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Abstract—Measurement tools that can accurately locate and
monitor congested Internet links would significantly help us
understand how the Internet operates. However, developing such
tools is challenging, especially when our concerned target is
congestion on the core Internet links rather than that on the
relatively easily measured access links. Congestion on core links
— and persistent congestion in particular — can reveal sys-
tematic problems such as routing pathologies, poorly-engineered
network policies, or non-cooperative inter-AS relationships.

In this paper, we presentPong, a novel tool capable of accu-
rately locating and monitoring a subset of non-access Internet
links that exhibit persistent congestion over longer time scales.
Pong takes advantage of the persistently congested link property
to overcome the long-lasting challenges common for delay-based
inference tools. In addition, it exploits the same property to (i)
infer otherwise unknown underlying path conditions, (ii) deter-
mine appropriate queuing delay thresholds to reveal congestion,
(iii) achieve high accuracy with low probing rate, and (iv)
detect moments of its own inaccuracy. Finally, Pong can quantify
measurement results’ accuracy comprehensively, allowing us to
further select vantage points that maximize the observability of
the underlying congestion.

I. I NTRODUCTION

Measurement tools that can accurately locate and monitor
congested Internet links would significantly help us understand
how the Internet operates. While developing a tool able to
locate congested links is already an ambitious goal, makingit
capable of monitoring congested links as well becomes even
harder. In particular, when we want to perform very long term
monitoring tasks, we need a lightweight tool that induces a
very low traffic overhead.

In addition, congestion on non-access links is usually much
harder to measure than that on access links. This is because
when we perform measurements from Internet edges, the
access links, which are on average much more congested, can
often overshadow our congestion observation for those non-
access links behind them. However, the congestion on non-
access links might reflect more about underlying problems of
the Internet.

In this paper, we presentPong, a lightweight measurement
tool that can both locate congested links accurately and
monitor them in the long term. The particular measurement
target that Pong is optimized for is a subset of non-access
links that exhibit relatively persistent congestion. Thissubset
of congested links can reveal systematic problems of the In-
ternet such as routing pathologies, poorly-engineered network
policies, or non-cooperative inter-AS relationships.

Pong measures queuing delays as congestion indicators. It
dramatically increases observability of links behind an access
link by sending probes from both endpoints of a path and

by combining end-to-end probes with probes to intermediate
routers when measuring queuing delays. In addition, based
on its continuous monitoring capability, Pong improves its
accuracy in locating repetitively congested links (those that
experience frequent queue building-up and draining epochs
over longer time scales) using measurement statistics overa
longer time period.

When measuring queuing delays from both endpoints, Pong
uses a novel method to infer whether the different paths trav-
eled by different probes share the same persistently congested
links. For example, whether the end-to-end probe sent from
the source endpoint travels a congested link shared with the
returning path of a router-targeted probe (returned as an ICMP
response) sent from the destination endpoint. It can therefore
correlate the probes concurrently traveling shared congested
links to infer congestion locations. The above method does
not need to resolve the actual routes of these paths, but simply
checks whether values of measured queuing delays on these
paths satisfy certain relationships.

Pong carefully handles issues in the real Internet envi-
ronment to optimize its practical measurement accuracy. It
applies an adaptive algorithm to set proper queuing delay
thresholds that determine congestion on a per-path basis. It
detects anomalies such as clock skews and jumps at end hosts,
route alterations of paths, and ICMP queuing at routers. It
reacts to the anomalies by either filtering affected measurement
samples or suspending the measurement until the anomalies
are relieved.

Pong provides a distinct solution for scenarios when its mea-
surement accuracy is significantly degraded due to undesirable
path conditions. To this end, it quantifies its measurement
accuracy for specific congested links on specific paths in a
comprehensive way. As a result, it allows us to select paths
that can give the best measurement accuracy for concerned
links. This is particularly meaningful for measuring congestion
on non-access links which can usually be observed from many
paths with very different path conditions.

The reminder of this paper is organized as follows: In
Section II, we introduce Pong’s methodology of accurately
locating and monitoring repetitively congested links. In Sec-
tion III, we address measurement issues in the real Internet
environment. In Section IV, we analyze Pong’s performance
in practice via Internet experiments. In Section V we present
related work. Finally, we conclude in Section VI.

II. M ETHODOLOGY

In this section, we introduce our methodology for the link
congestion measurement. This includes (i) how to exploit
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coordinated probing from both endpoints of a path to measure
the congestion location relative to each intermediate router,
and (ii) how to correlate measurement results for neighboring
intermediate nodes (routers) to locate congested links. We
also show a measurement example that demonstrates the
effectiveness of our methodology.

A. Coordinated Probing

Coordinated probing is a key for our proposed measurement
methodology. It exploits coordinated active probing from both
endpoints of a path and strategically combines end-to-end
probes with probes to intermediate nodes. Its goal is to gen-
erate queuing delay estimates for the twohalf pathsseparated
by a concerned intermediate router on the path. Based on the
queuing delay estimates, we can tell whether each half path
is congested or not.

1) A Simplified Case — Symmetric Path: Consider a
simplified symmetric path scenario shown in Figure 1. For
each intermediate node (assuming that it responds to TTL-
limited probes), we send four types of probing packets from
the two endpoints: (i) an f (“forward”) probe from the source
to the destination; (ii) a b (“backward”) probe from the
destination to the source; (iii) an s (“source”) probe from the
source but with its TTL expired at the concerned intermediate
node, thereby returning to the source in form of an ICMP
packet; (iv) a d (“destination”) probe which is similar to the
s probe, but is both sent from and returned to the destination.

Each of the four probing packets measures the delay of
the path that it travels. Based on that we can compute the
corresponding queuing delay. Denote by∆f , ∆b, ∆s, and∆d

the queuing delays of paths measured byf, b, s, andd probes,
respectively. The queuing delay is computed by subtracting
the minimum delay value (within a long enough recent sample
history) from a sampled delay.

Based on the four queuing delays, we can estimate queuing
delays of the two half paths. Denote by∆fs and ∆fd the
queuing delays of the two half paths in front of and behind the
concerned intermediate node as shown in Figure 1. Although
we can not deterministically compute the values of∆fs and
∆fd, we can effectively estimate their ranges. For example,
for ∆fs, it could be shown that∆fs ∈ [∆f − ∆d,∆f ] or
∆fs ∈ [∆s − ∆b,∆s]. Thus, whenever∆d or ∆b is small,
we have a tight bound for∆fs.

A prerequisite for this method to work is that we should
coordinate probing time of the four types of probes such that
they capture queuing delays of nearly the same moments for
those shared path segments that they travel. We achieve this
in the following way: (i) At the source node, we send thef
probe and thes probe simultaneously. (ii) At the destination
node, we send thed probe and theb probe simultaneously.
(iii) Between the source and destination, we coordinate the
sending time of thef and d probes such that it satisfies the
following condition: the expected receiving time of thef and
thed probes at the destination node should be nearly the same.
The expected receiving time is computed as the sending time
plus the transmission delay on a path. The transmission delay
is approximated using the minimum delay measured by thef
andd probes (within a long enough recent sample history).
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Fig. 1. Coordinated probing: a symmetric path scenario

2) General Cases — Asymmetric Path: Our proposed
methodology works for asymmetric paths as well. In practice,
it is non-trivial to check whether a path is symmetric or not.
For example, one approach is to compare traceroute results
of the forward and backward paths and then resolve aliases
for intermediate nodes. However, to be able to use the method
described in the previous section to estimate∆fs and∆fd, we
do not have to resolve whether a path is exactly symmetric.
Instead, we can check a more relaxed condition and do so in
a much simpler way than to resolve the path symmetry. This
relaxed condition corresponds to a specificpath pattern, of
which the symmetric path scenario is just a special case, as
we explain in detail below.

The 4 packet (4-p) probing scenario.The measured
queuing delays in the symmetric path case should satisfy the
following condition (if there are no measurement errors, the
“≈” becomes “=”):

∆f + ∆b ≈ ∆s + ∆d (1)

Indeed, this condition sufficiently indicates a path pattern, for
which we can estimate∆fs and ∆fd in the same way as in
the symmetric path case. We denote this path pattern as the
4-p probing scenarioin the sense that we use all four types
of probes to generate the estimates for∆fs and∆fd.

Paths in the 4-p probing scenario do not have to be
symmetric. Many asymmetric paths can still satisfy Condition
(1). The first column of Table I shows such an example. In
this example, thes probe and thed probe are targeted to two
different intermediate nodes (one is the concerned intermediate
node, the other is a node on the backward path), but we can
pair them up. There are three repetitively congested links in
this example. One is captured by both thef ands probes, the
another one is captured by both thef and d probes, and the
last one is captured by both thed and b probes. Therefore,
queuing delays measured byf, b, s, andd probes still satisfy
Condition (1). We can then use proper formulas (highlighted
in Table I) to estimate∆fs and∆fd for the two forward half
paths separated by the concerned intermediate node.

Fsd, fsb, and 2 packet (2-p) probing scenarios.We define
three different path patterns in general. Each of them indicates
a specific pattern for route relationship among paths (traveled
by f, b, s, andd probes) and locations of repetitively congested
links on these paths. For each of them, we can use a respective
set of formulas to estimate∆fs and∆fd. We name the three
patterns after the probes that they use when estimating∆fs

and ∆fd, and they are: (i) 4-p probing scenariomentioned
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4-p probing scenario Fsd probing scenario Fsb probing scenario

S D

f

d

s

Pair up
Paired d probeb

Congestion
Concerned Intermediate Node

S D

f

d

s

Observed by
b probe only b

Congestion
Concerned Intermediate Node

Paired d probe
Pair up

S D

f

s

No suitable d probes to pair up with this s probe

Concerned Intermediate Node

b

Congestion

Pattern Condition : ∆f + ∆b ≈ ∆s + ∆d Pattern Condition : ∆f ≈ ∆s + ∆d (2) Pattern Condition : ∆s ≈ ∆f + ∆b (3)

Formula highlights Formulas to estimate∆fs and ∆fd Formulas to estimate∆fs and ∆fd
(Take∆fs for example, estimating∆fd is similar.)
Use∆fs ∈ [∆f − ∆d, ∆f ] if ∆d is very small.
Use∆fs ∈ [∆s − ∆b, ∆s] if ∆b is very small.
Otherwise, use both ranges to compute a range which
is a proper linear combination of the two. The linear
combination takes into account measurement errors
of ∆f , ∆d, ∆s, and∆b. We estimate measurement
errors based on measured deviation of recent samples.
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( ∆fs ∈ [Lfs, Ufs] ∆fd ∈ [Lfd, Ufd] )
Lfs = max(0, ∆s − ∆b)
Ufs = min(∆s, ∆f)
Lfd = max(0, ∆f − ∆s)

Ufd =



max(0, ∆f − ∆s + ∆b), ∆s > ∆b
∆f, ∆s ≤ ∆b

TABLE I
THREE DIFFERENT PATH PATTERNS

above; (ii) fsd probing scenariowhich usesf, s, andd probes;
and (iii) fsb probing scenariowhich usesf, s, andb probes.

The condition of each path pattern can be represented by a
simple equation that describes a long term relationship among
∆f , ∆b, ∆s, and ∆d, as shown in Table I. Based on the
equation, we can efficiently check whether each path pattern
is well matched and thereby choose a suitable path pattern
to estimate∆fs and ∆fd for each concerned intermediate
node. We need not resolve the actual routes of paths that
the four probes travel and the actual locations of repetitively
congested links on these paths (and doing so could be very
hard1). Instead, we simply check whether the queuing delays
measured by the four probes satisfy the equation in the long
term. In Table I, we summarize all three path patterns. For
each of them, we show an exemplified scenario, the equation
of pattern condition, and the formulas used to estimate∆fs

and∆fd.
In practice, it is possible that none of the three path patterns

can be matched. We therefore define a fourth path pattern for
this case. We denote it2-p probing scenarioin terms that we
use only two types of probing packets (thef ands probes) to
estimate∆fs and∆fd. The 2-p probing scenario is a pseudo
path pattern. It is unconditionally matched. The corresponding
formulas used to estimate∆fs and∆fd are:











( ∆fs ∈ [Lfs, Ufs] ∆fd ∈ [Lfd, Ufd] )
Lfs = 0
Ufs = min(∆s, ∆f)
Lfd = max(0, ∆f − ∆s)
Ufd = ∆f.

Selecting probing techniques.For each path pattern, we
call the method used to estimate∆fs and ∆fd (including
both the probing method and formulas) aprobing technique.
We refer to each probing technique by the name of the
corresponding path pattern but omitting the word “scenario”.
We therefore have the following four probing techniques:4-p
probing, fsd probing, fsb probing, and2-p probing.

For each intermediate node along the forward path, we
select a suitable probing technique such that we can estimate

1For example, it is hard to resolve the route of an ICMP responsefrom an
intermediate node.

∆fs and ∆fd most accurately. Different probing techniques
provide different accuracies. The 4-p and fsd probing can
provide the tightest bounds for∆fs and ∆fd, hence the
highest accuracy; the fsb probing gives slightly looser bounds
than the previous two; and the 2-p probing gives the loosest
bounds though it can be unconditionally used.

To quantify the extent to which the path patterns for 4-
p, fsd, and fsb probings are matched, we definequality of
measurability(QoM) for each path pattern as shown below:







QoM4P = 1 −
|(∆f+∆b)−(∆s+∆d)|
max(∆f+∆b, ∆s+∆d)

QoMfsd = 1 −
|∆f−(∆s+∆d)|

max(∆f, ∆s+∆d)

QoMfsb = 1 −
|∆s−(∆f+∆b)|

max(∆s, ∆f+∆b)
.

A QoM represents how well a path pattern is matched. It
takes a value between 0 and 1. The larger it is, the better a
path pattern is matched. By evaluating the average QoM over
a longer time period, we can decide whether each probing
technique is applicable. We then select a probing technique
that can give the highest accuracy among the applicable ones.
If none of the three techniques is applicable, we select the 2-p
probing technique. The selection of probing techniques might
need to be changed over time due to changes of underlying
path conditions. By keeping track of QoMs, we adjust probing
techniques online adaptively.

Pairing up the s and d probes. When using the 4-p
or fsd probing technique, we must first pair up thes probe
(to the concerned intermediate node) with ad probe (to an
intermediate node on the backward path). However, pairing
s and d probes is a non-trivial task. This is because ans
probe can have several candidated probes to pair up with, but
different pairings could give different measurement accuracies.
In addition, the optimal pairing can shift over time due to
changes of underlying path conditions. We therefore develop
an adaptive pairing algorithm to accomplish this task. This
algorithm keeps track of performance history for pairings,
including: (i) how many times a pairing has been selected; (ii)
what was the average duration that a pairing “worked” during
each time it was selected; (iii) what was the average QoM a
pairing achieves. The algorithm optimizes pairings onlineby
giving priority to pairings that were less frequently selected,
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achieved longer durations, and had larger average QoMs.

B. Locating Congested Links

We can perform coordinated probing for each intermediate
node (that responds to TTL-limited probes) on the forward
path to estimate corresponding half path queuing delays∆fs

and ∆fd. By correlating half path queuing delay results of
neighboring intermediate nodes, we can effectively locate
congestion points at the granularity of a single link2.

Deducing half-path congestion status.We first translate
half path queuing delay estimates to corresponding congestion
status. This is done by comparing queuing delay estimates with
a proper threshold. (We will describe in detail how we get this
threshold in Section III-A.) We represent congestion status
using two measures —congestion probabilityandconfidence.
The congestion probability indicates the probability thatthe
actual queuing delay is above the threshold. The confidence
represents extent of certainty for the inferred status. Take the
half path corresponding to∆fs for example, we denote by
Pfs its congestion probability. If the lower bound of∆fs is
above the threshold, we setPfs to 1. Likewise, if the upper
bound of ∆fs is below the threshold, we setPfs to 0. In
both cases, we set the confidence to 1 to indicate the 100%
certainty. Otherwise, bothPfs and the confidence take values
between 0 and 1 which are calculated as functions of the lower
and upper bound of∆fs, and the threshold.

S D
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I1 I2
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P Ifd 2( )

Fig. 2. Inferring congestion location

Inferring congestion location. When congestion probabil-
ity is greater than 0.5, we regard a half path as congested,
otherwise not congested. By correlating inferred half path
congestion status of neighboring intermediate nodes, we can
locate congested links on a path. Consider two consecutive
intermediate nodesI1 andI2 on the forward path as shown in
Figure 2, we regard the link between them as congested when
the following conditions are satisfied3:

Pfd(I1) > 0.5 and Pfs(I2) > 0.5, (4)
Pfs(I1) ≤ 0.5 or Pfd(I2) ≤ 0.5. (5)

In practice, we send coordinated probes (to all intermediate
nodes) at a rate of 2 Hz. At this rate, we could not capture
all instantaneous congestion moments (each of them is in
form of a continuous queue building-up and draining period).
However, for a link exhibiting repetitive congestion, we can
identify it using probing statistics of a relatively long period.
To do this, we maintain a statistic measureweighted conges-
tion count(WCC) for each link. Each time a link is detected to
be congested by the above method, we increase the WCC by

2Here “link” means IP level link. In addition, if some intermediate nodes do
not respond to TTL-limited probes, the “link” is interpretedas a path segment
between two closest intermediate nodes that respond to TTL-limited probes.

3Conditions for the first link and the last link are special cases and are
much simpler. They arePfs(I2) > 0.5 andPfd(I1) > 0.5 respectively.

1 if both nodes of the link show confidence = 1 for congestion
status of all four half paths. If congestion status of some
half paths has confidence6= 1, the increment will be a value
between 0 and 1 computed based on confidences. Intuitively,
the increment of WCC quantifies extent of certainty for the
detected congestion. In addition, we double the increment if
the following condition is satisfied:

Pfs(I1) ≤ 0.5 and Pfd(I2) ≤ 0.5. (6)

Condition (6) is stronger than condition (5), and when satisfied
it indicates a much higher extent of certainty for the detected
congestion.

Identifying congested links — congestion positive rate.
We define the measurecongestion positive rate(CPR) to rep-
resent congestion status of each link in a simple way. The CPR
indicates the congestion probability of a link at a moment. Its
value is translated from WCC statistics. It uses WCC history
of up to one minute. Under desirable path conditions, we can
identify a congested link using the CPR almost immediately
after congestion arises. Nevertheless, we still have a good
chance to identify congestion under undesirable conditions by
examining the relatively long measurement history. To provide
a concrete idea, we show the algorithm that we use to set the
CPR in our implementation below. Parameters used in this
algorithm are refined via Internet-based experiments.

if ( WCC of recent 10 seconds> 1.5 ) then set CPR = 1
else if ( WCC of recent 20 seconds> 2 ) then set CPR = 0.9
else if ( WCC of recent 30 seconds> 2.5 ) then set CPR = 0.8
else if ( WCC of recent 40 seconds> 2.75 ) then set CPR = 0.65
else if ( WCC of recent 50 seconds> 3 ) then set CPR = 0.5
else if ( WCC of recent 60 seconds> 3.25 ) then set CPR = 0.35
else set CPR = 0

Tracing congested links — congestion intensity.Based on
the CPR, we can further trace congestion status on each link.
To do this, we send the end-to-end probe on the forward path,
i.e., the f probe, at a fast rate (10 Hz in our implementation).
Each fast ratef probe can tell whether the path is congested
or not. If the path is congested, we infer the location of
congestion using the CPR. A link on the path that has a
nonzero CPR at this moment is regarded as congested.

We generate statistics for traced results every 30 seconds and
quantify the statistics by a measure —congestion intensity.
This measure represents how frequently a link is congested
during each 30-second-long time period. It is computed as the
percentage of the fast ratef probes that report the link as
congested within the 30 seconds.

One subtlety in tracing congested links is that in some
cases there could be multiple concurrently congested links
when a fast ratef probe observe congestion on the path.
For such anf probe, we assign a smaller weight when
computing the congestion intensity of each link in order to
reflect the uncertainty about the congestion location. In our
implementation, we use the instantaneous CPR of each link
as the weight for such moments.

C. A Measurement Example

Here we show measurement results of an experiment on the
Emulab testbed [1] to exemplify the efficacy of our measure-
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(b) After adding 2 backward congested links
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(c) After adding 2 forward congested links

Fig. 3. Measurement results of an Emulab experiment in terms ofweighted congestion count(WCC) andcongestion intensity

ment methodology. We will demonstrate its high measurement
accuracy even for cases of multiple concurrently congested
links and its capability to decouple forward congestion from
backward congestion.

In this example, we emulate a path consisting of 11 links.
Each link has a capacity of 100 Mbps and a delay of 2 ms.
We run our implemented measurement toolPong (written in
C++ and run on Linux) on the two endpoint machines. We
use periodic on/off (50% time on, 50% time off) TCP cross
traffic with different periods (the periods ranging from 0.5to
2 seconds) to emulate concurrent but independent congestion
on different links of the path.

First, we create congestion at links 1, 6, and 9 in the forward
direction. Figure 3(a) plots the measurement results, which
shows theweighted congestion count(WCC) andcongestion
intensity of each link for a 30-second-long time period. As
we can see, although the WCC shows slight false positives on
some non-congested links, the errors can be easily filtered.As
a result, the congestion intensity shows no such false positives
and it correctly identifies all three congested links.

Next, we add two additional congested links (links 2 and 5)
in the backward direction. Figure 3(b) plots results for this
case. As we can see, the false positives on non-congested
forward links become larger than the previous case due to
interferences from the two congested links in the backward
direction. But the errors are still small and can be filtered.
Therefore, the congestion intensity still accurately reflects con-
gested links with no false positives. This case demonstrates our
measurement methodology’s capability to decouple forward
congestion from backward congestion.

Finally, we remove the two backward congested links and
add two more forward congested links (links 5 and 11). As we
can see from the result shown in Figure 3(c), we successfully
identify all the five congested links. This case demonstrates
our methodology’s high accuracy in locating congested links
even when there are quite a number of concurrently congested
links interfering with each other’s congestion observation.

III. OPTIMIZING PONG IN THE INTERNET

Measurement environment in the Internet is much more
complex than that of a controlled testbed like the Emulab. For
example, queuing delays reflecting the congestion on a link
can differ substantially among different links, clock skews and
jumps can happen at end hosts, route alterations may occur on
paths, and ICMP responses could be queued at routers. All of
these can significantly affect the performance of a tool. In this

section, we addresses these practical measurement issues and
we optimize our measurement tool’s performance in reality.

A. Setting Queuing Delay Threshold

In our methodology, we compare the half path queuing
delays measured by the coordinated probing with a threshold
to decide whether each half path is congested or not. This
threshold is set for each path dynamically during measure-
ments; setting it correctly is critical for Pong’s measurement
accuracy. Still, this is a non-trivial task. In practice, links
constituting an Internet path could be quite heterogeneous.
For some links, queuing delays of several milliseconds could
indicate severe congestion, while for other links such queuing
delays are just trivial. In particular, when queue building-up
events happen concurrently on two heterogeneous links of the
same path, the one with a higher queuing delay scale can blur
our observation of queue building-up on the one with a smaller
queuing delay scale.

In this section, we introduce a best effort algorithm that we
use to set the threshold in cases when the queue building-up on
a link is not severely blurred.4 This algorithm sets the threshold
based on the statistical distribution of measured queuing delays
on a path.

To represent the distribution, we use the following bin
settings. We distribute queuing delay samples into 30 bins.
The first bin corresponds to queuing delays< 0.15 ms and
the last bin corresponds to queuing delays≥ 300 ms. The
middle 28 bins span the range from 0.15 ms to 300 ms with
logarithmically uniform bin sizes. We set the bin sizes log-
arithmically uniform because the larger the average queuing
delay, the larger the queuing delay deviation could be. The
parameters 0.15 ms and 300 ms are refined through measure-
ment experiments on a large number of Internet paths and
also by accounting for the queuing-delay scales reported by
others [2]–[4].

Since we focus on repetitively congested links, we expect
the queuing delay distribution to show clustering effects.
A typical case under desirable conditions is that we can
observe two strong modes from the queuing delay distribution
as shown in Figure 4. One mode corresponds to samples
observing no congestion and the other corresponds to samples
observing congestion. In such a case, we can easily set a proper
threshold in between the two modes, as shown in the figure.

However, in some cases it could be much harder to identify
the clustering for congested queuing delay samples than the

4For scenarios when the observation is severely blurred, we introduce a
separate algorithm in Section III-C.
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Fig. 4. Queuing-delay distribution with two strong modes

above case. Regardless, our algorithm makes its best effort
to infer this clustering and set a threshold right below the
congested cluster. It does so by sequentially checking the
queuing delay distribution with four major patterns that we
have refined via a large number of Internet experiments. If
a pattern is matched, it uses a method corresponding to the
pattern to set the threshold. Table II highlights this algorithm.

Distribution pattern Method used to set the threshold
Pattern A: More than 90% sam-
ples fall in the first bin (bin 0).

Locate a proper threshold from bin
bin 1 to bin 4.

Pattern B: Samples exhibit two
relatively strong modes from
bin 1 to bin 28.

Locate an appropriate valley point be-
tween the two strong modes as the
threshold.

Pattern C: More than 15%
samples fall in bin 0, and less
than 3% samples fall in the last
bin (bin 29).

Search from bin 1 towards bin 28 for
a foot point (starting from which the
per-bin number of samples descends
to a considerably low value).

Pattern D: None of the above
patterns is matched.

First locate a peak bin from bin 1 to
bin 28. Then search from the peak bin
towards bin 28 for a foot point.

TABLE II
ALGORITHM TO SET QUEUING DELAY THRESHOLD

B. Minimizing Measurement Errors

Our methodology makes best effort to minimize measure-
ment errors. We use the Linux kernel level timestamps (instead
of the application level timestamps) when implementing the
coordinated probing to improve its measurement accuracy.
However, there are still many interference factors in practice
that can cause measurement errors. Such factors include router
alterations, clock skews and jumps at end hosts, ICMP queuing
at routers, and other anomalies. We carefully handle these
factors in our methodology by detecting and reacting to them.

We can explicitly detect router alterations, clock skews, and
clock jumps. Router alterations are detected via traceroute-like
methods. Clock skews and jumps are detected by keeping track
of measured minimum one-way delays for the forward and
the backward paths. (For example, a continuous decreasing
of a minimum one-way delay indicates a clock skew.) When
significant router alterations, clock skews, or clock jumpsare
detected, we pause the measurement and keep track of the
anomaly until it is relieved. If it is just a transient anomaly,
we simply filter out the affected measurement samples.

We can implicitly detect ICMP queuing and many other
unidentified anomalies that affect measured queuing delaysby
tracing thequality of measurability(QoM) measure used in the
coordinated probing. The QoM indicates the matching extent
of a path pattern for measured queuing delays. When such
anomalies happen, the QoM usually shows an exceptionally

small instantaneous value. We can then use this instantaneous
QoM value as a coefficient when updating measurement results
from the sample. In this way, samples affected by such
anomalies will have very limited impact on the final results.

C. Quantifying Measurement Accuracy

Although our methodology makes the best effort to measure
the congestion location on a path, its measurement accuracy
could differ a lot for different paths due to underlying path
conditions. However, a link, especially a link in the Internet
core, can be observed by many paths which can give very
different measurement accuracies for congestion on the link.
We therefore can select a path that provides the best accuracy
when measuring congestion on a specific link.

To this end, we quantify measurement accuracy with a
measure —link measurability score. The link measurability
score represents the measurement accuracy for congestion on
a specific link when measured from a specific path. The higher
the value, the better the quality. It is computed based on the
following three components:

• Node score, which takes into account the path pattern
matched for the coordinated probing of an intermediate
node (since different path patterns give different measure-
ment accuracies for half path queuing delays) and the
corresponding QoM achieved (which quantifies the match-
ing extent of the path pattern and also captures extent of
transient anomalies). For each link, node scores of both
nodes of the link are considered. This measure affects the
link measurability score the most.

• Queuing threshold score, which takes into account the
quality of the queuing delay threshold set for the path. As
described in Section III-A, we use a best effort algorithm
to set the queuing delay threshold by matching the queuing
delay distribution with four patterns. However, differentpat-
terns result in different qualities for the threshold, thereby
leading to a different queuing threshold score.

• Observability score. Our measurement experience shows
that congestion observed on a less frequently congested link
can be blurred by a much more frequently congested link
on the same path. We therefore assign a small observability
score for those less frequently congested links to indicate
the uncertainty for their measurement results when we
detect a much more frequently congested link inrecenttime
on the same path.

D. Evaluation-based Tuning

We evaluate our methodology using the Emulab testbed
where we can control the ground truth of congested links.
However, to address the practical issues discussed above, we
resort to the Internet-based evaluation. We use the PlanetLab
testbed [5] for our Internet-based experiments. We deploy
our implemented measurement toolPong on over 300 Plan-
etLab hosts from which we have performed measurement
experiments on tens of thousands of Internet paths. These
experiments help us empirically tune parameters used in
our methodology: (i) the QoM threshold above which we
regard a path pattern as matched, (ii) the parameters used to
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translate the queuing delay of a half path to the corresponding
congestion probability and confidence, (iii) the parameters
used to compute the link measurability score,etc.

A big challenge for the Internet-based evaluation is the
difficulty to get the ground truth of congested links. But
given that we are measuring repetitively congested links, we
stand a good chance to infer the ground truth by exploiting
the temporal locality of congestion. In addition, since the
same congested link can be observed from different paths, we
exploit measurement consistency among these paths to help
infer the ground truth, as we explain in detail below.

IV. PERFORMANCEANALYSIS

In this section, we analyze Pong’s performance in the
Internet by evaluating the following aspects: (i) Pong’s self-
consistency on measured congestion locations among inde-
pendent measurements, (ii) the performance of coordinated
probing in terms of probing technique utilization, (iii) Pong’s
overall measurement accuracy in terms of the link measura-
bility score, and (iv) advantages of the link-level congestion
monitoring capability enabled by Pong.

A. Self-consistency Validation

We evaluate Pong’s measurement accuracy using self-
consistency validation. In essence, we want to confirm that we
can get consistent congestion observations when measuringthe
same repetitive congested link from multiple vantage points.
Consistency over a large number (i.e., over 3,500 in our case)
of independent measurements is a strong indicator of the
validity of the methodology.

Here, we present the self-consistency validation results in
one of our Internet experiments. This is a PlanetLab based
experiment, in which we have measured over 20,000 different
paths within 10 days using over 300 PlanetLab hosts. Each
path is measured for 100 minutes. From the raw measurement
data, we collect a total of 346,591 congestion events. Each
congestion event is a continuous congestion period on a link
during which measured congestion intensity is consistently
above a threshold. Based on these congestion event samples,
we collect data useful for self-consistency validation in the
following way.

First, we select the congestion samples that reside ex-
clusively on individual IP-level links for which both ends
responds to TTL-limited probes. In this way, we guarantee
that we know the accurate location (i.e., on the granularity
of a single IP-level link) for these congestion samples. This
leaves us with 335,391 remaining samples.

We then refine the data set by filtering congestion samples
that happen at network edges. We do this for two reasons.
First, congestion scale on edge links is much larger than that
in the core. Thus, to make our validation more convincing, we
prefer to use self-consistency results on links for which the
congestion scale is relatively small. Second, links in the core
are more likely to be measured by endpoints from different
physical locations. Therefore, data on these links are more
suitable for self-consistency validation.

After filtering congestion samples residing at edges, 160,813
samples remain. These congestion samples happen on 6,168

different links and 8,552 different paths. We find that 3,500
links are shared by more than one path (799 links by more
than 10 paths, and 60 links by more than 100 paths). Among
them, we select the eight links that are shared by the most
paths. Table III provides information of these eight links.
For example, link 2 is shared by 301 different paths; these
paths source from 57 PlanetLab hosts and are destined to 35
PlanetLab hosts.

Link # of Paths # of Sources # of Destinations
Link 1 312 3 140
Link 2 301 57 35
Link 3 295 19 69
Link 4 294 32 38
Link 5 262 120 3
Link 6 252 54 31
Link 7 243 6 110
Link 8 239 14 101

TABLE III
TOP EIGHT CONGESTEDL INKS OBSERVED BY MOST PATHS

For each of the eight links, we check related measuring
paths by examining sets of link congestion status graphs
generated by Pong. We find that Pong locates congested links
(that exhibit repetitive congestion) with very high accuracy.
There are almost zero false positives on the links close to the
shared link. For the vast majority of these measuring paths,
Pong showsno congestion on links right in front and right
behind the shared link when the shared link is congested.
This means that Pong experiences no “leaking” effects in
which congestion at one location is incorrectly allocated to
neighboring links. For those paths that do show congestion
on neighboring links, we find that such neighboring links are
the ones that are on the side closer to the edge. Such links
are also congested at other moments when the shared links
are not. Therefore, we conclude that such neighboring links
are actually experiencing congestion instead of showing false
positives caused by congestion on the shared link.

We also check the temporal consistency for the congestion
measured on shared links. To accomplish this, we collect
concurrent measurements,i.e., overlapping measurement time
periods for paths associated with a shared link. Then, we plot
and manually examine these periods. We find that, for results
annotated with relatively good link measurability scores,the
measured congestion shows high temporal consistency: during
an overlapping measurement period, if on one path we observe
congestion for the shared link, we can also observe it on other
paths — at the same time and with similar congestion scales
and time patterns.

B. Probing Technique Utilization

As we described in Section II-A2, when conducting coordi-
nated probing, Pong selects probing techniques online based
on matched path patterns. The probing techniques actually in
use are crucial for the measurement accuracy. The4-p, fsd,
and fsb probing techniques can provide high measurement
accuracies, while the measurement accuracy of the2-pprobing
technique is relatively low. In this section, we present our
measurement statistics on the utilization of each probing



In Proceedings of IEEE ICNP 2008

technique in Internet experiments. This helps us get a better
understanding on Pong’s actual performance in practice.

The statistics shown here corresponds to the same PlanetLab
based experiment described in the previous section, which
has measured over 20,000 different paths within 10 days. We
log selected probing techniques at each intermediate node on
each path every 30 seconds. Based on these logged probing
technique samples, we get the following utilization statistics.

The 4-p and 2-p probing techniques are utilized 56% and
36% of time respectively on average. The fsb probing is
utilized 7% of time, and the fsd probing is only utilized 1%
of time approximately. The large percent for the 4-p and 2-p
probing is not a surprise. As explained in Section II-A2, 4-p
probing has the highest priority and therefore is always tried
first, and 2-p probing is the last resort. The fsd and fsb probing
are applied only as transient techniques between the default
ones. Therefore, their percent is not high. Particularly, for a
large majority of cases where the fsd probing is applicable,we
can also find an appropriate pairing to make the 4-p probing
work. Therefore, the 4-p probing is finally used. This is exactly
why the percent of the fsd probing is the lowest.
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Fig. 5. Probing technique utilization vs. location

Figure 5 shows the utilization of the 4-p and 2-p probing
techniques relative to the location of intermediate nodes.The
location is represented using the normalized hop number of
an intermediate node in the format of a percent number,i.e.,
0% means the first intermediate node on the path, closest to
the source, and 100% means the last intermediate node on the
path, closest to the destination.

The figure shows that the 4-p and 2-p probing techniques
prevail: their sum is typically above 90%. However, the spatial
distribution is not uniform. For the intermediate nodes closer
to edges the 4-p probing prevails, which means there is a
high opportunity to find a suitabled probe to an intermediate
node on the backward path to pair up with thes probe to
the concerned intermediate node on the forward path. For the
concerned intermediate nodes closer to the core (i.e., the 50%
location), the opportunity of such pairing decreases. Thisis
because forward and backward paths are typically disjoint in
the core [6]. However, the figure also shows that many (over
45%) of the intermediate nodes ondisjoint paths in the core
could still be successfully paired.

C. Measurement Accuracy for Non-access Links

In this section, we analyze Pong’s measurement accuracy
for the target that its methodology is optimized for — non-
access links that exhibit repetitive congestion. We present the
statistical distribution of measurement accuracies achieved on

such links based on our Internet experiments. The measure-
ment accuracies are indicated by the link measurability score
(LMS) that we introduced in Section III-C.

The statistics shown here corresponds to the same Planet-
Lab based experiment described in the previous section. In
this experiment, we have collected about 24,000 congestion
samples on non-access links that exhibit repetitive congestion.
Each sample corresponds to 30-second-long time slot and is
annotated with a congestion intensity and an LMS. Recall that
the congestion intensity represents how frequently we observe
congestion on a specific link during a 30-second-long time
slot. Thus, we can select samples of repetitive congestion by
filtering out samples showing small congestion intensity. In
addition, we can select samples for non-access links based on
a link’s normalized location on a path. We roughly treat a
link with a normalized location between 20% and 80% as a
non-access link. In this way, we collected the above 24,000
samples.

In our implementation, the LMS takes a value between 0 and
6. Before explaining the LMS distribution, we first introduce
the implications of major LMS levels. These implications
are learned through our evaluation-based tuning describedin
Section III-D.

“LMS=0” means both nodes of the link are using 2-p prob-
ing technique. We have observed end-to-end congestion on
the path at a moment, but Pong is unable to accurately locate
this congestion. The conclusion that the link is congested
may not be reliable. “LMS=1” usually means at least one
node of the link is using 4-p or fsd probing technique, but
the quality of measurability (QoM) is not high. This is the
lowest level that we consider the measurement accuracy as
acceptable. “LMS=2” usually means that either (i) one node of
the links is using 4-p or fsd and it achieves a high QoM or (ii)
both nodes are using 4-p or fsd and have moderate QoMs. It
indicates moderate measurement accuracy. “LMS=3” usually
means both nodes are using 4-p or fsd and both achieve good
QoMs. It indicates good measurement accuracy. “LMS≥4”
indicates very good measurement accuracy.
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Within the aforementioned 24,000 congestion samples, we
find 63% of them associate with non-zero LMS. Figure 6
shows the cumulative distribution function (CDF) of LMS for
these samples with non-zero LMS. As we can see, (i) 95%
of these samples have an acceptable measurement accuracy
(LMS≥1), (ii) 75% have a better-than-fair measurement accu-
racy (LMS≥2), (iii) 60% have a good measurement accuracy
(LMS≥3), and (iv) 35% have an excellent measurement
accuracy (LMS≥4).
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The LMS distribution helps us understand the Pong’s
measurement accuracy in reality. Meanwhile, it also reflects
that there is a good chance for Pong to achieve a good
measurement accuracy in practice even when we are restricted
to use a designated path. Given that the same non-access link
can usually be measured from many different paths, we stand
a good chance to achieve a high measurement accuracy by
selecting a suitable measuring path.

D. Advantages of Link-level Congestion Monitoring

Due to its very lightweight nature, Pong could be effectively
used for long term congestion monitoring in addition to on
demand congestion measurement. For example, for a path
consisting of 10 intermediate nodes, itsmaximumprobing
overhead from either endpoint is only 2.2 kBps. Moreover,
when compared to pure end-to-end monitoring approaches, the
link-level congestion monitoring enabled by Pong has apparent
advantages:

First, link-level congestion monitoring allows us to focus
on congestion at a specific location and pinpoint congestion
at the level of a single link. On the contrary, the pure end-
to-end congestion monitoring will inevitably mix congestion
from all locations on a path. Secondly, when monitoring a
wide network area, link-level congestion monitoring makes
it possible to cover the area in an unbiased way. On the
contrary, a location-unaware end-to-end monitoring approach
could inevitably cover some congested links with many more
measuring paths than some other links. Such biased coverage
will lead to biased measurement results because congestionon
the former links is repeatedly counted for many more times
than that on the latter links.

V. RELATED WORK

Active probing techniques used in measurement tools can
be divided into two categories: end-to-end approaches (e.g.,
[7]–[12]) and router-response-based approaches (e.g., [13]–
[15]). End-to-end approaches send single probe packets, packet
pairs, or packet trains along the whole path. They measure
one-way delay or packet dispersion and infer end-to-end path
properties such as bottleneck capacity [8], [12], [16], available
bandwidth [7], [11], [17], and bottleneck location [10], [17],
[18]. Router-response-based approaches probe intermediate
routers along a path and diagnose link-level properties such
as queuing delay, packet reordering, packet loss rate, and the
corresponding location.

Pong combines approaches of both categories and focuses
on measuring link-level queuing delays to infer congestion
locations. Pong sends both end-to-end and router-response-
based probes and correlates them in a novel way. Unlike end-
to-end tools such asPathneck[10], Stab[17], andBFind [18]
which can only locate the dominant bottleneck or minor bottle-
necks in front of the dominant one, Pong can measure multiple
concurrently congested points on the same path. Unlike router-
response-based tools such asTulip [15] and Pathchar [14],
Pong correlates probes sent to different intermediate routers
in a more effective way, thereby achieving a higher accuracy
with a much lower traffic overhead.

BFind [18] exploits TCP’s property of gradually filling up
the available bandwidth and combines it with router-response-
based probes to measure the location of dominant bottlenecks.
As recognized by its authors, the main drawback withBFind
is that it is a heavy-weight tool that sends a large amount
of data. As a result, it is only applicable for short duration
measurements. On the contrary, the Pong’s overhead is very
low, which makes it suitable for continuous monitoring in the
long term.Pathneck[10] andStab[17] are two other examples
that integrate available bandwidth measurement approach with
a router-response-based probing method to locate dominant
bottlenecks. Although the overhead for each of them is signif-
icantly lower than that ofBFind, it is still much higher than
that of Pong because they rely on relatively long packet trains
when probing the available bandwidth.

Gurewitz and Sidi have performed a mathematical study
on estimating one-way delays from round-trip delay measure-
ments [19]. However, their approach is difficult to apply in
practice for two reasons: (i) it requires knowledge of the
exact path traveled by a round-trip probe, while in practicethe
returning path from a router usually can not be measured; (ii)
even if exact paths can be measured, the set of paths still hasa
high probability not to satisfy the topology relations required
by their algorithm. On the contrary, since Pong measures
queuing delays instead of the absolute delays, it can easily
mitigate the two problems — when inferring underlying path
conditions, Pong does not rely on knowledge of the actual
topological characteristics of the paths that probes travel;
also, the desirable Pong conditions have a high probability
of being satisfied in practice, as we demonstrated in the
previous section. In addition, the approach of [19] requires
measurements from a large number of vantage points, while
Pong only relies on measurements from the two endpoints of
a path.

Network tomography approaches [20]–[25] exploit temporal
correlations among results observed by multiple receiversin a
multicast-like environment and infer link-level characteristics
such as delay and loss by only using end-to-end probing. A
recent work,Mils [26], has developed an unbiased algebraic
model that significantly reduces the complexity of network
tomography and improves its inference accuracy. However,
even when equipped withMils, a network tomography ap-
proach is still more complex relative to Pong. Pong shares
a flavor of network tomography approaches in that it also
exploits temporal correlations of congestion measured by
probes traveling shared path segments. Still, Pong is much
simpler and much easier to deploy than a network tomography
tool, especially when we want to generate measurement results
in real time.

Network radar [27], [28] uses only round-trip time mea-
surements, and thus no longer requires the collaboration from
receivers. As a result, it makes the measurements much easier
to deploy and significantly expands the scope of measurable
ranges on individual paths. However, the tradeoff is the radar’s
vulnerability to interferences from congestion on shared path
segments on returning paths and from “noises” caused by re-
ceiving hosts, thereby reducing its measurement accuracy and
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robustness. In contrast, Pong achieves both high accuracy and
robustness in practice. Although Pong requires collaboration
from the receiver side, this restriction is not dramatic when
our concerned targets are congested links in the Internet core,
which can be well measured from a relatively small number
of vantage points that we can control.

Detecting shared congestion of multiple paths is another
related work. For example, Rubensteinet al. [29] detect shared
points of congestion by exploiting Poisson probes; Kimet
al. [30], [31] detect shared congestion by using a wavelet
denoising approach. Because both approaches strictly leverage
end-to-end probing, they have to rely on advanced probing
patterns and signal processing methods to identify shared
congestion. In contrast, by combining end-to-end probing with
router-response-based probing, Pong provides an efficientway
to directly locate congested points which can potentially lead
to a much simpler method to detect shared congestion.

VI. CONCLUSIONS

In this paper, we presentedPong, a measurement tool
capable of accurately locating and monitoring congested links
that exhibit repetitive congestion. By exploiting coordinated
probing from both endpoints of a path, Pong can detect
and monitor congestion on the Internet core links which
are typically much harder to measure than edge links. Pong
can locate congested links almost immediately for significant
congestion (in terms of both queuing delay scales and the
period of continuous queue building-up and draining epochs).
Meanwhile, it can also accurately locate congested links that
show small instantaneous queuing scales but exhibit repetitive
congestion over longer time scales. The very lightweight
nature of Pong makes it suitable for long term monitoring
tasks as well.

Pong can (i) strategically combine end-to-end and router-
response-based probes sent from both endpoints to improve
congestion observability; (ii) effectively self-adapt to under-
lying topological characteristics to accurately locate congested
links; (iii) detect and filter out periods of its own measurement
inaccuracy; and (iv) quantify its measurement accuracy for a
given link observable from multiple vantage points, allowing
us to select suitable paths to optimize measurement perfor-
mance.

Our experimental results on the Emulab testbed show that
Pong can accurately locate congested links even in cases of
quite a number of concurrently congested links on the same
path. Moreover, it can successfully decouple congestion on
the forward path from that on the backward path. Finally, our
PlanetLab experiments expose Pong’s high potential to achieve
a high measurement accuracy in the real Internet environment.
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