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Abstract—Today’s webpages development cycle consists of
constant iterations with the goal to improve user retention,
time spent on site, and overall quality of experience. Big
companies like Google, Facebook, Amazon, etc. invest a lot of
time and money to perform online testing. The prohibitive costs
of these approaches are an entry barrier for smaller players.
Further, the lack of a substantial user-base can be problematic
to ensure statistical significance within a reasonable duration.
In this paper we propose Kaleidoscope, an automated tool to
evaluate Web features at a large scale, quickly, accurately, and
at a reasonable price. Kaleidoscope can test two crucial user-
perceived Web features – the style and page loading. As far as
we know, it is the first testing tool to replay page loading by
controlling visual changes on a webpage. Kaleidoscope allows to
concurrently load a webpage in two versions (e.g., different fonts,
with vs without ads) that are shown to a participant side-by-
side. Further, Kaleidoscope also allows a participant to interact
with each webpage version and provide feedback, e.g., respond
to a questionnaire previously prepared by an “experimenter”.
Kaleidoscope supports both voluntary and paid testers from
FigureEight, a popular crowdsourcing platform. Using hundreds
of FigureEight testers, we validate that Kaleidoscope matches the
accuracy of trusted in-lab tests while providing results about 12x
faster (and arguably at a lower cost) than A/B testing. Finally,
we showcase how to use Kaleidoscope’s page loading feature to
study the user-perceived page load time (uPLT) of a webpage.

I. INTRODUCTION

The Web has become a de-facto way for billions of people
to access the Internet. How to satisfy website visitors has
consequently become a key concern for Web developers. To
achieve this goal, developers (re)design websites over and over.
For example, font sizes are changed to improve a website
readability, new buttons are introduced or moved around, ads
are placed in new strategic locations, etc. At the same time,
there’s been a lot of efforts by both industry [7], [9], [10] and
academia [14], [15], [26], [30] to study how to improve Web
Quality of Experience (QoE).

Web developers often leverage data-driven decision making
methods to converge towards a successful website design. For
example, if increasing the font size produces an overall in-
crease in the time users spend on site, the change is considered
successful. However, the whole process of data-driven decision
making, including collecting data, extracting patterns and facts
from the data, and utilizing those facts to make inferences
that influence decision-making, becomes very difficult due to
the complexity of websites. Big companies (e.g., Google and

Facebook) spend a lot of time (and money) to perform online
testing (e.g., A/B testing) and slow releases [45], [49]. These
approaches lie on the assumption that, with a large enough
user-base, a statistical analysis will provide some insights on
which feature is better perceived by a website customer base.
Nevertheless, Megahan et al. [35] show that only 1 out of 8
A/B tests produce statistically significant results.

Such online testing approaches are not quite suitable for
less popular websites or researchers, due to the lack of user
base and prohibitive cost. In-lab testing is a common alterna-
tive, where participants are invited to interact with different
versions of a website and then a questionnaire is proposed.
For researchers, bulletin boards in school campuses are the
main way to recruit such participants either for the love of
science or for potential rewards like Amazon gift cards [37].
This approach is fairly labor intensive and time consuming,
and it suffers from an inherent scalability limitation.

However, developing such an automated testing tool is
challenging. First, it should be able to test any Web parameters
including both styles and page loading at the same time at
scale. Previous tools [34], [51] can only test single parameter
due to the design limitation. For example, Eyeorg [51] can test
user-perceived page load time by showing videosof loading
webpages. Other style parameters (e.g., font size, etc.) cannot
be tested at the same time since the video may change these
parameters. The font size could be changed when we change
the video size. Second, the whole process of the tool should
be fast, credible and cost little. An ideal tool should be as
credible as the in-lab test, and as fast and low cost as the
crowdsourcing test. Third, the testing tool should be easy to
use for both developers and testers. A simple and powerful
tool can help both developers and testers to save time in the
test. Developers can concentrate more on Web developing and
testers can do more tests within a limited time.

The goal of this work is to build an automated tool to test a
website features (font, overall appearance, speed, etc.) quickly
and confidently at a large scale with little cost. Our key idea is
to build a controlled testing environment within the browser
and leverage remote crowdsourced testers. This tool should
take as input N versions of a website, target demographics,
target Web page load, and a questionnaire. It would then
automatically construct the measurement task and collect the
testing results.



Fig. 1. An integrated webpage in Kaleidoscope, the left is a a version of the
webpage and the right is another version

We realize the above idea with Kaleidoscope, to the best
of our knowledge the first automatic testing tool which can
evaluate nearly all Web features (e.g., font size, font color,
image style, layout, page load, etc.) at a client side. Kalei-
doscope realizes the above “controlled testing environment”
within the browser via a browser extension1 which fetches
N versions of a website to be tested, and locally stores
them on the tester machine. This ensures that, regardless
of a tester’s connectivity, website versions are consistently
loaded. Further, it allows fine-grained control on the “speed”
at which Web objects are loaded thus emulating different test-
ing conditions (e.g., “network profiles”). Next, Kaleidoscope
implements side-by-side loading [44], [53] to facilitate the
tester’s job when offered two different versions of a website
under test. This is realized by having the browser extension
loading up both versions of a webpage via two iframes (see
Figure 1) while respecting the network profiles under test.
Tester feedback is collected via customized questionnaires
after each test. Kaleidoscope supports both voluntary testers,
e.g., colleagues and friends, and paid testers recruited from
popular crowdsourcing platforms like FigureEight [11] and
Amazon Mechanical Turk [1].

We first evaluate Kaleidoscope by comparing its accuracy
with in-lab testing realized via trusted participants. We study
a classic Computer Human Interface (CHI) question [16],
[19], [36], [38], [41]–[43]: What is the best font size for
online reading?” Using the Wikipedia webpage, we change
the main text to 5 different font sizes ranging from 10 up
to 22pt. The experiment verifies that Kaleidoscope matches
the accuracy of trusted in-lab tests, and both studies show
the similar preference trends of font size for online reading.
Next, we evaluate Kaleidoscope’s accuracy when compared to
classic A/B testing. In this case, we generate a new version
of our group webpage and test it both via Kaleidoscope and
A/B testing, separately. We find that Kaleidoscope is much
faster (more than 12 times faster in this case) than A/B testing,
and Kaleidoscope can reach to a more statistically significant
result relative to A/B testing. At the end, we show the page
load feature of Kaleidoscope with a Wikipedia webpage. We

1https://chrome.google.com/webstore/detail/kaleidoscope/
kepcffndaflpplpdenjhmepadhjjcbpc

set different showing time for different parts of the webpage,
and conduct the experiment to study which parts are more
important to improve user-percieved page load time (uPLT).
The result indicates the main text content is more important
contrasting with the other auxiliary content (i.e., the navigation
bar) in improving uPLT.

In providing a comprehensive solution for testing Web
features at a large scale, we make the following contributions.

• We present Kaleidoscope, the first crowdsourcing testing
tool, implemented through browser extension, to evaluate
Web QoE at a client side at a large scale.

• Kaleidoscope can test any front visual Web features
including but not limited to layout, font, font size, line
spacing, image, background, color, etc.

• Kaleidoscope is the first testing tool for developers to
replay the page loading with considering visual loading
features (e.g., speed index, above-the-fold time, user-
perceived page load time) on a real webpage.

• We devise a set of quality control methods for Kaleido-
scope to ensure the testing result quality, including hard
rules, engagement, control questions, etc.

• Extensive experiments are conducted to show how Kalei-
doscope can help small entities to test Web at scale
quickly and accurately with low costs. Besides, Kalei-
doscope does not impact websites’ revenues and normal
operations since we do not modify direclty on the running
websites.

The remainder of this paper is structured as follows. Sec-
tion II introduces some background and motivate our work.
In Section III, we detail Kaleidoscope’s design and imple-
mentation. Section IV extensively evaluates Kaleidoscope’s
performance. Section V summarizes the state of the art, and
we finally concludes the paper in Section VI.

II. BACKGROUND AND MOTIVATION

In a Web context, A/B testing or split testing consists of
generating two competing versions of a webpage and analyze
how they perform, e.g., if they get served faster, attract more
customers, etc. Let’s assume that a website decides to test
a new template for its landing page. With A/B testing, half
of the traffic is shown the original version of the page (the
control) and half is shown the modified version of the page
(the variation). Over time, statistical analysis of, for example,
engagement data sugwgests whether the variation is successful
or not.

Many variations of A/B testing are possible. For example,
users can be regular visitors (as in the above example) or
paid participants; explicit questions can be asked or statistical
analysis might be needed to draw some conclusions from
an A/B test. A/B is a fundamental component of the Web
development cycle to ensure that every change to a website
produces positive results. However, it also suffers from some
well-know limitations that we discuss next.

Data collection and analysis— The positive/negative outcome
of a variation is computed using different metrics which



depends on the variation under test. For example a protocol
change like switching from http/1.1 to http/2.0 is measured by
the page load time, or how fast a webpage is loaded. A novel
marketing strategy would instead be measured in terms of the
number of clicks, time spent on site, etc. This implies a non-
negligible effort in designing the data collection and analysis
associated with each specific A/B test. Therefore, A/B testing
is not a panacea, and not all answers can be found via it. This
effort is simplified in presence of in-lab experiments where
direct questions can be asked to some (paid) participants. The
drawback here is, however, the high cost, logistic complexity,
and limited scale.

Negative impression— The extent and duration of A/B testing
can leave a permanent mark on a website. Users might be
drawn away from unsuccessful A/B tests, and search rank
might also be impacted. For the latter, Google has highlighted
some precise guidelines to be respected when doing A/B test-
ing, e.g., avoid abusing cloaking [39], duration recommenda-
tion, user-base size, etc. Besides, A/B testing usually changes
the current running websites. Hence, such modifications might
affect the profitability of the website business.

Experimental settings— In addition to the potential complexity
of having to test multiple variations, the experimental settings
are also relevant to an A/B test. For example, PLT largely
fluctuates based on the time of the day, network location, and
device characteristics. Unless in-lab testing is conduced, these
“settings” are indeed variables that are not under control of an
experimenter. They thus need to be taken into account, further
increasing the testing complexity.

Overall, we can summarize that A/B testing is a powerful
and useful tool in the hand of Web developers. However, its
complexity is quite high, which in turn limits its applicability
mostly to big entities (Google, Facebook, etc.) who can
dedicate large teams to continuously integrate A/B testing in
their development cycles. Smaller entities on the Web just lack
the resources and expertize to perform such tests. We design
Kaleidoscope to take advantages of both A/B testing and in-lab
testing, as we elaborate in the next section.

III. KALEIDOSCOPE DESIGN AND IMPLEMENTATION

This section presents the design and implementation of
Kaleidoscope, a crowdsourcing testing tool that evaluates the
Web features with the power of crowdsourcing at a large scale.
In the reminder of this section, we first provide an overview
of Kaleidoscope, then dig into the details of its design and
implementation.

A. Rationale and Overview

Our goal is to build a testing tool which allows to simplify
the A/B testing pipeline making it largely accessible. One key
insight from the previous section is that in-lab testing largely
simplifies A/B testing (settings control, explicit feedback,
ease of data collection) but it suffers from high cost and
complexity—paid participants need to be physically located
in the lab–which inherently limits its scalability. Our rationale

Fig. 2. The structure and workflow of Kaleidoscope

is thus to leverage the benefits of in-lab A/B testing without
requiring paid participants to be physically in the lab.

To do so, our key idea is to use browsers as labs where
to perform A/B testing. As we will detail later, today’s
browsers are powerful enough to enable complex A/B tests
where different website versions and page loading features
can be tested. Further, the large penetration of Web browsers
ensures ease of recruiting, e.g., by integrating with existing
crowdsourcing platforms such as FigureEight and Amazon
Mechanical Turk.

Figure 2 shows the basic structure and workflow of Kalei-
doscope. Kaleidoscope inputs N versions of a webpage and
related test parameters, and utilizes crowdsourcing platforms
to recruit participants. To overcome the known problem in A/B
testing and in-lab testing, (i) Kaleidoscope asks questions to
testers directly instead of analyzing the implicit data. We also
use a side-by-side comparison approach (see Figure 1) to help
testers understand the Web features more easily, especially for
testing page load speeds [21], [24]. (ii) Kaleidoscope is an
independent testing tool and has no impact on the current
running website (business). (iii) Kaleidoscope has a more
controllable test environment with implementing the browser
extension client. For example, a participant will check all
versions of a webpage in a test, and a visual page load method
is also devised to eliminate the networking discrepancy among
different participants. Beyond that, Kaleidoscope solves the
high cost, logistic complexity, and limited scale of in-lab
testing.

To test N different verisons of a webpage designed by
Web developers, they are input to Kaleidoscope. It creates
a set of integrated webpages based on it, and stores them



TABLE I
TEST PARAMETERS

Notation Type Explantation
test id string The test identification
webpage num int The number of test webpages
test description string The description of a test
participant num int The number of participants involved in the test
question array The asked questions during the test
webpages array The basic information of all test webpages
web path string The relative folder path of a test webpage
web page load int The page load simulating value
web main file string The initial html file name of a test webpage
web description string The description of a test webpage

in the database and storage system. Then, the crowdsourcing
platform recruits a crowd of participants to perform the test
according to the test information provided by Kaleidoscope.
Each participant is asked to install a browser extension to
perform the test. During the test, the integrated webpages are
shown to the participant in sequence. Questions are asked to
the participant after every integrated webpage is displayed.
All responses from participants are collected, and Web QoE
is analyzed.

Kaleidoscope consists of three main components: aggre-
gator , core server, and browser extension. Kaleidoscope’s
aggregator is responsible to generate integrated webpages and
store user feedback in the storage system. The aggregator uses
a webpage composition (html, css, js, etc.) and the experiment
input (parameters under test) to generate integrated webpages
to be tested. The detailed design and implementation of
aggregator are given in subsection III-B. The main functions
of the core server are to send the test task information (e.g.,
test id, task instruction, etc.) to the crowdsourcing platform
(e.g., FigureEight, Amazon Mechanical Turk, etc.), provide
resources to browser extension, collect results from partici-
pants, and conclude the final Web QoE measurement results.
The browser extension is mainly aimed for participants to
conduct the test. It downloads the integrated webpages locally,
monitors participants’ behavior and uploads the test data to the
core server. Next, the three main components of Kaleidoscope
are explained separately.

B. Aggregator

We do the test data preparation in aggregator . In short,
two kinds of test data should be prepared and stored in the
system – test information and integrated webpages. Both test
information and integrated webpages are generated from the
inputs of test webpages and test parameters. The test infor-
mation includes test id, comparison question(s), the number
of participants, the description of the test, etc. The test id is
mainly for Kaleidoscope, crowdsourcing platforms and par-
ticipants to identify a specific test. The comparison questions
are asked after each integrated webpage is shown during the
test . We only store the comparison questions since we always
compare two different versions of a webpage side by side, so
the response from the participant must be one of the three–
“Left”, “Right” and “Same”. The number of participants shows

how many participants are required to be recruited in the
test. We developed an initial HTML document which has two
iframes side by side for integrated webpages (see Figure 1),
and each iframe links to a version of the test webpage. In
addition, we also take other factors into consideration such as
simulating page load, simplifying the download files, etc. To
use Kaleidoscope, test webpages and test parameters should be
input to the system. Next, we elaborate how test webpages and
test parameters look like. After that, we show how to modify
test webpages, create integrated webpages, and store the test
data.

How are test webpages organized? Consider a static
webpage saved from a browser — that is how a test webpage
is organized. A test webpage (a version) has an initial html
document and its related resources including images, js, css
and other necessary files. All these resources of a webpage
are stored within one folder, and it also may have subfolders.
Meanwhile, all test webpages are included in one parent folder.

How do test parameters look like? Test parameters con-
tain the information of both the test itself and test webpages.
We adopt JavaScript Object Notation (JSON) format [5] to
store test parameters since it is easy for humans to read and
write, meanwhile easy for machines to parse and generate. We
also develop a tool (Web interface) to help users to generate
such format test parameters. Users can input parameter one by
one according to the hint. Due to the page limits, we won’t
provide details of it. We illustrate the details of test parameters
in Table I. The value of the key “webpages” contains the
test webpage information. Besides, all other keys are used for
describing the test, and they will be explained below.

How to modify test webpages? Before generating inte-
grated webpages, the original test webpages are modified.
Static webpages usually have a large amount of resource
files and folders. Moreover, test webpages may have the
same resource files, which means they could have the same
file names. Such complexity makes it much more difficult
to merge two test webpages together when we create an
integrated webpage. In addition, we cannot interact with the
operating system directly in a browser extension2. To make
test webpages easy and feasible for the browser extension to
download, all resource files of a test webpage are compressed
within one html document (file) borrowing the power of
SingleFile [8]. To simulate page load process, we inject a
JavaScript function, developed by us, to the compressed test
webpage with the given page load simulating parameters (i.e.,
“page load” in “webpages”).

How to simulate page loading? Page Load Time (PLT)
is defined as the JavaScript “onload” event where all of the
external content of a webpage has been fetched and evaluated.
However, it does not work from a user’s perspective. For
example, a webpage can be ready although its below-the-fold
content has not been loaded totally. The current alternative
metrics are mainly based on visual perspectives, e.g., Time to

2Browser extensions cannot access local files (e.g., create folders, decom-
press files, etc.) for security reasons.



Fig. 3. Test flow of browser extension

First Meaningful Paint (TTFMP) [20], Above-the-fold Time
(AFT) [13], [60], Speed Index [29] and user-perceived Page
Load Time (uPLT) [34], [48], [51]. So the highlight here is that
we devise a method to replay the visual changes of a webpage.
In Kaleidoscope, we control the display time of contents
(DOMs) by injecting the JavaScript function to the test web-
page to simulate loading webpages. The function first hides
all DOMs, then shows them based on the given simulating
parameters. We utilize the value of the key “web page load”
in test parameters to simulate page loading. For example, all
DOMs will be displayed randomly within 2000 milliseconds
when “web page load” is set to 2000. A more complicated
way is to set specific display times of different DOMs in
a test webpage. The value of “web page load” is a JSON
array in this case. For every element in the array, the key
is the locator of a DOM, and the value is when the DOM
will be displayed. For instance, [“#main”:1000,“#content p”:
1500] means “#main” will be shown after 1000 milliseconds,
and “#content p”’ will be displayed after 1500 milliseconds.
Moreover, we can replay a real world page load with this
methodology. One can first record the video of loading a real
world webpage within a browser. It can be done via many
tools such as PhantomJS [40], Chrome Devtools [27], and
FFmpeg [2]. Then, the values of “web page load” are set
according to the display times of the real world page load
– which parts are shown at what time.

How to generate integrated webpages? We generate an
integrated webpage for every two different test webpages. As
mentioned above, each integrated webpage includes two test
webpages side by side. We develop an initial html document
including two iframes side by side for the integrated webpage.
Each iframe is directed to one test webpage. According to
the combinatorial theory, we have C2

N different integrated
webpages given N test webpages. Each integrated webpage
includes a developed initial html document and two different
test webpages. Similar to the test webpage, all resources of
an integrated webpage are stored within one folder. Finally,
the aggregator saves all integrated webpages in the storage
system and updates the information in a database.

How to store test data? Using MongoDB [6], a scalable
and flexible database system, we deploy a non-relational

database to store the test data. We created three collections
in MongoDB, which are similar to tables in SQL, yet have no
structure. The three collections store information of integrated
webpages, basic test information, and responoses from partic-
ipants, separately. Meanwhile, all resource files of integrated
webpages are saved in the storage system. We create a new
folder which is named after the test id, and all related files
of integrated webpages are stored in it. The core server can
access these resources, and serve them directly to participants.

C. Core server

The core server is the key element connecting the test
resources, browser extension, and crowdsourcing platform. It
has four main functions: post the test task to the crowdsourcing
platform, provide test resources to the browser extension, col-
lect responses from participants, and analyze the final results.
The core server is built as a Web server using NodeJS – an
event-driven architecture capable of asynchronous I/O. Such
architecture can optimize throughput and scalability in a Web
server. After the aggregator finishes preparing all essential
test data, the core server sends the test information to a
crowdsourcing platform, and the platform recruits participants
to perform the test. In this paper, we use the crowdsourcing
platform FigureEight, previously called CrowdFlower, to re-
cruit participants. It is easy to extend Kaleidoscope to other
crowdsourcing platforms since the development processes are
similar for different platforms. All test online resources are
fetched from the core server, and all test responses from
participants are uploaded to the core server via Ajax [54].

D. Browser extension

The browser extension is the main place for participants to
execute the test task. Chrome has become the most popular
browser in recent years [52], so we develop it as a Chrome
extension. In addition, browser extensions are similar (e.g.,
Firefox, Edge, etc.), so we can develop browser extensions
for other browsers easily. Firefox has written instructions on
how to port a Google Chrome extension to Firefox [22],
and Edge plans to accept all Chrome extensions in the near
future [58]. Our browser extension is available in the Chrome
Web Store, and participants also can download the extension
by themselves.
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(a) Kaleidoscope (raw)
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(b) Kaleidoscope (quality control)
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(c) In-lab testing

Fig. 4. Kaleidoscope vs in-lab testing—question feedback
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(c) CDF of time spent per overall task (minutes)

Fig. 5. Kaleidoscope vs in-lab testing—testers behavior.

Before the test, the browser extension asks participants
to provide the test information (i.e., test id, contributor id)
acquired from the crowdsourcing platform and standard de-
mographic information (i.e., gender, age, country, and self-
assessed technical ability) of themselves. We collect the de-
mographic information at a coarse enough granularity, so it
is no danger of identifying individual people. Meanwhile, a
detailed instruction of how to perform the test is also given to
the participants.

Performing test After all of the above are done, the test will
be started. A basic flow of performing a test in the browser
extension is shown in Figure 3. The participant first downloads
an integrated webpage, then visits it by opening a new tab. A
set of comparison questions are required to be answered after
each integrated webpage is visited. The integrated webpage
can be revisited as many times as one wants in order to
ensure the participant observes everything clearly. The above
process is repeated until all integrated webpages are tested
completely. In the end, all test results from the participant
are uploaded to the core server. It is easy to know that C2

N

integrated webpages should be visited given N test webpages.
We also utilize sorting algorithms (e.g., bubble sort, insertion
sort, etc.) to reduce the number of integrated webpages when
only one comparison question is asked. We omit details for
space constraints.

Quality Control We devise a number of approaches to
ensure the quality of a crowd worker, and hence the quality
of the test. We have hard rules for every Kaleidoscope test,

and participants must follow them to complete the test. For
example, participants must answer all comparison questions
in order to move to the next integrated webpage. In addition,
the engagement time a worker spends on a test is a rough
indication of the quality of their work [46]. On the one
hand, a short time indicates an unengaged worker; on the
other hand, a long time might indicate that the work is
distracted. We record how long participants spend on each
test, how many times they open the test tabs and the active
tabs, etc. Besides, we use control questions to help us to
verify the quality of participants. It is a common technique in
crowdsourcing experiments to randomly insert questions with
known answers [31]. To be specific, we occasionally show
two copies of the same version webpages , or two significant
different webpages to check participants’ behaviors. We also
follow the crowd wisdom – the majority vote of all responses
presents the pseudo-ground truth. Participants whose responses
deviate from it significantly can be dropped [17], [57].

IV. EVALUATION

In this section, we evaluate Kaleidoscope. First, we validate
Kaleidoscope’s accuracy with respect to both trusted in-lab
testing (Section IV-A) and A/B testing (Section IV-B). Next,
we use a simple case study to show Kaleidoscope’s page load
feature (Section IV-C).

A. Kaleidoscope vs In-lab Testing
The goal of this section is to validate the accuracy of the

crowdsourced responses that Kaleidoscope collects in com-



(a) The original version (A) (b) The variant version (B)

Fig. 6. Test webpages

parison with a “pseudo” ground truth collected from trusted
participants under in-lab testing. We choose to study an old
CHI question: What is the best font size for online reading?
We choose this question since it is simple enough and well
studied. Many Computer Human Interface (CHI) studies [16],
[19], [36], [41] suggest it is good to have a font size with
12 points or 14.points for online reading, and a larger font
size [38], [42], [43] could be more friendly to dyslexia people.

1) Methodology: We use a Wikipedia webpage as a test
case since it is text-heavy and commonly used in previous
CHI studies [42], [43]. Precisely, we chose the “rock hyrax”
Wikipedia page3 since it relates to a topic of general interest,
neither technical nor purely academic. Next, we download the
webpage from Wikipedia website and generate 5 versions with
variable font size of the main text (10pt, 12pt, 14pt, 18pt and
22pt).

In Kaleidoscope, for each of the above webpage versions,
we set the same page loading setting (3 seconds, as the
original page load time when accessing the original page
from our premises). The comparison test question is: Which
webpage’s font size is more suitable (easier) for reading?”
Then, we generate the JSON-based test parameters which
we input, along with the above 5 webpage versions, to the
aggregator to generate the test information and integrated
webpages for Kaleidoscope testing. The browser extension
also generates extra integrated webpages to control quality.
The two test webpages in these integrated webpages are either
exact same or significantly different, so we can know the right
answers beforehand. For example, the browser extension hold
an integrated webpage where two test webpages are same; we
also have an integrated webpage in which the main font size of
one test webpage is 4 pt and the other test webpage’s main font
size is 12 pt. Each recruited participant will compare at most
11 integrated webpages, and one of them is for quality control.

3https://en.wikipedia.org/wiki/Rock hyrax

We still leverage Kaleidoscope (with the same configuration)
for the in-lab settings, but we further spend time with the
participants to carefully explain each step of the test.

For Kaleidoscope, we recruit 100 “historically trustworthy”
testers from FigureEight, which ensures the high quality of
responses. The total cost of this test is $11 ($0.11 for each
participant) or $0.01 for each side-by-side comparison. It takes
about 12 hours to collect all 100 responses from participants.
As trusted in-lab participants we recruit, over one week, 50
friends and colleagues who promise full commitment to the
test.

2) Results: Figure 4(a), 4(b), Figure 4(c) show the statisti-
cal results of the raw Kaleidoscope testing, the Kaleidoscope
testing with quality control and the in-lab testing separately.
The x axis represents the ranking level for online reading,
where “A” denotes the font size is best for reading, and
“E” denotes the worst. After comparing all three figures, we
conclude that the preference trends of font size for online
reading are similar. It means Kaleidoscope can obtain a very
good result contrasting with the pseudo-ground truth, and
historically trustworthy feature of FigureEight does well in
recruiting trusted participants. Besides, the result of Kalei-
doscope with quality control is much closer to the in-lab
testing than the raw Kaleidoscope testing. For instance, all
three figures show that most participants vote 12 points as the
“A” ranked font size. However, the second one is 10 points
in Kaleidoscope (raw), this is different from results of both
Kaleidoscope (quality control) and in-lab testing where the
second one is 12 points. It indicates that Kaleidoscope with
quality control can reach to a finer-grained accuracy than the
raw Kaleidoscope. In addition, the results of Kaleidoscope
with quality control and in-lab testing are closer to the CHI
studies [16], [19], [36], [41] which suggest 12 points and 14
points are optimal font size for general people to read online.

During the experiments, we also ask participants the consent
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(c) Kaleidoscope result of question C

Fig. 7. Kaleidoscope vs A/B testing

to monitor their browsing behavior. Specifically we record
how many tabs they create, how frequently the active tab is
changed, and the duration of each side-by-side comparison.
The goal is to capture a participant “engagement” and compare
trusted in-lab participants with (remote) paid participants.
Figure 5(a), 5(b), and 5(c) summarize the results in form of
Cumulative Distribution Functions (CDFs) computed per side-
by-side comparison, e.g.,Figure 5(c) shows the CDF of the
duration of each side-by-side comparison when distinguishing
between Kaleidoscope (raw and filtered via quality control)
and in-lab testing. Overall, the tester behaviors are similar
when comparing trusted and paid participants, even more when
filtering via quality control. This further validates the quality
of the results that Kaleidoscope can provide as well as the
effectiveness of the quality control in detecting and removing
participants with abnormal behaviors. For example, the longest
side by side comparison in the raw data lasted 3.3 minutes;
after filtering, this value reduces to 2.5 minutes which is much
closer to 1.9 minutes measured via in-lab testing.

B. Kaleidoscope vs A/B Testing

The goal of this section is to validate the performance of
Kaleidoscope in comparison with the more classic A/B testing.
We do so by leveraging the landing page of our research group
since it is the only website we own with some daily traffic,
and A/B testing has to be run on a real website.

1) Methodology: Figure 6(a) shows both the “A” (original)
and “B” versions of our research group webpage. We blur out
the parts of the webpage that contains information not related
to the test. Our official group webpage includes 9 sections
including “about”, “selected publications”, “selected talks”,
“press”, etc. Some sections are not shown to save spaces unless
a visitor click the “Expand” button at the right end side of
the currently visible section. Due to the little visibility of the
“Expand” button, we opted to generate a “B” version of the
page where: 1) the text’s button is 1.5 times larger, 2) it is
enriched with a captivating symbol, 3) it is positioned closer
to the main text.

With A/B testing, we need a method to infer which page
version is more appealing to our visitors. We do so by
monitoring how likely a visitor is to click on the “Expand”

button based on the version served. With Kaleidoscope, we
instead ask the following explicit questions: which webpage
is graphically more appealing? (question A), which version
of the ‘Expand’ button looks better? (question B), and which
version of the ‘Expand’ button is more visible? (question
C). “A” (original) and “B” versions of our research group
webpages are aggregator ’s input (as Figure 7), along with
the the same page load settings (3 seconds).

For each test, Kaleidoscope and A/B, we consider 100
participants. For Kaleidoscope, we recruit 100 historically
trustworthy participants via FigureEight. We pay each partic-
ipant $0.1 (total cost: $10). We serve the “A” (original) and
“B” versions of our research group webpage until we have
100 visitors. At each visit, “A” and “B’ versions are served
with equal probability randomly. For privacy concerns, we
only record if the visitor clicks the “Expand” button and which
version of webpage (s)he is browsing.

2) Results: We first compare the time required to complete
our experiment via Kaleidoscope and A/B testing, respec-
tively. Figure 7(a) shows that about one day was enough to
recruit 100 participants via Kaleidoscope, while 12 days where
needed via A/B testing. Note that this is just a demonstrative
and simplified analysis as several extra factors are currently
ignored. For example: 1) the cost/duration of developing
A/B testing, 2) A/B speedup in presence of more popular
websites—although we should stress that Kaleidoscope is de-
signed to help less popular websites, 3) Kaleidoscope speedup
via higher rewards and/or via additional crowdsourcing web-
sites and parallel campaigns.

Next, we compare results collected via A/B testing and
Kaleidoscope with respect to the potential benefit of a new
“Expand” button. The results of A/B testing and Kaleidoscope
are shown in Figure 7(b) and Figure 7(c) separately. In A/B
testing, 51 participants visit the “A” (original) version, and
only 3 visitors click the “Expand” button. By contrast, 49
participants visit the “B” version generating 6 clicks. While
the number of clicks for the “B” version is increasing, the
P value 4 of this A/B testing is only 0.133, which indicates
that this A/B test is not significant enough. In other word,

4https://vwo.com/ab-split-test-significance-calculator/
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Fig. 8. Responses of all questions in Kaleidoscope

we cannot say (yet) that the new “Expand” button is more
visible and more visits (and time) are needed. In contrast,
when answering question C in Kaleidoscope we find that 46
participants think the new design is more visible, and only
14 participants believe the original one is better (see Figure 8,
question C). The calculated P value of the Kaleidoscope testing
is 6.8×10−8, and we can deduce that the new “Expand” button
is more visible than the original one at 99% confidence.

Finally, we analyze the responses collected for all three
questions via Kaleidoscope (see Figure 8 summarizes). For
question A (which webpage is graphically more appealing?)
the majority of responses (50%) indicate that the two web-
pages are equally appealing. This is intuitive since the very
small variation introduced does not alter the overall look and
feel of the page (see Figure 7). For question B (which version
of the ‘Expand’ button looks better?), we start observing
an increase in positive responses for version “B”, i.e., the
improved ‘Expand’ button (question B), although the answer
“Same” (45% participants) narrowly edges out the answer
“variant version” (42% participants).

C. Page Load Feature

Instead of controlling the out-of-dated metric – page load
time, we turn to control the visibility of a webpage in
Kaleidoscope. As far as we know, Kaleidoscope is the first tool
to replay the webpage with controlling the visual changes on
a webpage. Currently, many webpage loading metrics, such
as, Time to First Paint (TTFP) [28], Above-The-Fold time
(ATF) [18], [48], user-perceived page load time (uPLT) [34],
[51], are proposed to focus on measuring the visual changes
when loading a webpage.

The goal of this section is to test the page load feature of
Kaleidoscope. In this experiment, we make an investigation
on which parts of a webpage should be loaded more quickly
to improve Web QoE with Kaleidoscope.

1) Methodology: We still use the Wikipedia webpage
adopted in the first experiment as the test case. Based on

our observation, the webpage can be mainly divided into two
parts – navigation bar and main text content. To evaluate
which part is more important for user-perceived page load
time, we generate two test webpages. They have same style
but different page load settings. One version of the webpage
shows all elements of the navigation bar in 2 seconds and all
elements of the main text content in 4 seconds (version A).
On the contrary, the other version of the webpage shows all
elements of the navigation bar in 4 seconds and all elements
of the main text content in 2 seconds (version B). Both
two test versions are load completely (no visual change)
in 4 seconds, which means the above-the-fold (ATF) time
are same for both two versions. During the test, we ask
participants that “ Which version of the webpage seems ready
to use first?” In this experiment, participants can also tell their
feelings of the testing with inputing texts optionally. We recruit
100 participants for this task via FigureEight, and choose
participants who are historically trustworthy. Each participant
is paid $0.1, and the total cost is $ 10. It takes about 12 hours
to collect all 100 responses.

2) Results: The result is shown as Figure 9, and it indicates
that participants think the webpage, which main text content is
loaded faster, is ready to use first. The result is more significant
after filtering out some participants with the quality control
method. Specifically, 46% participants think version B is faster
in the raw Kaleidoscope testing. By contrast, 54% participants
believe version B is faster after using quality control method.

Comments we collected from participants help shed light on
the definition of “ready to use”. The following three typical
comments confirm that the main text content is crucial to the
user-perceived page load time (uPLT) than the navigation bar:

“The main text of the article was available to read
first. ”

“Right came fast and came full context instantly
comparing to left.”

“I could see the text content 2-3 sec faster.”

It is not hard to understand – people usually look for related
articles when they visit a Wikipedia webpage, so they focus
on the main text content more. Besides, we also find some
comments that have different thinkings on user-perceived page
load time, and one example is as following:

“By browsing and moving are done with the same
degree”

The above comment indicates that that participant only
cares about the visual changes of the webpage. Based on
these comments and comparison result, we can summarize
that most participants care more on the main text content
than other auxiliary content on the Wikipedia webpage. In
addition, the experiment indicates that user-perceived page
load times may be quite different even though other visual
page loading metrics, such as above-the-fold time, are same.
We only scratch the surface of what can be done with page
load feature of Kaleidoscope in this experiment. Kaleidoscope
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Fig. 9. Result of page load feature

can do more with replaying page loading, e.g., comparing
http/1.1 and http/2.0, understanding both style and page load
together in a webpage, etc.

V. RELATED WORK

Testing Web has become an essential approach for devel-
opers to understand and improve their websites. Based on the
recent report [33], the web testing market size is expected to
grow from USD 3.50 Billion in 2017 to USD 5.45 Billion
by 2022, at a Compound Annual Growth Rate (CAGR) of
9.2% during the forecast period. In addition, testing Web is
also becoming more and more difficult due to Web’s high
complexity and customers’ different goals. Therefore, experts
from both industry [7], [9], [10] and academia [14], [15], [26],
[30] have been keeping working on it to make the testing easier
and more efficient.

Tech giants have invested a lot in building their own Web
testing platforms. For example, LinkedIn [59] built a powerful
and flexible A/B experimentation platform that enables their
developing teams across LinkedIn to make informed decisions
faster at a large scale. Google also has Google Optimize [3]
which offers A/B testing, website testing, and personalization
tools to help improve Web experience. Amazon Web Ser-
vices [50] enable customers to create developer environments
and expand testing machine fleet easily with their products.
Besides, some specialized testing companies were started
to help build such Web testing, such as Optimizely [7],
VWO [10], GTmetrix [4], etc. However, the website has to
pay a lot to in using third-party tools or developing its own
testing tools. Besides, such A/B testing is also not suitable for
less popular websites or researchers since the test requires a
number of website users.

The Web design and load speed are two main concerns
in developing websites. In terms of Web design, a lot of
research has been done on how to design a friendly and ”good-
looking” website from different aspects, such as font [36], font
size [42], [43], layout [23], color [12], [25], [47], etc. Recently,

Miniukovich et al. [36] proposed concrete design guidelines
for Web readability by summarizing 61 readability guidelines
in a series of papers in related workshops and conferences.
Ferris et al. [25] summarize color theory, demonstrate the
effect of color on business, and construct a framework to serve
as a reference for Web designers.

Originally, the page load user experience was measured
using a simple metric – onLoad, i.e., a browser event indicating
that “all of the objects in the document are in the DOM, and all
the images, scripts, links and sub-frames have finished load-
ing.” Many researches [55], [56] have been done to understand
how to improve it from different aspects. Modern webpages
are however a complex collection of hundreds of different
objects, and researchers found that such metrics struggle in
representing the actual user experience. This has motivated a
surge of interest in better understanding user experience on
Web. Hence, new measuring metrics have been introduced
recently. Time to First Paint (TTFP) [28], Above-the-fold
Time [18], [48] and user-perceived page load time (uPLT) [34],
[51] are three new metrics to measure page load features. All
these new metrics are focusing on visual changes of loading
a webpage, so understanding how people think when visiting
a webpage is more important.

Leveraging crowdsourcing [32] to test the website is an
important idea since we can get real responses from real
people with little cost. Varvello et al. [51] propose Eyeorg
– a crowdsourcing platform for Web QoE measurement. It
only measures user-perceived page load time with showing
videos of page loading to participants, and collect their re-
sponses such as which page loaded faster, when the page is
loaded completely, etc. Another uPLT measurement platform
WebGaze [34] also adopted the video idea. The advantage
of utilizing videos is that it gives a consistent experience to
all participants, regardless of their network connections and
device configurations. However, it leads to limited visibility,
and we cannot interact with it as a common webpage.

VI. CONCLUSIONS

In this paper, we presented Kaleidoscope, the first crowd-
sourcing testing tool implemented through a browser extension
to evaluate websites at a client side at scale. Kaleidoscope
can test both style and page loading speed at a control-
lable environment. Unlike A/B testing, Kaleidoscope does not
impact the websites’ revenues and normal operations since
it does not change the currently running website. Instead,
Kaleidoscope only stores N versions of the test webpage and
test parameters. Then, it automatically constructs the crowd-
sourcing testing task and collects the testing results from the
recruited participants. Finally, we conduct three experiments
comparing Kaleidoscope with in-lab testing, A/B testing, and
showing a case study of understanding uPLT. Going forward,
we plan to make Kaleidoscope a tool that any small entities
and researchers can use to evaluate their new Web features,
without worrying about the challenges of designing a Web test
from scratch.
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