a subset of unique properties remain, making the
detection resilient with time.

We further show that the approach is resistant to different
browsing scenarios including pipelining, caching, NAT-level
flow multiplexing, and various browser versions. We also
demonstrate that the algorithm scales to entire websites while
preserving high detection performance. Finally, we evaluate
our approach in the ’wild’ and successfully recover browsing
patterns based on real traces collected from a group of 17
volunteers.

II. RECOVERINGWEB BROWSING PATTERNS FROM

STORED TCP HEADERS

In this section, we introduce a methodology for recovering
web browsing patterns from the information available in TCP
headers. First, we briefly present the necessary background
on the topic. Next, we describe our approach and the corre-
sponding algorithm. Finally, we discuss a method for handling
several possible sources of error.

A. Background

A web page typically consists of aroot file and correspond-
ing object files. A root file is uniquely determined by a URI
[17]. A root file referencesother object files, orobjects, that
a given web page consists of ,e.g. images, scripts, etc. If an
object resides at the same server (determined by a unique IP
address in our approach) as the root file, we term the object
as internal. Otherwise, it isexternal.

Caching is another important Web-related mechanism. It
allows retrieving web page objects from intermediate reposito-
ries such as proxies, shared caches, or browsers. Browsers and
servers have mechanisms to decide if a given object should be
cached or not [18]. Hence, objects in a web page could be
cacheableor non-cacheable.

In addition to referencing objects, a root file typically hosts
links (pointers) to other web pages as well. They enable clients
to access other web pages “by clicking” them at a given web

page. In our approach,a given URI corresponds to a root file
if and only if there exists a link on the given web site pointing
to the given URI.Like objects, links could be external and
internal depending on the location of the corresponding root
file’s URIs.

B. Methodology

The problem we aim to solve is the following: “Given a
packet-level network trace, recover the web pages visited by
userswithout ’touching’ the packet payload.” The key idea
is as follows: (i) profile Internet websites visited by users
represented in the trace,i.e., independently crawl the given
websites and collect statistics about web pages,e.g., object
size, cacheability, locality, links among pages,etc.; (ii) extract
the Web-level communication features from the network-
level information available in TCP headers; and finally, (iii)
correlate the information from the two sources to detect web
pages actually accessed by clients.

1) Website Profiling:To accurately and comprehensively
profile a website, we develop a web crawler, which extracts
the following characteristics about the web pages at a website
that will later be used to recover actual user access patterns at
that site.

Size.A root file or an object corresponding to a given URI
could be downloaded in eitherplain or compressedmode,
depending on browsers and servers settings. Our goal is to
obtain the corresponding file size (in bytes) in both modes.

Cacheability. The HTTP response header obtained from the
server for a given URI allows the crawler to estimate if a root
file or an object is cacheable or not.

Locality. The crawler records the location of each root file
and its corresponding objects. The location could be internal,
i.e., the root file or the object is hosted at the same server
(same IP address) as the website. Otherwise, the location is
external.

References.A root file pointed to by a URI could con-
tain references to other URIs, corresponding to objects. The
crawler parses this root file and extracts a list containing these
references.

Links. A root file pointed to by a URI could contain links to
other URIs. The crawler parses this root file and extracts a list
containing these links. It further crawls URIs corresponding
to internal links,i.e., root files.

2) Extracting Web Browsing Features from Network Traces:
Here, our goal is to extract the Web-level browsing fea-
tures from network traces; in particular, the number of web
pages accessed by a client and the size and location of root
files and objects corresponding to these web pages. When
combined with the information obtained via web profiling
(Section II-B1), these features will enable recovering user web
browsing patterns (Section II-B3). We refrain from mining
packets payloads to obtain URIs accessed by clients or content
generated by servers since both approaches violate the Federal
Wiretap Act [9]. Indeed, we constrain ourselves to recording
and later inspecting TCP headers only.

One-way TCP header collection.Our approach is tailored
towards access ISPs, and it requires an ISP to record TCP
packet headers at a tapping point in the network. While it
is generally possible to obtain data in both (client-serverand

3

server-client) directions in access networks, that is typically
not the case in non-access networks due to path asymmetry
[19]. Still, our approach is applicable even in such scenarios
because it requires collecting TCP headers in asingledirection
only, i.e., from clients to servers, as we explain in detail below.
To extract HTTP level communication from the trace, we filter
out traffic on port 80 and create per source IP subtraces.

Webpage-based trace slicing.Our next goal is to further
separate each of the user subtraces into separateslices; each
slice should ideally consist of packets that correspond to a
single page accessed by a client. To achieve this goal, we
exploit the well-known Web-user behavior. In particular, it
has been shown experimentally that either a machine [20] or a
Web user [21] requires at least one second to process and react
to the display of a new page. (We experimentally verify this
result ourselves in Section IV by evaluating a representative
user browsing data set we collected.) As a result, each user
’click’ at a link on a website is followed by a period of
activity corresponding to a web page download, and a period
of inactivity corresponding to the page processing. Hence,we
use these moments of user inactivity to separate the user traces
into slices. Even when this is not the case that more than one
page can end up in a slice, our algorithm can handle this
situation as well, as we demonstrate below.

Extracting web page features.Our next goal is to extract
the size and the position (internal vs. external) of the rootfile
and the objects corresponding to a given web page associated
with a given slice. To recover these features, we inspect the
TCP packet headers corresponding to the given slice.

Three issues are considered here. First, when accessing a
web page, the corresponding root file is always requested and
downloaded first. Second, each HTTP request for any of the
web page objects is requested in aseparateset of TCP packets
except when pipelining is enabled (Section II-C2). Third, in
the vast majority of scenarios, TCP packets carrying HTTP
requests have the TCP PUSH flag set.2

To verify this behavior at a large scale, we analyze network
traces that we obtain from two Tier-2 ISPs from two different
parts of the world. In one of the traces, we collect 131,681
HTTP requests, and in the other one we collect 153,853
requests. In the first case, in more than 96% of scenarios TCP
packets corresponding to HTTP requests have the TCP PUSH
flags set. In the second case, more than 95% cases have the
TCP PUSH flags set on.3

Next, to estimate the root file and objects sizes within a trace
slice, we proceed as follows. We consider that the TCP packets
corresponding to a root file or an object are those belonging to
the same TCP connection and are delimited by two consecutive
TCP PUSH enabled packets. Once the root file and different
objects contained in every slice have been identified, we
extract their sizes from the acknowledge numbers availablein
TCP ACK packets. Finally, we determine the object location,
i.e., internal vs. external, in a straightforward way by checking

2Even when TCP PUSH flag is not set in the TCP header, HTTP requests
could be distinguished based on the TCP packet size, which isgreater than
the TCP ACK size.

3The root cause for not achieving 100% is the existence of POSTRE-
QUESTS which may have a long size and are split into several packets with
PUSH flag activated.

TABLE I
SUMMARY OF THE STEPS IN THE DETECTION ALGORITHM.

TAGGING PHASE
1) For all Ek ∈ E:

a) For all Ri ∈ R, check if S(Ek) = Sm(Ri) and L(Ek) =
L(Ri):
i) If true→ Ri = identified.

b) If only oneRi = identified→Ri = unique.
c) For all Oij , check if S(Ek) = Sm(Oij) and L(Ek) =

L(Oij):
i) If true→ Oij = identified.

d) If only oneOij = identified→ Oij = unique.
2) Build setsPR andPO with pages with identified root files / objects

respectively.
SELECTION PHASE

1) Initial set of detected pages:PD = ∅

2) If pages inPR ∪ PO contain any unique root files/objects,PD =
pages inPR ∪ PO with any unique root files/objects. End of
algorithm.

3) P ′

D
= PR ∩ PO . If P ′

D
= ∅ → P ′

D
= PR ∪ PO.

a) If S(P ′

D
) = 1, PD = P ′

D
. End of algorithm.

4) ObtainP ′′

D
selecting fromP ′

D
those pages with highest percentage

of identified objects.
a) If S(P ′′

D
) = 1, PD = P ′′

D
. End of algorithm.

5) ObtainP ′′′

D
filtering P ′′

D
with link information.

a) If S(P ′′′

D
) = 1, PD = P ′′′

D
. End of algorithm.

PO : Pages with identified objects,PR: pages with identified root files,E: set of all
elements in the trace,Ek: elementk in trace,R: set of all root files in the website,
Ri: root file i, Oij : objectj in pagei, Sm(X): size typem of root file/objectX,
S(·): size operator,L(·): location(internal/external) operator,∅:empty set.

IP address of the corresponding server.
Several issues, including the ability to estimate object

boundaries (e.g., due to pipelining) and the file size estimation
accuracy (e.g., due to variable HTTP header size), exist. We
analyze these issues in depth in later parts of the paper
(Sections II-C and III-E).

3) Detection Algorithm:Here, we present an algorithm that
correlates information obtained via website profiling (Section
II-B1) and features independently extracted from TCP headers
(Section II-B2) with the goal of detecting actual web pages
accessed by clients in the trace. The algorithm is independently
executed on eachslice of the trace. To avoid confusion, we
refer to root files and objects identified in the trace aselements.

Denote byE = {E1, E2, ..., El} the set ofl elements iden-
tified in a trace slice. Next, denote byP = {P1, P2, ..., Pn}
the set ofn web pages identified at the given website in the
web profiling phase. Further, denote byR = {R1, R2, ..., Rn}
the set of n root files associated with the identified web
pages. Also, denote byOi = {Oi1, Oi2, ..., Oim} the set of
m different objects contained in pagePi. As we explained
above, each root fileRi or object Oij can be downloaded
in either plain or compressed mode. As a result, we have
two possible values for the size of each of the root files or
objects. In particular, for a given root file or object X, denote
by S1(X) its size in the plain mode, and byS2(X) its size
in the compressed mode. Finally, the goal of the algorithm
is to determine a subset of detected pagesPD, PD ⊂ P .
The algorithm is executed in the following two phases, also
summarized in Table I:

Tagging phase.During this phase, for each elementEK

4

from the set of identified elementsE, we compare the size
S(Ek) and the locationL(Ek) (internal/external) of the ele-
ments in the trace slice separately with the size and location
of all root files and then objects in the website profile. Note
that considering the location of an element as internal/external
instead of its server IP address permits the tagging of objects
which are downloaded from CDN networks. This allows us
to identify possible candidate web pages to be selected as
downloaded. Each root file or object whose size corresponds
to that of one of the elements is tagged asidentified (Table
I, tagging phase, steps 1(a) and 1(c)). Moreover, ifEk is
identified with a single root file or a single object in their
respective comparisons, it is also tagged asunique (Table
I, tagging phase, steps 1(b) and 1(d)). Because a unique
object/root file is present in only one page of the website,
its identification makes this page a good candidate to have
been downloaded. Finally, in this phase, all the pages with
identified root files are compiled in a setPR and those with
identified objects in a setPO.

Selection phase.The selection phase takes the set of pages
PR and PO as input data and aims to decide which pages
are downloaded in the trace, and hence should be included
in PD (initially empty, Table I, selection phase, step 1). We
distinguish two different cases: (i) if unique root files and
objects have been identified in the slice, all the pages that
contain them are selected (Table I, selection phase, step 2).
Indeed, because multiple web pages might be present in the
slice (Section II-B2), selecting pages with unique characteris-
tics leads to high detection rates in such scenarios, as we will
demonstrate in Section III-E3 below. (ii) However, in case
that no unique root files or objects are identified, we make a
best effort to minimize false positives; hence, our goal is to
identify a singlepage in the slice.

We apply the following strategy. First, we consider only
those pages, if any, that are present in bothPR andPO; that
is, PR ∩ PO. Indeed, if there is an overlap between the two
sets, it is likely that a page from the overlap has been accessed.
However, if there is no overlap, we are unable to reduce the
set, and hence we consider all the pages in both setsPR∪PO.
The resulting set isP ′

D (Table I, selection phase, step 3). If
more than a single page still remain, we filterP ′

D and extract
only page(s) with the highest percentage of identified objects,
i.e., setP ′′

D (Table I, selection phase, step 4).

If several candidates still remain, we consider the user
navigation pattern. In particular, we use the simple heuristic
that if a user accesses more than a single page at a website, itis
likely that there exist links from one page (hence one slice)to
the next page (hence next slice) accessed by the client. Thus,
among the remaining candidates inith slice, we only choose
those that are linked from the pages in thePD set obtained
for the previous (i−1)th slice. The resulting set isP ′′′

D , (Table
I, selection phase, step 5). During steps 3–5, if any setP ′

D,
P ′′

D or P ′′′
D contains only one page, it is selected as the final

decisionPD (Table I, selection phase, steps 3(a), 4(a), and
5(a)). Otherwise, if several candidates still remain, theyare
all discarded in order to minimize the false positives.

C. Dealing with Sources of Errors

Here, we emphasize the key factors responsible for false
detection. First, we summarize the key elements that lead to
inaccuracies in a web object size estimation. Then, we outline
other factors that can impact detection accuracy. We evaluate
all these factors and their impact on the detection accuracyin
Section III.

1) Object Size Estimation:The estimate of an object (or
a root file) size obtained (i) via website profiling (Section
II-B1) and (ii) via TCP-level headers (Section II-B2) can be
different. Whenever such a difference occurs, the probability
that the algorithm will make a false decision increases. The
key factor contributing to the difference in the estimated object
size is the potential variability in the HTTP header size. We
provide several examples below.

First, an HTTP request may include a cookie. Although
the size of a cookie is usually constant, in some cases its
length depends on a seed used for its generation, which might
involve parameters such as nonces, timestamps, or source IPs.
In order to reduce the amount of false positives due to cookies,
our crawler considers two different sizes for those pages that
return a cookie: one taking into account the cookie size and
another without it.

Second, an object might be downloaded using the chunking
transfer mode [18]. Indeed, when a server does not know
in advance the total size of the content that it is sending,
the sender breaks the message body into chunks of arbitrary
length, and each chunk is sent with its length prepended [18].
Hence, the complete size of the object depends on the number
of chunks used and their own size. As a result, it can happen
that subsequent requests to the same non-cacheable objectson
the same site can generate different HTTP header sizes.

2) Other Sources of Error:Here, we outline other factors
that can lead to detection inaccuracies.

Dynamic website behavior. Websites can change over time.
For example, a site administrator can modify the content
of a given page. The relevant question thus becomes: How
frequently do root files or objects at a website change, and
how does that affect the ability of the algorithm to detect such
pages? We explore this issue in depth in Section III-D below.

Pipelining. HTTP1.1 proposes pipelining,i.e., send subse-
quent HTTP requests within a single TCP connection without
waiting for the corresponding HTTP responses. This approach
blurs the visibility of object boundaries at the TCP level
and complicates the corresponding web object size estimation.
While pipelining is not widely spread in the Internet, as we
demonstrate later in the paper, a relevant question is how our
algorithm performs when pipelining is enabled. We explore
this issue in Section III-E1.

Caching. All objects belonging to a page are not always
downloaded from the server. While we explicitly address this
issue in the algorithm, the question is how does this mecha-
nism affect its accuracy We explore this issue in Section III-E2.

Overlapping page downloads. Several factors can generate
so-called overlapping page downloads to appear in a single
trace slice. First, inter-click estimation might not always be
fully accurate. Hence, it can happen that two or more web
page downloads from the same website can end up in the

5

same trace slice. Second, when Network Address Translation
(NAT) boxes are used, a number of clients behind the NAT
will have the same source IP address visible at the tapping
point. While accurate per-client trace slicing is still feasible
using destination (server) IP addresses, it is possible that at
given time intervals, one or more clients behind the NAT
concurrently access the same website. Third, a single user can
(nearly) concurrently access several pages at a single website.
All these issues lead to the overlapping page downloads effect.
We explore our algorithm’s performance in such scenarios in
Section III-E3.

Spurious requests.During the navigation process, certain
spurious HTTP requests that do not correspond with a page
download can be generated. These are mainly caused by
client web-based applications,e.g., Google toolbar, live search
toolbar, or by AJAX scripts embedded in web pages. In some
cases, these requests can be filtered by considering the usual
destination IP addresses,e.g., Google server. AJAX scripts, on
the other hand, are a well-known challenge even for the latest
commercial crawlers. Hence, these requests will interferewith
the detection process generating false positives.

III. EVALUATION

Here, we evaluate our approach in a number of challenging,
yet realistic scenarios. In particular, we explore the resilience
of our algorithm when either a web profile or a network trace
is outdated. Then, we explore the issues of pipelining, caching,
overlapping page downloads, and the browser diversity.

A. Experimental Setup

Before presenting the performance evaluation, we first ex-
plain how we obtained two necessary datasets – crawled
website logs and TCP-level traces. To emulate a realistic setup,
in which the two datasets are typically obtained from two
different points in the network, (i.e., TCP-level traces collected
from an ISP network, and crawled logs by a different set
of machines). In all scenarios, we use a crawling spider we
designed to profile the websites; we generate network traces
using theFirefox 3.0.5 browser, with default parameters,
i.e., caching enabled and pipelining disabled. We explore other
browsers and parameter settings in Section III-E4 below.

Website profiling.We select six representative websites,
which are The New York Times (www.nytimes.com), FC
Barcelona (www.fcbarcelona.com), IKEA (www.ikea.com),
Toyota (www.toyota.com), Northwestern University
(www.northwestern.edu, Univ1), and University of Granada
(ceres.ugr.es, Univ2). Some of them adopt CDN techniques,
e.g., Nytimes, IKEA, and Toyota; while others host their
content by themselves. While this is certainly a small
fraction of the Web, our key goal is to understand in-depth
performance of our algorithm in diverse scenarios in which
either CDN is involved, or web profiles are outdated, or TCP
traces are stale (See details in Section III-D). In the next
section, we perform experiments in the ’wild’ and evaluate
our algorithm by crawling a larger number of websites.

In each of the sites, we crawl a subset of pages,i.e., 2,000
web pages (except for Univ2 which has less than 2,000 pages).
We select this threshold because it enables us to crawl all six
websites within a 24 hours interval. This helps us to understand

 0

 20

 40

 60

 80

 100

 120

Nytimes Barcelona IKEA Toyota Univ 1 Univ 2

P
ag

es
 [%

]

Pages with Unique Objects

Pages with Unique Root Files

Pages with Unique Objects or Root Files

Fig. 1. Sites statistics

how our algorithm performs when either a web profile or a
network trace is outdated, an issue that we explore in depth
in Section III-D below. Finally, in order to understand how
the size of a website impacts the results, we crawl one of the
websites in full in Section III-F.

TCP-level traces.To obtain TCP-level traces (using the
Wireshark tool [22]), we emulate user behavior by creating
quasi-random walks over 100 out of the 2,000 pages at a
website; we call these 100 pagestest pages. In particular,
we at random select a page out of the 2,000 pages; then, we
randomly select the next page from the set of pages that the
given page links to. When no links exist from a given page,
we randomly select another page from the set, and continue
the quasi-random walk until we collect 100 pages. Finally,
we compute detection statistics as we explain in Section
III-C below. For all experiments, we collect ten independent
test sets, and show averages. We move beyond emulation in
Section IV and deal with real user browsing traces.

B. Site Uniqueness

Here, we show the statistics for unique-size root file and
object in the six websites. Such files are invaluable in the
detection process since their presence in a trace uniquely
identify a web page.

Figure 1 shows the percentage of pages with unique objects,
unique root files, and with either unique objects or unique
root files. The figure shows that the percentage of pages with
unique objects is high, except for the two universities. This is
because commercial or news websites are usually rich with
pictures and other objects, which dramatically increase the
page diversity. For example, in the IKEA website, many pages
have a unique picture showing different products.

The figure shows that the percentage of pages with unique
root files is enormous in all web sites. Indeed, even when the
web pages share the same template, they still have different
text resulting in different root file sizes. Moreover, the per-
centage of pages that either have unique size objects or unique
root files is necessarily even higher. These high percentages
indicate that the use of unique-size objects or root files is a
powerful feature.

We use these statistics to explain the basic performance of
our algorithm. In particular, from the statistical point ofview,
the percent of pages with unique objects could be considered
as the (loose) lower bound of the expected success rate, and

6

 0

 20

 40

 60

 80

 100

Nytimes Barcelona IKEA Toyota Univ 1 Univ 2

P
er

ce
nt

ag
e

[%
]

Succ. Rate

False Positives

Fig. 2. Basic performance of the detection algorithm

the percentage of pages with unique size objects or unique
root files is considered as the (loose) upper bound.

C. Basic Performance

Here, we explore the performance of our algorithm for the
six websites. We apply the methodology explained in Section
III-A above, i.e., use 100-page long test sets to compute the
success rate, false positives and negatives. In the figures here
and in the rest of the paper we show the success rate and
false positives. (False negatives could be computed as 100%
- success rate (%)).

Figure 2 shows the results. We make several observations.
First, the success rate is around 86% on average over the
websites, and false positives are below 5%. In all cases, the
success rate is above the lower expected bound, as we pre-
dicted above. Moreover, in certain scenarios (IKEA, Toyota,
Univ1, and Univ2), the performance is even above the upper
expected bound. This is because we made expectations only
based on the site uniqueness. Still, other issues, such as the
use of link information, can further improve the results even
in scenarios when no unique items are detected at a website.

The performance for Barcelona and Nytimes is approx-
imately between upper and lower bounds. In both cases
the reason for not reaching the upper-bound performance is
due to effects explained in Section II-C1. In particular, we
experienced increased chunking-mode transfers in the Nytimes
case for root files. Nevertheless, other factors, such as unique
objects, the percent of identified objects and link relationships,
keep the performance above the lower expected bound. As an
example, in the Nytimes case, success rate of 84% (Figure 2)
surpasses the lower expected bound of 71% (Figure 1).

D. The Role of Time Scales

Both network traces and web profiles could be outdated
for a number of reasons. For example, several days might
pass until an ISP ships its traces to an advertising company.
Likewise, crawling the Web is an exhaustive process. Hence,
several days or more can pass until a crawler revisits a site and
updates its profile. Here, we evaluate how these issues impact
the accuracy of our algorithm.

Methodology. We select 100 pages as thepreliminary test
set for each website in the first day of the experiment. Then,
we crawl the given sites once a day for one week, and collect a
new 2,000 pages profile each day for each of the sites. Because
some of the websites change over time, the 2,000 pages that

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7

of

 o
ve

rla
pp

in
g

pa
ge

s

Days

Nytimes
Barcelona

IKEA
Toyota
Univ 1
Univ 2

Fig. 3. Evolution of the number of overlapping pages during aweek.

we obtain are not always the same. As a result, the initial test
set also reduces in some cases. Although the pages crawled
on the first day typically still exist on the website, our limited
crawling process does not manage to download these pages.
Hence, we proceed in two steps. First, we determine the pages
that exist during the entire period and consider them as afinal
test set. Second, we explore how the pages in the final test set
change over time.

Figure 3 illustrates that, during the seven day period, the
number of overlapping pages stays the same in Toyota and
universities, suddenly dives a bit in Nytimes and Barcelona,
and gradually decreases in IKEA. Again, all the web pages
from the first day are typically available on the web site, the
overlap decrease is due to the limited number of crawled pages
and the addition of new pages. More specifically, Toyota’s
updates are relatively the slowest as its products are usually
coming out over longer time scales. On the other side, Nytimes
may add many pages in its website in one day, which leads
to a huge shrink in the overlapping size. IKEA, as an in-
between case, slowly updates its website and hence the number
of overlapping pages decreases at the same pace. As a result,
for Nytimes, Barcelona, and IKEA cases, the size of the final
test set is 81, 76, and 98 pages respectively, while for Toyota
and universities cases, the size is 100 pages.

Finally, we divide the six websites in two categories. The
first one includes sites that have the final test set less than
100 pages (Nytimes, Barcelona, and IKEA). For this set, we
capture the TCP-level trace at the last day of the experiment
(day 7 in Figure 3). The second set includes sites that have
the final test set equal to 100 pages (Toyota and universities).
For this set, we capture the TCP-level trace at the first day of
the experiment (day 1 in Figure 3). In the former scenarios,
the website profiles are out of date. In the latter scenarios,the
TCP-level traces are stale. In the experiment, we compare the
TCP-level traces with web profiles taken during the seven day
period.

Performance. Figures 4(a) and 4(b) show the success and
the false positive rates (computed over the final test) as a
function of time. The reference point in each figure (day 0)
corresponds to the time when TCP-level traces are obtained.
As a result, day 0 in Figure 4(a) corresponds to day 1 in
Figure 3. Likewise, day 0 in Figure 4(b) corresponds to day
7 in Figure 3.

Figure 4 provides three insights. First, in Toyota and the
universities (Figure 4(a)), the success rate stays almost con-
stant; in other scenarios (Figure 4(b)), the success rate changes
marginally. For example, the success rate of Barcelona drops

7

 20

 40

 60

 80

 100

0 +1 +2 +3 +4 +5 +6

P
er

ce
nt

ag
e

[%
]

Days

(a) Traces are outdated

Succ. Rate of Toyota
Succ. Rate of Univ 1
Succ. Rate of Univ 2

False Positives of Toyota
False Positives of Univ 1
False Positives of Univ 2

 20

 40

 60

 80

 100

-6 -5 -4 -3 -2 -1 0

P
er

ce
nt

ag
e

[%
]

Days

(b) Profiles are outdated

Succ. Rate of Nytimes
Succ. Rate of Barcelona

Succ. Rate of IKEA

False Positives of Nytimes
False Positives of Barcelona

False Positives of IKEA

Fig. 4. Success rates and false positives as a function of time

 0

 2

 4

 6

 8

 10

0 +1 +2 +3 +4 +5 +6

C
ha

ng
e

R
at

e
[%

]

Days

(a) Traces are outdated

Root File Size of Toyota
Root File Size of Univ 1
Root File Size of Univ 2

Object Size of Toyota
Object Size of Univ 1
Object Size of Univ 2

 0

 20

 40

 60

 80

 100

-6 -5 -4 -3 -2 -1 0

C
ha

ng
e

R
at

e
[%

]

Days

(b) Profiles are outdated

Root File Size of Nytimes
Root File Size of Barcelona

Root File Size of IKEA

Object Size of Nytimes
Object Size of Barcelona

Object Size of IKEA

Fig. 5. Change rate

from 88% to 87%. Second, in all cases, the success rates reach
the peak on the day when the test TCP-level trace is collected
because the properties of root files and objects in the crawled
profiles are more likely to be the same as those in the TCP-
level trace on the same day. Third, besides the success rates,
false positives are also resilient with time. In Figure 4(a)the
change rate of false positives remains same; In Figure 4(b)
the false positives change smoothly; for example, in the IKEA
case, the minimum is 5% and the maximum is 6%.

Change rates. To understand the causes of the above
observations, we explore the change rates of root files and
objects size. In the experiment, we compare the root files and
objects size of pages in the final test set with web profiles
taken during the seven day period. We define the change rates
as the percentage of inconsistency of root files or objects size
between the final test set and web profiles. We also consider
the objects that are permanently removed from the given pages
as changed,i.e., their size becomes zero.

Figure 5 shows the root file and object change rate as a
function of time. The first finding is that the change rate of
both root files and objects is much smaller in Figure 5(a)
than in Figure 5(b). This is caused by the same reasons
discussed with respect to Figure 3 above. For example, in
the Toyota case, the web administrators update their web
news if some new products are available in the market, which
typically happens over longer time scales. On the contrary,
the websites are updated much more frequently for news and
other commercial websites such as Nytimes, Barcelona, and
IKEA.

Second, the change rate increment is the largest within one
day from when the traces are taken,i.e., day +1 in Figure 5(a)
and day -1 in Figure 5(b). After that, there is almost no
change,i.e., for days 2 – 6 in Figure 5(a) and days -2 – -6 in
Figure 5(b). This is because a part of pages, like main pages,
updating the top-line news or the latest product promotionsat
commercial websites is typically updated frequently, not all
the pages.

Finally, in all cases, the change rate of root files is higher
than the objects size change rate. For example, In Nytimes
case, the root files change rate of 60% highlights the above fact
that news web pages, particularly the text part, are frequently
updated. At the same time, the change rate for objects is
less than 3% at day -6. Thus, despite a highly dynamic site
behavior, our algorithm is capable of accurately detectingthe
given web pages with high accuracy, as we demonstrated in
Figure 4. This is because a subset of web pages’ unique
properties remain consistent over time.

E. Different Browsing Scenarios

Here, we explore different browsing scenarios. Thus, we
evaluate how (i) pipelining, (ii) caching, (iii) overlapping
page downloads, and (iv) different browsers affect the per-
formance. The first three experiments thus far are conducted
using theFirefox 3.0.5 browser with its default settings,
i.e., caching enabled and pipeli-ning disabled by default. We
conduct all experiments on the Toyota server, using the above
methodology. To avoid dynamic effects explored above, we
collect all traces on the same day.

1) Pipelining: We first explore how widely pipelining is
spread in the Internet by analyzing a Tier-2 network trace
with 153,583 HTTP requests. We identify the existence of
several HTTP requests in a same TCP segment as a pipelining
signature. Our results show that the percentage of pipelined
segments is smaller than 1%, while the percent of users that
use browsers with pipelining enabled is around 2% of the total
number of users (in terms of source IP addresses).

Despite low usage of pipelining, clients might be temp-
ted to enable this feature in order to prevent ISP-based ad
targeting. We explore whether such an attempt would be
successful.

Table II shows the results. We can see that there is only
a slight difference in the results, as the success rate degrades
by 1% only. The reasons are the following. First, the fact that
a browser enables pipelining does not imply that all HTTP

8

TABLE II
PERFORMANCE EVALUATION FOR DIFFERENT BROWSING SCENARIOS

Scenario Success rates False positives
Pipelining disabled 89% 4%
Pipelining enabled 88% 4%

Cache disabled 90% 4%
Cache enabled 89% 4%

Sequential 89% 4%
Parallel-two 74% 7%
Parallel-four 63% 8%

requests will be pipelined (for performance reasons), but only
a subset of them. Indeed, only 12% of the TCP segments
containing HTTP requests are really pipelined by the browser.
As a result, the bulk of the objects sizes are correctly identified.
Second, even if larger percents of objects would be pipelined,
the requests for root files cannot be pipelined. This is because
a browser does not know in advance which objects to fetch
before it downloads the root file. Hence, high detection rates
are still feasible.

2) Caching: In this experiment we evaluate the effects of
browser caching mechanisms. We consider two scenarios: (i)
navigation without caching, in which we disable the cache in
the browser and (ii) navigation with caching, in which we
enable the cache in the browser.

Table II shows the results for the two scenarios. As ex-
pected, we can see that results when cache is disabled are
better, i.e., the success rate increases to 90%, while false
positives remain unchanged relative to the caching scenario.
The slight improvement in the performance is due to the fact
that the existing non-cacheable elements (typically all root
files and a subset of objects) already create a strong inter-page
diversity. Nevertheless, more information in the non-caching
scenario produces a better result.

3) Overlapping Page Downloads:Overlapping page down-
loads means that more than one web page might end up
in a single trace slice. For example, this can happen either
due to NAT-induced effects or inaccurate inter-click time
estimation. While we show in the next section that none of
the two effects are likely to happen, we nevertheless explore
our algorithm’s performance in this case. For this, we have
emulated the download of a test set of pages with three
different navigation patterns: (i) pages have been downloaded
without overlapping (sequential browsing), (ii) two different
pages are downloaded simultaneously (parallel-two browsing),
and (iii) four different pages are downloaded simultaneously
(parallel-four browsing).

Table II shows the results. As expected, the performance is
the best in the sequential case, when there is only a single page
in a slice. While the success rate necessarily degrades whenthe
number of pages increases per slice, it is still quite reasonable
(74% in parallel-two and 63% in parallel-four). These results
are mainly due to the step 2 of the selection phase (Table I),
which takes advantage of unique root files and objects from
multiple pages.

4) Different Browsers: We experiment with different
browsers. In particular, we obtain different traces us-
ing Firefox 3.0.5, Internet Explorer 7.0, and
Google Chrome. All the browsers disable pipelining and
enable caching. We have not found any differences in the
performance of the algorithm when using the three traces

obtained. This implies that our approach is independent from
different browser types.

F. Scaling the Website Profile

To evaluate how our approach behaves with increased
website profile, we crawl the entire Toyota site and download
9,211 pages. Then, we repeat the experiment by repeating the
procedure explained above.

Our results show that the success rate is resilient with the
increase of the website profile. More specifically, the success
rate of Toyota reduces from 89% to 81%. At the same time,
the false positives increase from 4% to 7%. We investigate this
result in more depth, and find that 78% of pages have either
unique size objects or unique root files, while this percentage
was about 88% when the website profile was 2,000 pages long
(Figure 1). Additionally, each page in Toyota site has 97.3
links on average which reduces the ability of our algorithm to
sweep out many incorrect results.

IV. PERFORMANCE IN THEWILD

Here, we move away from the controlled environment in
which we generate the test pages using quasi-random walks
over the six websites. We evaluate our approach by using real
user browsing patterns at websites of their own choice.

We collect URI-level traces from 17 volunteers (with their
consent) from USA, Europe and Asia during 1 month. These
traces contain users’ anonymized identifications, as well as the
visited URIs and their corresponding timestamps. From this
information, we select 41 different websites with the highest
number of requests. For each website we build its profile by
crawling up to 2,000 pages. Then, we choose the list of URIs
as the test set in our experiment. A TCP level trace is obtained
by replaying the user navigation patterns (visited URIs and
timestamps) within these sites.4

In this experiment we obtain a success rate of 85%. This
result demonstrates that our approach indeed works well in
the wild. Besides, the false positive ratio is 9%, slightly more
than the result obtained in the controlled environment.

NAT behavior. To understand NAT-like behavior, we further
explore URI-level traces from ten people from the same local
network. We study the requests sent to the most popular
website (a total of 16,756 requests) to discover the number
of simultaneous accesses based on their timestamp. These
simultaneous petitions generate what we have called overlap-
ping pages downloads (Section III-E3). Considering that this
happens when more than one user accesses the most popular
site within the same second, we find that only 0.44% of
the accesses are simultaneous. In summary, the presence of
NAT boxes will not degrade the performance of our detection
method since its impact is small.

Inter-click time. Finally, we verify the inter-click time
statistics in order to validate our choice of 1 second for slicing
the trace (Section II-B2). We process 297,885 timestamps in
total and 94.53% of them have the inter-click time larger than
1 second.

4We compress all inter-access times longer than one minute toone minute.

9

V. RELATED WORK

Our work relates to the security research efforts aimed
towards analyzing and inferring encrypted web browsing
traffic [23], [24], [25], [26]. The authors of these papers
have demonstrated that it is feasible to reveal the sources
of encrypted web traffic despite encryption. In light of this
finding, they further analyze additional mechanisms that can
help secure such communication. The key differences between
our work and this thread of papers are three-fold. (i) We
have shown that there are strong incentives to reveal user
browsing patterns even when they are not encrypted. As a
result, the scope of the problem changes from the one covering
a small fraction of encrypted web pages on the Web to the
entireWeb ’landscape’. This dramatic change of scope in turn
fundamentally impacts both (ii) our methodology and (iii) the
range of potential counter mechanisms, as we elaborate below.

Regarding methodology, our approach differs from the
security-oriented related work in three aspects. First, because
we operate in the ’wild’, unlike previous work, we consider
multiple web features characteristic for ’open’ web communi-
cation. This includes object location, uniqueness, cacheability,
link information, different transfer modes, distinction between
root files and objects,etc., to characterize web pages. Second,
we add mechanisms that consider possible sources of error that
are inevitably created by the state-of-the art web practices (see
Section II-C). Finally, contrary to previous work (e.g., [26])
that has severe scalability issues, our approach can effectively
scale. Indeed, we have demonstrated that it is feasible for an
ISP to successfully collect TCP headers (and recover user
browsing behavior) anywhere in the network, even behind
a proxy or a NAT (Section IV). In addition, because the
destination IP address is known in the advertising case, we
effectively reduce the scalability problem from the entireweb
space to asingle web server. Moreover, because we are
capable of statistically characterizing a website in a more
comprehensive way, we effectively scale the detection process.

VI. CONCLUSIONS

In this paper, we showed that it is possible to recover
user web browsing patternswithout inspecting the packet
payload. By extracting HTTP-level ’reflections’ availableat
the transport layer, and by profiling web sites in a compre-
hensive way using root files, objects, different transfer modes,
linking information, cacheability, and locality, we designed
an algorithm capable of effectively merging the two data
sources and discovering web pages accessed by clients. We
extensively evaluated our methodology on the Internet using
both emulation and real user browsing patterns.

Our key insights are the following: (i) The development of
the Web in recent years,e.g., rich image mixtures and the use
of CDNs, has created a significant statistical diversity among
web pages at a website, making them highly identifiable. (ii)
The page identifiability remains high even when a trace from
an ISP is outdated, or when the web profile is not fresh due
to crawling limitations. Even though the page features can
dramatically change over time, we showed that a sufficient
subset of identifiable features does stay available. (iii) The
detection process is resilient to a number of challenges, in-
cluding pipelining, caching, NAT-level multiplexing, different

browser types, and it effectively scales. (iv) Endpoint-based
countermeasures are highly limited; not only because it is
hard to comprehensively cover rich inter-page diversity, but
because websites have no incentives to apply such counter-
measures since they are one of the primary beneficiaries of
the advertising business.

In the broader context, we hope that this paper will open
discussion in at least some of the topics below: (i) Internet
advertising business needs more fairness, and our work here
is a step in that direction,i.e., it enables fair competition
among different providers, independently from the type of
service they are providing or their location on an end-to-end
path. (ii) Consumer rights must be protected, and we argue
that this can only be done via a modern legislative reform.
(iii) The networking research community should not become
a ’collateral damage’ of such a reform; on the contrary, this
could be an opportunity to specify data sharing practices for
academic research in a more liberal way.

REFERENCES

[1] “Washingtonpost.com: Every click you make,” http:
//www.washingtonpost.com/wp-dyn/content/article/2008/04/03/
AR2008040304052.html.

[2] “Google,” http://www.google.com/.
[3] “Double click,” http://www.doubleclick.com/.
[4] “Internet marketing news: Doubleclick deal means Google controls 69%

of the online ad market,” http://www.browsermedia.co.uk/2008/04/01/
doubleclick-deal-means-google-controls-69/-of-the-online-ad-market/.

[5] “Phorm,” http://www.phorm.com/.
[6] “NebuAd,” http://www.nebuad.com/.
[7] “Frontporch,” http://www.frontporch.com/.
[8] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen, “How much

can behavioral targeting help online advertising?” inWWW ’09.
[9] P. Ohm, D. Sicker, and D. Grunwald, “Legal issues surrounding moni-

toring during network research (invited paper),” inACM IMC ’07.
[10] “Convention on cybercrime, Budapest, 23.XI.2001,” http://conventions.

coe.int/Treaty/EN/Treaties/HTML/185.htm.
[11] “18 united states code 2511,” http://www4.law.cornell.edu/uscode/html/

uscode18/uscsec 18 00002511----000-.html.
[12] “ISP behavioral targeting v. you,” http://www.seoserpent.com/2008-09/

isp-behavioral-targeting/.
[13] “Embarq,” http://www.embarq.com/.
[14] “Wide open west,” http://www1.wowway.com/.
[15] “Behavioral advertising could be illegal: NebuAd leaves ISPs vulnerable

to wiretap, privacy laws,” http://www.dslreports.com/shownews/94578.
[16] “18 united states code 2702,” http://www.law.cornell.edu/uscode/html/

uscode18/uscsec 18 00002702----000-.html.
[17] T. Berners-Lee, R. Fielding, and L. Masinter, “UniformResource

Identifier (URI): Generic syntax,” Jan. 2005, Internet RFC 3986.
[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext Transfer Protocol - HTTP/1.1,”Jun. 1999,
Internet RFC 2616.

[19] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iPlane: An Information Plane for
Distributed Services,” inOSDI ’06.

[20] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: Evidence and possible causes,”IEEE/ACM Transactions on
Networking, vol. 5, no. 6, Dec. 1997.

[21] B. A. Mah, “An empirical model of HTTP network traffic,” in INFO-
COM ’97.

[22] “Wireshark,” http://www.wireshark.org/.
[23] H. Cheng and R. Avnur, “Traffic analysis of SSL encryptedweb

browsing,” 1998.
[24] A. Hintz, “Fingerprinting websites using traffic analysis,” in Workshop

on Privacy Enhancing Technologies ’02.
[25] M. Liberatore and B. N. Levine, “Inferring the source ofencrypted http

connections,” inACM CCS ’06.
[26] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and

L. Qiu, “Statistical identification of encrypted web browsing traffic,” in
IEEE Computer Society SP ’02.

