
CS for Scientists and Engineers

Christine Alvarado
Zachary Dodds
Geoff Kuenning

Ran Libeskind-Hadas

September 1, 2009

To the Reader

Welcome! This book is a companion to the course “CS for Scientists and Engineers”
developed at Harvey Mudd College (HMC) over the last several years. This course, Our name is Mudd!

and book, take a unique approach to “Intro CS”.
In a nutshell, our objective is to provide an introduction to computer science as

an intellectually rich and vibrant field rather than focusing exclusively on computer
programming. We provide a broad view of computer science, including its strong
connections to engineering and mathematics and its fundamental importance to the
modern practice of all of the sciences. While programming is certainly an important
and pervasive element of our approach, we emphasize concepts and problem-solving
over syntax and programming-language features.

This approach is evident from the very beginning. In the introductory chapter
we describe a very simple programming language for controlling the virtual “Picobot”
robot. The syntax takes ten minutes to master but the computational problems posed
here are deep and intriguing.

The remainder of the book follows in the same spirit. We use the Python language
due to the simplicity of its syntax and the rich set of tools and packages that allow a
novice programmer to write useful programs. Our introduction to programming with
Python in Chapter 2 uses only a limited subset of the language’s syntax in the spirit
of a functional programming language. In this approach, students master recursion
early and find that they can write interesting programs with surprisingly little code.

Next, in Chapter 3, we pose the question “how does a computer run your recursive
program?” We describe the inner workings of a computer from switches to digital This may appear to be a

topic “switch,” but we
feel that it is a “current”
approach.

logic gates to adders and memory up to a plausible computer. We then program
that computer in a simple assembly language, culminating in the implementation of
recursive programs.

Now that the computer has been demystified and students have a physical repre-
sentation of what happens “under the hood” of the computer, we move on in Chapter
4 to explore more complex ideas in computation and, concomitantly, concepts such
as references and mutability, and constructs including loops, arrays, and dictionaries.
We explain these concepts and constructs using the physical model of the computer
introduced in the previous chapter. In our experience, students find these concepts
are much easier to comprehend when there is an underlying physical model.

Chapter 5 explores some of the key ideas in object-oriented programming and
design. The objective here is not to train industrial-strength programmers but rather
to explain the rationale for the object-oriented paradigm and allow students to exercise
some key concepts.

i

CHAPTER 0. TO THE READER

Finally, Chapter 6 poses the question “Are there problems that computers cannot
solve?” We provide a gentle but mathematically sound treatment of the theory of
uncomputability, ultimately proving that there are many computational problems that
are provably impossible to solve on a computer. Rather than using formal models of
computation (e.g. Turing Machines), we use Python as our model of computation.

While this course and book are broadly accessible, it is written with scientists,
engineers, and mathematicians in mind. The course is required for all freshmen at
Harvey Mudd College, irrespective of their intended major. Thus, it serves as the first
and last course in computer science for many scientists, engineers, and mathematicians
and it serves as the introductory course for computer science majors.

This course has been very successful by many measures. A number of papers
explaining the theory and assessment of this course have appeared in computer science
education conferences and can be found on the Web at URLHERE.

This book is intended to be used with the substantial resources that we have
developed for the course and are available on the Web at http://www.cs.hmc.edu/
IntroCS. These resources include complete lecture slides, a rich collection of weekly
assignments, some accompanying software, and documentation.

We have kept this book relatively short and have endeavored to make it fun and
readable. The content of this book is an accurate reflection of the content of theNew! Improved! With

many “marginally”
useful comments!

course rather than an intimidating encyclopedic tome that can’t possibly be covered
in a single semester. We have written this book in the belief that a student can read
all of it comfortably as the course proceeds. In an effort to keep the book short (and
hopefully sweet), we have not included the exercises and programming assignments in
the text but rather have posted these on the course Web site.

We wish you happy reading and happy computing!

ii Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Contents

To the Reader i

1 Introduction 1
1.1 Computer Science: Realities and Myths 1

1.1.1 Algorithms: Making Pie and Making π 2
1.1.2 Beyond Algorithms . 3
1.1.3 The Role of Programming in Computer Science 4

1.2 Picobot . 5
1.2.1 The Roomba Problem . 6
1.2.2 The global environment and the local surroundings 6
1.2.3 State . 7
1.2.4 Think locally, act globally . 7
1.2.5 Whatever . 11
1.2.6 The Picobot challenge . 11
1.2.7 Uncomputable environments . 12

2 Functional Programming 13
2.1 Humans + Machines + Aliens = CS . 13
2.2 A First Program . 14
2.3 Statements and Expressions . 18
2.4 Variables: Giving Names To Things . 18

2.4.1 Assignment Statements in the 1-2 Prediction Program 20
2.5 Functions . 21

2.5.1 return vs. print . 22
2.5.2 Functions Can Call Functions! 23
2.5.3 Functions in the 1-2 Prediction Program 25

2.6 Conditional Statements . 25
2.6.1 Boolean Expressions (And Alien Special Numbers!) 27
2.6.2 Multiple Conditions . 28
2.6.3 Conditionals in the 1-2 Prediction Program 28

2.7 Scope . 31
2.8 Recursion . 33

2.8.1 Recursion in the 1-2 Prediction Program 35
2.9 Improved Mind Reading . 35

iii

CONTENTS

3 SuperFunctional Programming 39
3.1 Top-down Human Design . 39
3.2 Top-down Program Design . 40
3.3 The alien’s protein-folding code . 40

3.3.1 Disclaimers . 44
3.4 Sequences . 45

3.4.1 Strings . 45
3.4.2 Lists . 48
3.4.3 Operators for lists vs strings . 48
3.4.4 Converting between data types 51

3.5 Matters of import . 51
3.6 Functions are data, too: reduce, map, and lambda 53

3.6.1 Motivating reduce . 53
3.6.2 reduce: a function that takes a function as input 54
3.6.3 Reducing nothing at all? . 55
3.6.4 One chain to rule them all . 56
3.6.5 A map of map . 56
3.6.6 Use it or lose it . 57
3.6.7 Functions returning functions . 58
3.6.8 The biochemistry, at last! . 59
3.6.9 Anonymous functions: lambda 60
3.6.10 And beyond. 61

4 Computer Organization 63
4.1 Introduction to Computer Organization 63
4.2 Representing Information . 63

4.2.1 Integers . 63
4.2.2 Arithmetic . 65
4.2.3 Negative Numbers . 66
4.2.4 Fractional Numbers . 66
4.2.5 Letters and Strings . 67
4.2.6 Structured Information . 68

4.3 Logic Circuitry . 69
4.3.1 AND, OR, and NOT . 69
4.3.2 Making Other Boolean Functions 70
4.3.3 Logic Using Electrical Circuits 72
4.3.4 Computing With Logic . 73
4.3.5 Memory . 75

4.4 Building a Complete Computer . 77
4.4.1 The von Neumann Architecture 78

4.5 Hmmm. 81
4.5.1 A Simple Hmmm Program . 81
4.5.2 Looping . 84
4.5.3 Functions . 86
4.5.4 Recursion . 88
4.5.5 The Complete Hmmm Instruction Set 92
4.5.6 A Few Last Words . 92

iv Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CONTENTS

5 Imperative Programming 95
5.1 Motivation: Measuring the Stroop Effect 95
5.2 Repeated Tasks: Loops . 100

5.2.1 Recursion vs. Iteration at the Low Level 101
5.2.2 Definite Iteration: for loops . 103
5.2.3 How is the control variable used? 105
5.2.4 Accumulating answers . 106
5.2.5 Indefinite Iteration: while loops 108
5.2.6 for loops vs. while loops . 109
5.2.7 Creating infinite loops on purpose 110
5.2.8 Iteration is efficient . 111
5.2.9 Assignment by reference . 112
5.2.10 Mutable datatypes can be changed using other names! 114

5.3 Taking advantage of mutable data: Sorting for Stroop 115
5.3.1 Why selectionSort works . 117
5.3.2 A swap of a different sort . 117
5.3.3 2D Arrays and Nested Loops . 118
5.3.4 Dictionaries . 121

5.4 Displaying Colored Strings (Randomly) 123
5.5 Putting It All Together: Program Design 125

5.5.1 A program to quantify the Stroop Effect 125

6 OOPs! Object-Oriented Programs 131
6.1 A Rational Solution . 132
6.2 Overloading . 136
6.3 Printing an Object . 138
6.4 A Few More Words on the Subject of Objects 139
6.5 Why are OOPs Important? . 141
6.6 Getting Graphical with OOPs . 142

v Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CONTENTS

vi Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Chapter 1

Introduction

1.1 Computer Science: Realities and Myths

Computer science is to the information revolution what mechanical engi-
neering was to the industrial revolution.

——Robert Keller

Computer Science (CS) is a young and exciting field and one that that touches
all of us everyday. Strangely, it is also a field that is generally misunderstood. Most
educated people have at least a reasonably good idea of what goes on in chemistry or
physics, but not so with computer science. We’ve asked hundreds of bright, educated
people what a computer scientist does, and here are some of the common (but way
off!) answers we have received:

Computer scientists try to figure out how computers work.

Computer scientists are experts on how to set up, configure, and repair
computers.

Computer scientists are experts at programming.

Let’s talk about these misperceptions for a minute. First, trying to figure out how
computers work is not a good use of time; computers are made by humans and their
inner workings are completely understood (at least by some people). Some computer
scientists do work on the design of the next generation of computers.

Setting up and repairing computers is important, but it’s not computer science.
You may be surprised to learn that when one of us professors has a malfunctioning
computer the only thing that we know how to do is put in a box and send it back for
repair! Some computer scientists know how to set up or configure computers just as
some musicians know how to tune a piano.

Programming is definitely important and we’ll say more about it in a few pages.
For now, let’s make this observation: Most computer scientists know how to pro-
gram just as most writers know how to construct grammatical sentences and most
astronomers know how to operate a telescope. But nobody would argue that writing

1 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 1. INTRODUCTION

is about grammar or that astronomy is about telescopes. Similarly, programming is
an important piece of computer science but it does not define the discipline.

By the time you’ve finished this book, and the associated exercises and projects, you
will understand what computer scientists do because you will have done real computer
science. You will have experienced the breadth, complexity, and fascinating variety of
this incredible field. You probably will not be any better at repairing computers than
you are right now.

We could attempt to give a “formal” definition of computer science, but such def-A formal definition
might run: “Computer

science is the systematic
study of information and

computation using that
information.” Do you

feel enlightened?

initions are inherently so general that they are rarely enlightening. Computer science
is a broad discipline with roots in disparate fields that include engineering, mathemat-
ics, cognitive science, and even philosophy. Can you imagine a short definition that
brings together all of these fields? Neither can we. So instead of giving you a formal
definition, we’ll begin with some examples of what computer scientists do.

Computer scientists engage in all kinds of activities, ranging from developing new
products we use in mobile phones, computers, or web browsers to designing software for
life-saving medical devices or air traffic control systems. They invent new techniques
for rendering realistic computer graphics in video games and movies. They design
robots that can clean a house, drive across a desert, or explore another planet. Usually
not the same robot for all three tasks.

The unifying theme is that computer scientists are interested in the automation of
tasks ranging from artificial intelligence to zoogenesis. Put another way, computerZoogenesis refers to the

origin and evolution of a
particular animal

species. Computational
biology is a field that
uses CS to help solve
zoogenetic questions,
among many others.

scientists are interested in finding computational techniques or “algorithms” for a wide
range of tasks. Next, they write these algorithms as programs, or software, that can
be executed on a computer.

Perhaps the oldest
known algorithm is the

famous Euclidean
algorithm for finding the
greatest common divisor
of two positive integers.
The algorithm appears

in Euclid’s writing
around 300 B.C.E. but

was probably known by
other Greek thinkers one

or two hundred years
earlier. Although Euclid

and his Greek friends
didn’t know it, they were

among the first
computer scientists!

1.1.1 Algorithms: Making Pie and Making π

Algorithms are so fundamental to computer science that they deserve a more complete
introduction. Algorithms are precise sequences of steps for carrying out a task. How
precise? Precise enough that someone (or something) with no prior knowledge of the
task and with only very basic capabilities could complete it.

Algorithms are commonly compared to recipes. For example, consider the following
recipe (algorithm) for making pumpkin pie:

1. Mix 3/4 cup sugar, 1 tsp cinnamon, 1/2 tsp salt, 1/2 tsp ginger and 1/4 tsp
cloves in a small bowl.

2. Beat two eggs in a large bowl.

3. Stir 1 15-oz can pumpkin and the mixture from step 1 into the eggs.

4. Gradually stir in 1 12 fl. oz. can evaporated milk into the mixture.

5. Pour mixture into unbaked, pre-prepared 9-inch pie shell.

6. Bake in preheated 425-degree oven for 15 minutes.

7. Reduce oven temperature to 350.

8. Bake for 30-40 minutes more, or until set.

2 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

1.1. COMPUTER SCIENCE: REALITIES AND MYTHS

Figure 1.1: Approximating π with darts. The area of the square is 4. The area of the
circle is πr2 which is π in this case. The expected fraction of darts that end up in
the circle is therefore π/4. Therefore, if we throw n darts and k land inside the circle,
then k/n should be approximately π/4. In other words, π is approximately 4k/n.

9. Cool for 2 hours on wire rack.

[cite: Libby’s pumpkin pie recipe–we can use a different one depending on copyright
issues.] Assuming we know how to perform basic cooking steps (measuring ingredients,
cracking eggs, stirring, licking the spoon, etc.), we could make a tasty pie by following No! Don’t lick the

spoon—there are raw
eggs in there!

these steps precisely.
Out of respect for our gastronomical well-being, computer scientists rarely write

recipes/algorithms that have anything to do with food. As a computer scientist, we
would be more likely to write an algorithm to calculate π very precisely than we would
be to write an algorithm to make a pie. Let’s consider just such an algorithm:

1. Draw a square that is 2 by 2 meters.

2. Inscribe a circle of radius 1 meter (diameter 2 meters) inside this square.

3. Grab a bucket of n darts, move away from the dartboard, and put on a blindfold.

4. Take each dart one at a time and for each dart:

(a) With your eyes still covered, throw the dart randomly (but assume that your Please don’t try this at
home.throwing skills ensure that it will land somewhere on the square dartboard).

(b) Record whether or not the dart landed inside the circle.

5. When you have thrown all the darts, divide the number that landed inside the
circle by the total number, n, of darts you threw and multiply by 4. This will
give you your estimate for π.

See Figure 1.1.1 for a visual representation and an explanation of why this algorithm
works.

Again, the steps in this algorithm are straightforward. Even if we know nothing
about π, if we follow the steps precisely, we will obtain a good estimate for its value. In
the case of estimating π, it turns out that the steps can be performed by a computer.
Happily, the computer does not actually throw physical darts, but we can simulate
this dart throwing process by generating random coordinates where the darts land.
Performing this algorithm on a computer is much more efficient (and safer) than doing
it by hand. The computer can throw millions of virtual darts in a fraction of a second
and will never miss the square, making it considerably safer for your roommate.

1.1.2 Beyond Algorithms

Of course, this distillation of computer science as algorithm design omits many im-
portant and fascinating pieces. For example, how do we know if a given task can be
automated? It turns out that there are very many useful tasks that we would like to

3 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 1. INTRODUCTION

automate—turn into algorithms and then, ultimately programs—that we can prove
are not automatable! We’ll see how to write such proofs later in this book.

If a problem can be automated, how do we know that the algorithm that we’ve
created is a good one? Usually there are many different algorithms for a given task,
and some may be better than others in the sense that they are more accurate, faster,
simpler, etc. Designing and evaluating approaches to a computational problem is a
creative and challenging endeavor. You’ll get plenty of opportunities throughout this
course to design and evaluate solutions to interesting computational problems.

Programs often interact with people. For example, applications that you use on
the web are programs. You’ve undoubtedly encountered some confusing ones that
elicited head-scratching, teeth-gnashing, or worse. Hopefully, you’ve also encountered
web applications that were so easy and natural to use that you barely batted an eyelid.
The design of a good user interface is not a coincidence! It’s a rich and important area
of computer science and one that you will encounter in this course as well.

Next, there’s the computer itself. Although computers don’t look like much, there
is a huge amount of cleverness inside. There are the actual hardware components that
ultimately “run” your program and there is some ingenious software that controls the
many disparate parts of a computer to make sure that they play nicely together. How
does this all work? In this course you will get a chance to design some of the key
components of a computer to see how the computer works. Ultimately, this will allow
you to understand what happens “under the hood” when a program runs.

Finally, there’s the issue of writing the program. You might think that writing a
program is a mindless and mundane task, but nothing could be further from the truth!
In fact, the issue of writing programs is so important that we devote the whole next
section to it.

1.1.3 The Role of Programming in Computer Science

As we noted earlier, many people believe that computer science and programming are
one and the same. Indeed, it is likely that one of the few expectations you had when
you picked up this book is that it would help you learn to program.

Of course, you are not wrong in your expectations—you will know how to pro-
gram when you finish reading this book. However, it should be noted that some fine
textbooks teach computer science without teaching any programming. You can be aSome other books teach

programming without
really teaching computer

science.

computer scientist without knowing a specific programming language, and, as we will
see later, some branches of computer science involve no programming at all.

So can computer science exist without programming? Of course not. Programming
is the building block for everything that computer scientists study. It allows us to put
our theories and algorithms into practice, both to test them and to apply them to
real-world problems.

To illustrate the essential relationship between programming and computer science,
let’s consider an analogy: Computer Science is to programming as culinary arts is to
cooking. Can one be a chef without cooking? Of course, and there are many chefs
that do not cook. However, if no one were cooking, what would be the point to having
chefs? When someone developed a new recipe, how would they know if it really was
better than the former recipe? Furthermore, the whole field of culinary arts would
never have developed if no one were cooking food in the first place. Finally, and most

4 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

1.2. PICOBOT

importantly, developing recipes without implementing them misses the point entirely.
Few people want a good recipe; what they want is a delicious meal.

The same ideas apply to computer science and programming. If there were no
programming, there would be no programs that solve useful problems. Few people
want to know only about the idea of a social network and how one can theoretically
stay in touch with friends. What most of us want is Facebook, which is simply a or Bebo or Habbo or

LinkedIn or MySpace or
Orkut. . . .

program, even if a very large and complicated one.
In this book we will use the Python programming language to implement algo-

rithms to solve a number of problems. However, because computer science is so much
more than just programming, we will also look at “languages” other than Python
for programming a computer, including a language named Picobot, introduced in the
next section, and a language called Hmmm. Hmmm is an assembly language, which is Hmmm is short for the

Harvey Mudd Miniature
Machine.

a very low-level language, directly translatable into the 1’s and 0’s that the computer
understands. (We’ll also look at what it means for the computer to “understand,” so
don’t worry if that last sentence didn’t make too much sense).

After the description above, you might be tempted to think that programming
is a mere mechanical process, in which we translate our algorithms into a form that
the computer can interpret. On the contrary, programming, like cooking, is both
an art and a science, and mastering that art (and science) is essential to mastering
computer science. Writing a program can be an intellectually challenging and exciting Probably the most

famous series of books in
computer science is a
three volume series titled
“The Art of Computer
Programming” by
Professor Donald Knuth.
Knuth (the “K” is not
silent) is the youngest
person ever to win the
National Medal of
Science. President
Jimmy Carter bestowed
Knuth this honor in
1979.

undertaking. Once a program is written, it rarely works quite right. Testing your
program, finding its “bugs”, and correcting those errors requires some clever detective
work. You’ll do all of that here. Let’s get started!

1.2 Picobot

Leap before you look.
—W. H. Auden

We can talk and talk about what computer science is and is not, but the best
way for you to get a feel for computer science is to jump right in and start solving a
computer science problem. So let’s do just that. In this section, we’ll examine solutions
to an important problem: How to make sure you’ll never have to clean—or at least
vacuum—your room again. To solve this problem we’ll use a simple programming If your room has no open

floor space, this claim is
“vacuously” true!

language named Picobot that controls a robot loosely based on the Roomba vacuum
cleaner robot.

You’re probably wondering what happened to Python, the programming language
we said we would be using throughout this book. Why are we sweeping Python under
the carpet and brushing aside the language that we plan to use for the remainder of the
book? The answer is that although Python is a simple (but powerful!) programming
language that’s easy to learn, Picobot is an even simpler language that’s even easier
to learn. The entire language takes only a few minutes to learn and yet it allows
you to do some very powerful and interesting computation. So, we’ll be able to start
some serious computer science before we get sucked into a discussion of a full-blown
programming language. This will be new and fun—and whether or not you have
programmed before, it should offer a “Eureka!” experience. So, dust off your browser
and join us at http://www.cs.hmc.edu/picobot. This web site offers a

simulation environment
for exploring Picobot’s
capabilities.5 Draft for review, version 83, 2009-08-27 23:57:53Z

c© 2009 Harvey Mudd College
DO NOT CIRCULATE

CHAPTER 1. INTRODUCTION

1.2.1 The Roomba Problem

It is the humblest of tasks—cleaning up—that has turned out to be the “killer app”Or, at least, the
“breakout” app that

enabled the industry’s
first large-scale profits.

for household robots. Imagine yourself as a Roomba vacuum named Picobot: your
goal is to suck up the debris from the free space around you—ideally without missing
any nooks or crannies. The robotics community calls this the coverage problem: it is
the task of ensuring that all the grass is mown, all the surface receives paint, or all the
Martian soil is surveyed.

An iRobot Roomba.

At first this problem might seem pretty easy. After all, if your parents gave you
a vacuum cleaner and told you to vacuum your room without missing a spot, you’d
probably do a pretty great job without even thinking too much about it. Shouldn’t it

. . . especially if they told
you that you couldn’t go

out with your friends
until you were done.

be straightforward to convey your strategy to a robot?
Unfortunately, there are a couple of obstacles that make the Picobot’s job consid-

You’ll notice that we use
the word “Picobot” to

refer to both the
Roomba robot and the

language that we will use
to program it.

erably more difficult than yours. First, Picobot has very limited “sight” It can only

Actually, Picobot might
not be able to actually
“see” at all. Instead, it

might sense its
environment through one
of many possible sensors
including bump sensors,
infrared, camera, laser,

etc.

sense what’s directly around it. Second, Picobot is totally unfamiliar with the envi-
ronment it is supposed to clean. While you could probably walk around your room
blindfolded without crashing into things, Picobot is not so lucky. Third, Picobot has
a very limited memory. For one, it can’t even remember which part of the room it has
seen and which part it has not.

While these challenges make Picobot’s job (and our job of programming Picobot)
more difficult, they also make the coverage problem an interesting and non-trivial
computer science problem worth serious study.

1.2.2 The global environment and the local surroundings

Our first task in solving this problem (or any computational problem) is to represent
it in a way that the computer can handle. For example, how will we represent where
the obstacles in the room are? Where Picobot is? We could represent the room as a
plane, and then give list the coordinates of the corners of the edges of the objects, and
the coordinates of Picobot’s location. While this representation is reasonable, we will
actually use a slightly simpler representation.

Whether lawn or sand, the environment is simpler to cover if it is discretized into“Discretize” is CS-speak
for “break up into
individual pieces”.

cells as shown in Figure 1.2. You, as Picobot, are similarly simplified: you occupy one
grid square (the green one), and you can travel one step at a time in one of the four
compass directions: north, east, west, or south.

Picobot cannot travel onto obstacles (the blue cells); as we mentioned above, it
does not know the positions of those obstacles ahead of time. What Picobot can sense
are its immediate surroundings: the four cells directly to its north, east, west, or
south. The surroundings are always reported as a string of four letters in “NEWS”
order, meaning that we first see what is in our neighboring cell to the North, then
what’s to the East next, then West, and finally South. If the cell to the north is
empty, the letter in the first position is an x. If the cell to the north is occupied, the
letter in that first position is an N. The second letter, an x or an E, indicates whether
the eastern neighbor is empty or occupied; the third, x or W, is the west; the fourth,
x or S, is the south. At its position in the lower-left-hand corner of Figure 1.2, for
example, Picobot’s sensors would report its four-letter surroundings as xxWS. There
are sixteen possible surroundings for Picobot, shown in Figure 1.3 with their textual

6 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

1.2. PICOBOT

representations.

1.2.3 State

As we’ve seen, Picobot can sense its immediate surroundings. This will be important
in its decision-making process. For example, if Picobot is in the process of moving
north and it senses that the cell to its north is a wall, it should not try to continue
moving north! In fact, the simulator will not allow it.

But how does Picobot “know” whether it is moving north or some other direction?
This information isn’t available simply by examining its surroundings. Instead, we
make use of a powerful concept called state. The state of a computer (or a person
or almost any other thing) is simply its current condition: on or off, happy or sad, We hope you are

currently in an
inquisitive state.

underwater, etc. In computer science, we often use “state” to refer to the internal
information that describes what a computer is doing.

Picobot’s state is extremely simple: it is a single number in the range 0–99. Some- The state of anything
can be described with a
set of numbers. . . but
describing a human
would take at least
trillions of values.

what surprisingly, that’s enough to give Picobot some pretty complex behaviors.
Although Picobot’s state is numeric, it’s helpful to think of it in English terms.

For example, we might think of state 0 as meaning “I’m heading north until I can’t
go any further.” However, it’s important to note that none of the state numbers has
any special built-in meaning; it is up to us to make those decisions.

For example, imagine that Picobot wants to perform the subtask of continually
moving north until it gets to a wall. We might decide that state 3 means “I’m heading
north until I can’t go any further (and when I get to a wall to my north, then I’ll
consider what to do next!).” When Picobot gets to a wall, it might want to enter a
new state such as “I’m heading west until I can’t go any further (and when I get to a
wall to my west, I’ll have to think about what to do then!)”. We might choose to call
that state 42 (or state 4; it’s entirely up to us).

As we’ll see next, your job as the Picobot programmer is to define the states
and their meanings; this is what controls Picobot and makes it do interesting things!
Takeaway message: The state is simply a number representing a subtask that you
would like Picobot to undertake.

1.2.4 Think locally, act globally

Now we know how to represent Picobot’s surroundings, and how to represent its state.
But how to we make Picobot do anything?

Picobot moves by following a set of rules that specify actions and possibly state
changes. Which rule Picobot chooses to follow depends on its current state and its
current surroundings. Thus, Picobot’s complete “thought process” is as follows:

1. I take stock of my current state and immediate surroundings.

2. Based on that information, I find a rule that tells me (1) a direction to move
and (2) the state I want to be in next.

Picobot uses a five-part rule to express this thought process. Figure 1.4 shows two
examples of such rules.

The first rule,

7 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 1. INTRODUCTION

Figure 1.2: There are four types of cells in a Picobot environment, or map: green is
Picobot itself, blue cells are obstacles, and gray cells are free space. Picobot can’t
sense whether a free cell has been visited or not (dark or light gray), but it can sense
whether each of its four immediate neighbors is free space or an obstacle.

8 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

1.2. PICOBOT

Figure 1.3: There are sixteen possible surroundings strings for Picobot. The one in
which Picobot is completely enclosed will not occur in our simulator!

Each rule’s first part is
an integer from 0 to 99:
Picobot’s current state.

The second part is Pi-
cobot’s four-letter cur-
rent surroundings.

0 xxWx -> E 1

0 xxxx -> W 0

The third part is a text
arrow : a hyphen fol-
lowed by a greater-than
symbol.

The fourth part is Picobot’s resulting
move. If the current state and the cur-
rent surroundings apply, this is the di-
rection Picobot moves.

The fifth part is Picobot’s
new state. Picobot’s state
becomes this value after ap-
plying the rule.

Figure 1.4: The five parts of two Picobot rules. One useful way to interpret the idea of
state is to attribute a distinct intention to each state. With these two rules, Picobot’s
initial state (state 0) represents “go west as far as possible.”

9 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 1. INTRODUCTION

Figure 1.5: The result of running Picobot with this section’s four rules.

0 xxWx -> E 1

re-expressed in English, says “If I’m in state 0 and only my western neighbor contains
an obstacle, take one step east and change into state 1.” The second rule,

0 xxxx -> W 0

says “If I’m in state 0 with no obstacles around me, move one step west and stay inGo west, young Picobot!

state 0.” Taken together, these two rules use local information to direct Picobot across
an open area westward to a boundary.

How does Picobot choose which rule to use? At each step, Picobot examines the
list of rules that you’ve written from the top down, looking for the first rule that
applies. A rule applies if the state part of the rule matches Picobot’s current state andRemember that Picobot

begins its mission in
state 0.

the surroundings part of the rule matches Picobot’s current surroundings. The first

What happens if there
are NO rules that match

Picobot’s current state
and surroundings? The
Picobot simulator will

let you know about this
in its Messages box and

the robot will stop
running. If more than

one rule applies, Picobot
just uses the first rule

from the top, so the
other rules are ignored.

rule that matches is the one that Picobot uses. It then moves in the direction specified
by that rule and enters the state dictated by that rule.

Figure 1.5 shows how Picobot follows the first rule that matches its current state
and surroundings at each time step. But what about state 1? No rules specify Picobot’s
actions in state 1—yet! Just as state 0 represents the “go west” subtask, we can specify
two rules that will make state 1 be the “go east” subtask:

1 xxxx -> E 1 1 xExx -> W 0

These rules transition back to state 0, creating an infinite loop back and forth across
an open row. Try it out—the Picobot web site contain these four rules by default.

Picobot can not sense
whether or not a cell has

been visited. This
limitation is quite

realistic: the Roomba,
for example, does not

know whether a region
has already been

cleaned.

The web site also starts Picobot at a randomly selected free cell. Note, however, that

10 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

1.2. PICOBOT

0 **x* -> W 0
0 **W* -> E 1

1 *x** -> e 1
1 *E** -> W 0

0 xxxx -> W 0 0 xxWx -> E 1 1 xxxx -> E 1 1 xExx -> W 0
0 xxxS -> W 0 0 xxWS -> E 1 1 xxxS -> E 1 1 xExS -> W 0
0 xExx -> W 0 0 xEWx -> E 1 1 xxWx -> E 1 1 xEWx -> W 0
0 xExS -> W 0 0 xEWS -> E 1 1 xxWS -> E 1 1 xEWS -> W 0
0 Nxxx -> W 0 0 NxWx -> E 1 1 Nxxx -> E 1 1 NExx -> W 0
0 NxxS -> W 0 0 NxWS -> E 1 1 NxxS -> E 1 1 NExS -> W 0
0 NExx -> W 0 0 NEWx -> E 1 1 NxWx -> E 1 1 NEWx -> W 0
0 NExS -> W 0 0 NEWS -> E 1 1 NxWS -> E 1 1 NEWS -> W 0

Figure 1.6: Two equivalent formulations of a more general “go-west-go-east” behavior
for Picobot. Both sets of rules use only two states, but the wildcard character * allows
for a much more succinct representation on the left than on the right!

if Picobot starts along a wall, no rules match and it does not move! We will remedy
this defect in the next section.

1.2.5 Whatever

The problem with the previous “go-west-go-east” example is that the rules are too
specific. When going west, we really don’t care whether or not obstacles are present to
the north, south, or east. Similarly, when going east, we don’t care about neighboring
cells to the north, south, or west. The wildcard character * expresses this “don’t
care” attitude.∗ Table 1.6’s rules use the wildcard to direct Picobot to forever clear ∗In case you care, the

star character “ *” is
also known as an
asterisk. Keep it away
from your world records!

the east-west row in which it starts.

1.2.6 The Picobot challenge

Table 1.6’s rules direct Picobot to visit the entirety of its starting row. This section’s
challenge is to develop a set of rules that direct Picobot to cover the entirety of Fig-
ure 1.2’s and 1.5’s empty environment, starting from any free cell. Because Picobot
does not distinguish already-visited from unvisited cells, it may not know when it has
visited every cell. The online simulator, however, will detect and report a successful,
complete traversal of an environment. Try it out—you might start by altering the rules
in Figure 1.6 so that they side-step into a neighboring row after clearing the current This back-and-forth

ot nwonk saw euqinhcet
ancient Greek ox-drivers,
ti dellac ohw
“boustrophedon.” Text
lacissalc emos ni
manuscripts is known to
.nrettap emas eht wohs

one.
Once you develop a set of rules that will always clear the empty environment, go

further—try developing sets of rules that will always clear more intricate environments,
such as those shown in Figure 1.7. Indeed, you may consider using as few rules as
possible. A ruleset that completely clears the empty square environment from any
starting cell will necessarily contain at least five rules. We can quantify different
environments’ complexity using this minimum-number-of-rules criterion, as Figure 1.7
describes.

Zach: I’d like to add rules and states in that figure—also, I’d be interested in know-
ing if there are cases where the minimum number of rules and the minimum number of
states are incompatible. P.S. All of the rule numbers stated here are completely made
up—but I’m happy to work on that at some point. . . Question from Ran: Is the five

11 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 1. INTRODUCTION

Figure 1.7: Some Picobot environments and the number of rules needed for Picobot to
be able to visit every cell in the environment. Geoff: Zach, I found the infinity symbol
unreadable in the Islands environment. I’d suggest breaking this into four sub-figures
without text, and then we can use LATEX to insert the captions and make sure they’re
set in a consistent typeface.

rule minimum hard to show? Also, the number of rules is a reasonable measure of
complexity but the number of states is also a good measure.

1.2.7 Uncomputable environments

Picobot’s computational capabilities aren’t enough to guarantee coverage of all envi-
ronments, e.g., those with islands with concavities (that is, “inlets”). By adding the
ability to drop, perceive, and pick up “pebbles” along the way, all environments can
be completely traversed. The Picobot web site defines extensions to the language that
let you do just that.

The fact that computational challenges as elementary as Picobot lead us to prov-
ably unsolvable problems suggests that computation—and computers—are far from
omnipotent. When thinking computationally, it is important to know if a problem
might be altogether out of computer science’s reach!

12 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Chapter 2

Functional Programming

If it’s a good idea, go ahead and do it. . . —Admiral Grace Hopper

2.1 Humans + Machines + Aliens = CS

In the spirit of Grace Hopper, one of the pioneers of computer science, this chapter
plunges directly into CS by showing how a computer can read the human mind. All
right, so we’ve slightly overstated the plan. Here’s the “true” story. . . Evidently, the

authors have lost their
minds!

An alien has landed on planet Earth and wishes to study the predictability of
humans. To that end, the alien sets up a booth on a street corner offering free lemonade
in exchange for participation in an experiment. Thirsty and curious humans stop and
are asked to repeatedly type the number “1” or “2” on the alien’s computer. Before
each keypress, the alien’s computer program tries to predict the human’s next number.
The human is asked to enter a number and the computer indicates whether or not it
guessed correctly. When the human wants to quit (indicated by pressing the number
“3”), the computer reports the number of times it guessed correctly and the total
number of rounds that were played. Our goal in this chapter is to experiment with
programs for this problem.

Before we dive in, let’s pause for a moment to consider the utility of being able
to predict human behavior. Perfect prediction is probably impossible. But even a This is probably a good

thing!limited ability to predict human behaviors has many practical applications. For exam-
ple, you’ve benefitted from Google’s ability to predict your query even before you’ve
finished typing it. Much of science and engineering is about making good predictions,
not just of an individual human’s behavior but also of other complex systems. For
example, meteorologists attempt to predict the weather, energy engineers attempt to
predict electricity consumption, and economists attempt to predict financial trends.
All of these problems are difficult and require sophisticated algorithms that are imple-
mented in computer programs.

All right, back to our alien and the human “1-2 prediction” problem. If humans are
truly random, any program the alien writes will do no better than chance. Similarly,
if the program uses no information at all to try to predict what the user will guess
(i.e., the computer simply guesses randomly too), the program will again do no better

13

CHAPTER 2. FUNCTIONAL PROGRAMMING

than chance. The alien wants a program that uses some sort of simple rules that will
hopefully do better than chance.

2.2 A First Program

The alien has traveled from the other end of the universe to Earth with a short PythonDemonstrating
that Python is

universally popular!
program for this task. Download the program at URLHERE and try it out! When
running this program, you might try inputting 1s and 2s as fast as you can (following
each number by pressing “return”) for several dozen iterations. You can stop the
program by entering the number 3.

If you’re not totally impressed by this program’s ability to predict your input, we
(uhh, we mean the alien) won’t be offended. In this chapter we will learn enough
Python to understand how the alien’s program works and then you’ll be invited to
make improvements to it.

Take a look at the program in Figure 2.1. Some of it may make sense while much
of it may seem truly “alien.” Let’s start with a high-level look at what this program
is doing just to get a rough sense of what’s happening here. In the rest of this chapter
we’ll look at the program in considerably closer detail.

The program begins with the comment “Prediction program, version 1.0”
and then another comment indicating the author of this program on the next line.
In Python, any line that begins with #, called the “pound symbol”, is interpreted by
the program as a comment . A comment is nothing more than a note to the reader
of the program. It will not appear when the program is run, but it’s very useful for
the programmer to write a note to herself or to others who might wish to modify the
program later.

Next, the program has two functions, one called getInput and the other called
play. As we’ll see in a moment, a function is a module in a program; it’s purpose is
to solve some particular task. In Python, a function always begins with the word def.
The job of getInput is to ask the user to type in a number and to give that number
back to another part of the program. The job of the play function is to run one round
of the experiment.

At the beginning of each of those functions, you will see some text. It begins
and ends with three double quotation marks. This text is called a docstring which
stands for “documentation string”. A “string” in computer science parlance is just
a piece of text. A docstring is a bit like a comment with the following difference:
While comments are intended for programmers, docstrings are intended for the users
of the program. Once you load in this program, you can type help(getInput) or
help(play) and it will display the docstring for that function. You should always
provide a docstring for every function that you write.

To better understand the notion of a function, consider the following completely
uncontrived scenario: Imagine that you work at a unicycle rental shop where your
function is to staff the front desk. Let’s call you the “front desk function”. When a
customer arrives, you ask them for their height and take their money. Then, based onWe are gearing up to

make a fortune on a
chain of unicycle rental

shops.

how much they have paid and their height, you shout to the bloke working in the back
“I need a basic short unicycle” or “I need a fancy tall mountain unicycle”, etc. Let’s
call that bloke the “unicycle providing function”. That function returns a unicycle to

14 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.2. A FIRST PROGRAM

Prediction program, version 1.0
Written by: Alien

def getInput():
"""Asks the user to enter the number 1, 2, or 3 and returns the

user’s input."""

userReply = input("Enter 1 or 2 (or 3 to quit): ")
if userReply == 1 or userReply == 2 or userReply == 3:

return userReply
else:

return getInput()

def play(thisGuess, correct, total):
"""Plays a round of the game. thisGuess is the computer’s next

guess, correct is the the number of times the computer has
guessed correctly, total is the the total number of times that
the user has played."""

userChoice = getInput()
if userChoice == 3 :

print "I predicted", correct, "correctly"
print "in", total, "rounds of play"
return

elif thisGuess == userChoice:
nextGuess = 3 - thisGuess
play(nextGuess, correct+1, total+1)
return

else:
nextGuess = thisGuess
play(nextGuess, correct, total+1)
return

here is the start of the overall program...
print "I will try to predict your numbers!"
play(1, 0, 0)

Figure 2.1: The alien’s first attempt at a prediction program.

15 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

you. You then take that unicycle, add a helmet, and give those items to the customer.
A function, in this case, is a person who performs a very specific job. Analogously,

in a program, a function is a piece of the program that performs a particular task.
It’s not strictly necessary to have multiple functions, each of which performs a specific
task; we could simply have one giant program that does it all. Similarly, a unicycle
shop could have one employee that does all of the work. One advantage of having
functions though is that it divides up the work into logical chunks, or modules, that
make it much easier to figure out what’s going on and much easier to make changes
later. The principle of modularization was borrowed from the field of engineering and
it is a key idea in computer science.

Notice that in our unicycle rental shop example, the functions get input. For
example, you get money and information on the customer’s height. The bloke in the
back gets an order from you. Similarly, these functions return something to whoever
“invoked” or “called” them. The bloke in the back returns a unicycle to you, since you
asked for it. You return a unicycle and a helmet to the customer because they asked
for it. Similarly, functions in a program may get some input when they are invoked
and may return some output.

In our Python program in Figure 2.1, the getInput function is a bit funny in that it
gets no input when it is invoked. This is indicated by the open and closed parentheses
in getInput(). Instead, this function asks the user to type in a number. Then, if
that number is a 1, 2, or 3, it returns that value to whoever invoked that function.
Otherwise, the human typed in an expected input and the function asks for input
again. Take a look at the statement return userReply. This is where the number is
being returned to whoever called getInput.

Wait a second! We said that getInput doesn’t get any input when it is invoked
but it does ask the human for some input. How does that make any sense? Here’s
an analogy from our unicycle shop. The bloke in the back decides that he doesn’t
like to have you call him with the customer’s information. He just want you to buzz
him to indicate that a client has arrived. When you press the buzzer now, you’re not
passing any information but you are invoking the bloke. The bloke now comes out,
chats with the client, and then returns a unicycle to you so that you can complete the
transaction. This is precisely what’s happening in the getInput function. It gets no
input when it’s called by you, but it is certainly capable of interacting with the outside
world, getting the data that it needs, and returning something to you.

The play function, in contrast, gets three inputs which we have named thisGuess,
correct, total. The input thisGuess will be the computer’s prediction of the hu-
man’s next input. So, the value of this input will be either 1 or 2. The input correct
will be used to keep track of the number of times the computer has guessed correctly.
Finally, the input total will keep track of the number of rounds that we’ve played;
that is, the number of times the human has entered a number 1 or 2.

Although the play function may still seem rather weird, notice the first thing that
it does in the line

userChoice = getInput()

This line is calling the getInput() function. This is akin to you calling the bloke in
the back of the unicycle shop. The getInput function is going to return a value of

16 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.2. A FIRST PROGRAM

1, 2, or 3. This value is then being assigned to the variable userChoice. The play
function then decides what to do next. The line

if (userChoice == 3):

is saying “if the value of userChoice is 3, then I will do the sequence of steps that are
indented below me.” In this case, it prints some messages on the screen in the first
two lines and then, in the third line it returns to whoever invoked this function. Note
that in contrast to the getInput function, the play function returns nothing. It just
says “OK, I’m done!”

When Python is asked to run this program, it sees the comment line at the top
and ignores it (that’s intended for programmers to read). It then sees the two function
definitions and makes a note of them, but doesn’t do anything noticeable yet. Finally,
at the very bottom of the program are the lines

print "I will try to predict your numbers!"
play(1, 0, 0)

When Python sees this, it says “Aha! You aren’t defining a function here—you’re
actually telling me to do something!” The first line prints a message (whatever is
in quotes). The next line calls (or “invokes”) the play function. Fortunately, we’ve
already defined that play function, so Python understands what we’re asking of it.

Python now invokes (or “calls”) the play function with the three inputs 1, 0, 0.
The 1 goes into the first slot in the play function, namely thisGuess. This is going to
be the first guess that the computer makes. The next input, 0, goes into the correct A human who performs

this experiment a few
times might quickly
realize this! We should
fix this later.

input in the play function. This the number of times that the computer has guessed
the human’s answer correctly. Since the human hasn’t chosen a number yet, 0 is the
appropriate initial value. Finally, the last input, 0, is the total number of rounds that
the human has played. This too is initially 0.

Whew! Again, don’t worry if much of this program is still a mystery encased in an
enigma and wrapped in a riddle. Most of the rest of this chapter methodically explains
the Python features used here (and some other features too!) so that every last drop
of this program will make sense (and you’ll be able to modify it to make it better).

If you’re feeling brave, we’d urge you to just pause here and play a bit with the
program. Try changing just one small part of the program. Then save the change Don’t worry, it’s

impossible to break the
computer this way!

and run the program to see what it does. For example, you might just try changing

Experimentation
is fun and eye-opening!

the message that is printed when the program starts. Then, you might try to add a
line in the play function that prints the computer’s next guess immediately after the
human has entered its next number. Finally, see if you can figure out the method (the
algorithm) that this program is using to choose its next number. (Hint: 3− 1 = 2 and
3 − 2 = 1. You knew that, but see where 3 appears in the program.) Based on this
knowledge, run the program and see if you—as the human user—can make it predict
your input very badly. If you’re feeling even more brave, try changing the prediction
method used by the computer to some other method. It needn’t be better, just try
something different.

17 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

2.3 Statements and Expressions

The Python interpreter offers us a direct way to interact with Python, even before
we’ve written any programs. If you type a piece of data at Python’s >>> prompt, the
language evaluates what you’ve typed and prints the resulting value. For example, try
typing 3*14 in the Python interpreter and press the Return key. Python evaluates
this expression and returns a value, in this case 42.

A Python input like 3*14 is called an expression because it expresses a value
and this value can be used later for other purposes. Now take a look at the input
print 3*14. In this line, the expression 3*14 is evaluated and then python gives this
value to print which displays the value on the screen. The input print 3*14 is called
a statement. It is a command to do something but ultimately this command has no
value.

Whoa, Nellie! Hold up here. When we typed 3*14 it printed 42 and when we typed
print 3*14 it also printed 42. They seem the same, but they are not. The difference
is that you can use the value of an expression in another expression. You cannot use
the result of a statement, because a statement does not have a value. Try adding 5
to the two inputs noted above: typing 5 + 4*13 yields 47. Typing 5 + print 4*13
yields a SyntaxError. In the latter case, Python saw the 5 followed by the + and said
“Aha! This is an expression. You want me to evaluate it. OK then, what should I
add to 5?” Then it saw the statement print 4*13 and it said “Hang on! This has no
numerical value—it’s not an expression! How do I add 5 to a command that is asking
me to print?”

So, the basic building blocks of all computer programs are statements, which are
pieces of code that tell the computer to perform a specific task. Statements often
contain expressions in them, just as the statement print 3*14 contains the expression
3*14. In Python, statements are separated from each other by putting each statement
on a separate line.

Many of the lines in the 1-2 prediction program correspond to individual state-
ments, including the following:

print "I will try to predict your numbers!"

and

userChoice = getInput()

Again, don’t worry if you don’t understand the precise meaning of these statements
yet. We’ll go over their meaning shortly.

2.4 Variables: Giving Names To Things

One of the most important aspects of programs is the ability to store values for later
use. The expression 3*14 is lovely, but how do we use it later without recomputing
it? In the 1-2 prediction program, for example, we need to store lots of things: the
computer’s guess, the human user’s answer, the number of times we guessed correctly,
etc. Variables give us a way to name values so that we can store these values away for
later use.

18 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.4. VARIABLES: GIVING NAMES TO THINGS

To give a value a name (i.e. store it in a variable), we first cook up a name for
the variable and then use an assignment statement to give it a value. Let’s define a
variable named yourNumber and let’s give it a value.

>>> yourNumber = 2

Now, let’s say that you change your mind and you want to give this variable a new
value.

>>> yourNumber = 3*14

Notice that this is a statement! It has no value. However, the statement involves It has “value” in
that it’s useful!evaluating the expression 3*14, which Python determines to be 42 and then it assigns

this value to the variable yourNumber. Now we can ask Python to return the value
stored in this variable as shown below:

>>> yourNumber
42

Since you’re certainly familiar with the notion of equality from mathematics, the
assignment statement may feel a bit weird. It is not stating an equality, it is performing
an action. It is best understood from right to left. On the right-hand-side of the equals
sign is an expression that yields a value (in our example, the number 42). On the left,
is the name of a variable, or storage location, for that value. The equals sign then
binds the name on the left to the value on the right.

This binding allows us to use the stored value in future statements. For example:

>>> yourNumber = 4*13
>>> myNumber = yourNumber - 1

Again, Python evaluates the statement on the right-hand-side (henceforth denoted
“RHS”) of the equals sign and binds it to the name on the left-hand-side (henceforth
“LHS”). So in this case, myNumber will get the value 41. All the names on the RHS
are used for their values; only the value of the variable on the LHS will change. This
idea is extremely important, and it allows us to write statements such as:

>>> yourNumber = 4*13
>>> yourNumber = yourNumber - 1

In math, the second statement would be nonsense because it looks like we are asserting
that the LHS and RHS are equal. How can a variable equal its own value minus 1?
However, in Python this assignment statement is perfectly legal because it is defining
an action rather than asserting a mathematical truth. Python first evaluates the
expression on the RHS of the equals sign (whose value is 41 in this case) and then
assigns it to the variable on the LHS. It doesn’t matter to Python that this variable
appears on both the LHS and RHS, because it evaluates the RHS before it even
considers what is on the left.

One important “safety tip” about variables: You cannot try to access their value
before you assign them a value. For example, the statement:

19 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

What’s in a Variable Name?

Python allows almost any sequence of alphanumeric characters a-z, A-Z, and 0-9 to be
a variable name. Even punctuation and other weird symbols can appear in a variable
name. One restriction: it does have to start with a letter and it cannot have any
blanks in it. However, it can be something like value1 or my_favorite_number.

>>> x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name ’x’ is not defined

produces an error (that’s the longwinded stuff beginning with “Traceback blah, blah,
blah”’) because x does not yet have a value. Similarly (and more subtly),

>>> x = x + 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name ’x’ is not defined

also produces an error because the RHS of the assignment statement is evaluated first.
In this case, the variable x has no value when Python tries to evaluate the expression
on the RHS, so Python complains.

2.4.1 Assignment Statements in the 1-2 Prediction Program

Finally, let’s consider how assignment statements and variables are used in the 1-
2 prediction program. Take a look, for example, at the following line in the play
function in Figure 2.1:

nextGuess = 3 - thisGuess

This statement is evaluating the expression 3 - thisGuess and assigning that value
to a variable that we’ve named nextGuess.

Notice that Python, like any programming language, is very finicky about syntax.
For example, in the line

print "I predicted", correct, "correctly"

The word correct is never printed. Instead, Python prints the value of the variable
correct. On the other hand, the words I predicted are printed literally (right before
the value that correct names) because they are in quotation marks and similarly the
word correctly is printed afterwards because it too is in quotation marks.

Notice that commas can be used to print a sequence of different things. Had this
line been

print "I predicted", "correct", "correctly"

the result would be

I predicted correct correctly

which would have been incorrect (grammatically at least)!

20 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.5. FUNCTIONS

Editors, IDLE, and More

We haven’t written this yet. In the future, this sidebar will talk about editors and the
IDLE environment.

2.5 Functions

You’ve undoubtedly seen the idea of a function in math. For example, consider the
function f(x) = x100. We’ll call this function the “googolization” function because Googol eyes?!

a googol is 10100. (It’s true! You can Google the word “googol” to verify this.)
Exponentiation in Python is performed using **, so 42100 would be written as 42**100
in Python. Type this into the Python interpreter to see the result. Wow, that value is

astronomical!Figure 2.2 shows one way we could define the googolization function in Python:

def f(x):
""" Googolization function. Takes input x and returns x**100. """
result = x**100
return result

Figure 2.2: One way to implement the googolization function.

The Python keyword def indicates that we are defining a function. The first line A keyword is a word
that Python recognizes
as part of its language.

of the function definition is called the function signature and has the following parts:

1. The keyword def, indicating to Python that we are defining a function.

2. The name of the function. In this case it is f but the name could have been more
interesting. The naming rules for functions are the same as the naming rules for
variables.

3. The list of names of input variables (also known as arguments to the function) So I can have
arguments with my
functions!?

that this function should accept. This list of names is given in parentheses and
the inputs are separated by parentheses. There can be zero inputs (in which case
we just have open and closed parentheses with nothing inside), one input (as in
this example, where the input is name x), or more.

4. The line ends with a colon.

We could type this function right into the interpreter, but it’s much more convenient
to define programs in an editor where we can easily modify them and save them for
later use. See the sidebar Editors, IDLE, and More. Once we have this function
defined, we can run it with many different input values. Try typing f(42), f(-1), etc.
to see for yourself.

Returning to our googolization function above, notice that there are two state-
ments, each on a separate line and indented from the function signature. Python is
big on indentation and the indentation indicates that these statements belong to this
function. In this case, the line result = x**100 is an assignment statement that

21 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

computes the value of the expression x**100 and assigns that value to a variable that
we’ve named result. In the next statement, this value is “returned” or “outputted”.
The keyword return tells Python to hand this value back to whoever happened to call
the function originally. If you type f(42) in the Python interpreter then you are call-
ing that function, so the value will be returned to you and displayed. (Technically, the
Python interpreter called the function and thus the result is returned to the Python
interpreter where it is displayed, but this is a nuance.)

At this point, you may be wondering “what’s the difference between return and
print ?” That’s a great question, and we’ll tackle it shortly. For now, think about
it this way: return gives you back a value that you can use later. In contrast, print
just displays something on the screen and that’s it.

Before we end this section, let’s write the googolization function in a slightly dif-
ferent way as shown in Figure 2.3. In this implementation, we have a single statement.
This statement first evaluates the expression x**100 and then immediately returns it.
This has the same effect as the previous two-line version above, but skips the step of
making a variable to name the result.

def f1(x):
""" Another Googolization function. """
return x**100

Figure 2.3: Another way to implement the googolization function.

Regardless of how we wrote the googolization function, it’s important to note that
if the function returns a value, that value can be used like any other value. So, for
example, consider typing

>>> big = f(42)

As usual, Python first evaluates the RHS of the expression. This involves calling the
function f with input 42. The function f does its business and returns some value.
Now, Python takes this value and assigns it to the variable big. Python is really
treating f(42) as an expression. Expressions need to be evaluated before they can
be used. In this case, evaluation of the expression requires asking the function f to
compute and return its value. Nothing is printed here! You could type big at the
Python prompt if you wanted to see its value now.

2.5.1 return vs. print

We’ve briefly mentioned the difference between return and print, but let’s take a
closer look. At the Python interpreter’s prompt, return and print can indeed seem
like they’re doing the same thing. To see the difference, consider the two functions
and sequence of commands shown in Figure 2.4.

It appears that doubleReturn and doublePrint are doing the same thing. How-
ever, the return statement and the print statements are, in fact, very different. The
print statement simply displays the value of its expression at the console. No value is
returned by the doublePrint function, so the function call doublePrint(20) has

22 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.5. FUNCTIONS

def doubleReturn(x):
""" doubleReturn takes a single input x and returns 2x. """
return 2*x

def doublePrint(x):
""" doublePrint takes a single input x and prints 2x. """
print 2*x

>>> doubleReturn(20)
40

>>> doublePrint(20)
40

Figure 2.4: return vs. print

no value at all (to be more precise, that call has the Python default value of None).
The return statement’s value, on the other hand, becomes the value of the original
function call! That is, the original function call is an expression whose value is con-
veyed by the return statement. As with any expression, that function call can be
used in further computations:

>>> 2 + doubleReturn(20)
42

>>> 2 + doublePrint(20)
40
TypeError: unsupported operand type(s) for +: ’int’ and ’NoneType’

In the latter example, note that doublePrint did its job! That is, 40 was printed
out to the console. However, because doublePrint does not return anything, the
statement doublePrint(20) has no value (or, rather, has the value None). Thus,
Python’s attempt to add the int 2 to the valueless doublePrint(20) results in an
error.

Neither print nor return is preferable over the other—they simply accomplish
very different things.

2.5.2 Functions Can Call Functions!

Check this out! Functions can call other functions. Consider the function humongous The word “humongous”
is believed to have been
invented in 1968 as
college slang.

in Figure 2.5. This function takes two inputs, which we’ve creatively named input1
and input2. In the first line inside the function, we call the function f with input
input1. When humongous calls function f, think of it as passing a baton to f. Now,
humongous pauses and waits for f to do its business.

When the function f gets to its return statement, it means that the game is over
for f. It now passes back the baton to the place where it was called. In addition, it

23 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

passes back whatever value follows the keyword return. (Think of this value as having
been glued on to the baton). In the case of f, this is the input that f received raised
to the power 100.

In this example, humongous now gets back the baton and resumes where it left
off. It takes the value that was glued on to the baton and uses that value in place
of f(input1). This value is then multiplied to the value stored in input2 and then
assigned to variable z. Finally, this function returns the value z*z. That is, humongous
is now returning the baton to whoever called it and it’s gluing its value onto the baton
for us to use.

Aside from the fact that this function is highly contrived and almost certainly
useless, it does demonstrate the fact that a function can call another function. It
also demonstrates the following key idea: When a function, like humongous, is called,
it gets a baton that allows it to compute. If humongous calls another function, then
humongous remembers where it was, passes the baton to the function being called, and
waits for the baton to return. When it returns, humongous resumes computing where
it left off, using the value that was returned (if there was one).

def humongous(input1, input2):
"""humongous takes inputs input1 and input2."""
z = f(input1)*input2
return z*z

Figure 2.5: The humongous function calls the googolization function.

Just for kicks, consider the function ginormous in Figure 2.6.“Ginormous” became an
official word in

Merriam-Webster’s
Collegiate Dictionary in

2007.

def ginormous(input):
"""ginormous takes a single input and computes a strange

function."""
a = humongous(42, input)
b = a**2
return b

Figure 2.6: The ginormous function calls the humongous function.

Imagine that we invoke the ginormous function at the prompt as follows:

>>> ginormous(100)

Take a moment to write down the sequence of actions that will transpire to make sure
that you are comfortable with the idea of the function ginormous calling the function
humongous which in turn calls the function f.

Takeaway message: When a function is called, Python keeps track of where it
was at the time of the function call. When the function returns, Python resumes
computing exactly where it left off before the function call.

24 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.6. CONDITIONAL STATEMENTS

2.5.3 Functions in the 1-2 Prediction Program

Let’s go back for a minute and take a look at the 1-2 prediction program in Figure 2.1.
Notice that there are two functions there, one named getInput and one named play.
While we haven’t yet examined some of the Python features used in these functions,
note that play begins by calling the function getInput. The function getInput begins
by calling the function input. Where is the function input defined?

It turns out that input is a function that is built-in to Python. There are many
such functions and we’ll meet more of them soon. The input function takes as input a
string: A sequence of letters between quotation marks. It prints that string and then
waits for you to type in a number. That number is the value that input returns. In
the first line of our getInput function, the input function is called. The value that
it returns is then assigned to the value userReply. The getInput function does a bit
more stuff and eventually returns a value. Where does this returned value actually
go? To the exact point where the getInput function was called, namely the first line
in the play function. That returned value is then assigned to the variable named
userChoice and the play function continues doing its business.

2.6 Conditional Statements

There is a famous problem in mathematics called the “3n + 1” problem. It goes like
this. Consider a function that takes an integer n as input. If the integer is odd, the
function outputs the value 3n+1. If the integer is even, the function outputs the value
n
2 . The problem, which is really a conjecture, states that if we start with any positive
integer n and repeatedly iterate applying this function, eventually we will produce the
value 1. For example starting with n = 2, the function returns 1 because n is even.
Starting with n = 3, the first application of the function returns 10. Now applying the
function to the input 10 we get the output 5. Applying the function to the input 5 we
get 16, applying the function to 16 we get 8, applying the function to 8 we get 4, then
2, then 1. Ta-dah!

This seemingly benign little problem also has many other names including the “Col-
latz problem”, the “Syracuse problem”, “Kakutani’s problem”, and “Ulam’s problem”.
So far, nobody has been able to prove that this conjecture with many names is true
in general. In fact, the famous mathematician Paul Erdös stated that “Mathematics
is not yet ready for such problems.”

Let’s write the function in Python and then you can experiment with it! An
implementation is shown in Figure 2.7.

Before we look at this in detail, notice the expression n % 2 == 0. What is %
and what is ==? The expression n % 2 means the remainder when n is divided by 2.
Mathematicians pronounce this “n mod 2”. If n is even, its remainder when divided
by 2 will be 0. (We could also ask for the remainder when n is divided by 42 with
expression x % 42, but that’s not useful just now!)

OK, but how about the ==? You’ll recall that a single = sign is used in assignment My guess is that
two equal signs means
“very equal”.

statements to assign the value of an expression on the RHS of = to the variable on the
LHS. The syntax == is doing something quite different. It evaluates the expressions on
its LHS and RHS and determines whether or not they have the same value. This kind

25 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

def collatz(n):
""" collatz takes a single integer input n and
returns the collatz function on n. """

if x % 2 == 0:
return 3n+1

else:
return n/2

Figure 2.7: The 3n+ 1 function in Python.

of expression always evaluates to either True or False. You might wish to pause here
and try this in the Python interpreter. See what Python says to 42 % 2 == 0 or to
2*21 == 84/2 or to 42 % 2 == 41 % 2. An expression that has a value of True or
False is called a Boolean expression.

Back to our collatz function. This function begins with an if-statement. Right
after the Python keyword if is the Boolean expression n % 2 == 0 followed by a
colon. Python interprets this conditional statement as follows: “If the expression that
you gave me (in this case n % 2 == 0) is True then I will do all of the stuff that is
indented on the following lines. In this case there is only one indented line, and that
line says to return the value 3n + 1. On the other hand, if the Boolean expression
that was tested had value False, Python would execute the indented lines that come
after the else: line. You can think of that as the “otherwise” option. In this case,
the function returns n/2.

It turns out that else statements are not strictly required and sometimes we can
do without them. For example, take a look at a slight modification of our collatz
program shown in Figure 2.8. If n is even, this function computes 3n+1 and returns

def collatz1(n):
""" Another implementation of collatz """

if n % 2 == 0:
return 3n+1

return n/2

Figure 2.8: A second version of the 3n+ 1 function.

that value. Returning that value causes the function to end. Thus, if x is even, Python
will never get to the line return n/2. However, if n is odd then the expression n % 2
evaluates to False. In this case, Python drops down to the first line after the if
statement that is at the same level of indentation as the if statement. This is the
line return n/2. So, we see that this version of the function behaves just like the
first version with the else clause. Forty-one out of forty-two computer scientists thatWhat’s all this

nonsense with 42?! Do
you humans believe that

it’s the answer to the
ultimate question of life,

the universe, and
everything!?

were surveyed advocate using the else version simply because it is easier to read and
understand.

26 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.6. CONDITIONAL STATEMENTS

2.6.1 Boolean Expressions (And Alien Special Numbers!)

We hope that you’ve found this quick introduction to Python edifying so far, but
we sense that you are concerned about the alien and its desire to improve the 1-2
prediction program. We’re getting there, but just to make sure that the alien hasn’t
been forgotten, let us pause here to share a true story.

Our alien comes from a planet where certain integers are deemed “special”. A
number is special if it is between 42 and 142 (including those numbers) or it is any
positive integer that is not a multiple of 7. Our alien became a famous celebrity on its On some planets,

programmers are
celebrities!

planet for writing a Python function that takes as input any number and determines
whether or not it is special. The alien’s special program is shown in Figure 2.9.

def special(number):
""" Determines if the single input is special."""

if 42 <= number <= 142 or number > 0 and not number % 7 == 0:
print "That number is special!"
return

else:
print "That is a silly boring number"
return

Figure 2.9: The alien’s “special” program.

The expression in the if statement is particularly interesting. First, note that the
subexpression 42 <= number <= 142 is a Boolean expression that is True precisely
when 42 is less than or equal to (<=) number and number is less than or equal to 142.
In addition to <= and ==, Python also has comparison operators <, >, >= (greater than
or equal to), and != (not equal to).

Next, we see the use of Python’s or, and, and not operators. The subexpression
not number % 7 == 0 is True precisely when number % 7 == 0 is False. In other
words, not negates (or “flips”) True into False and vice versa. We could have replaced
not number % 7 == 0 with number % 7 != 0

Notice that our alien’s special function prints something and then returns. Since
there is no expression immediately following the word return, in this case the function
is just returning the baton to whoever called it (saying “I’m done! You can continue
doing whatever you were doing when you called me.”) but it’s not returning any value
for later use.

You’re certainly familiar with the concept of “order of operations” from math. It
arises here too. We want

42 <= number <= 142 or number > 0 and not number % 7 == 0

to be True when number is 42 (since that number is between 42 and 142 and thus
the condition for specialness is satisfied). However, what if Python understood the
expression above to mean “number must be between 42 and 142 or it must be greater
than 0 and, in addition, the number must not be a multiple of 7?” Then 42 would not
be special since it is a multiple of 7.

27 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

The good news is that, in Python, or has lower precedence than and (which in
turn has lower precedence than not). So, the expression above will be interpreted as

42 <= number <= 142 OR
number > 0 and not number % 7 == 0

rather than

42 <= number <= 142 or number > 0 AND
not number % 7 == 0

If we had wanted (for some weird reason) to force Python to use the latter inter-
pretation, we could used parentheses to force the order of operations as in

if (42 <= number <= 142 or number > 0) and (not number % 7 == 0):

In fact, when we use or, and, and not in Boolean expressions, it’s advisable to use
parentheses even if Python will interpret your intention correctly without parentheses.
The parentheses make the program much easier for others (and even for yourself) to
understand. Forty-one out of forty-two computer scientists advocate this as well.

2.6.2 Multiple Conditions

We noted that sometimes we use if without a matching else. On the flip side,
sometimes it’s useful to have more than one else. Did we mention that in addition to
“special” numbers, our alien’s culture has something called “extra special numbers” as
well as “super special numbers”? It’s true! The number 42 is super special. The num-I can vouch for

this. ber 10100 (a googol) is extra special. Then there are the regular old special numbers as
we’ve already described above. Figure 2.10 shows the alien’s program for determining
the level of specialness of a number. The elif statements are pronounced “else if”.
This program, starts off checking if number is 42, in which case it is super special and
we return. Else, if number is a googol then the number is extra special and we return.
Else if the number is special we report that. If all previous options fail, we report that
the number is silly and boring.

In general, we can have as many elif conditions as we wish following an if. Then,
at the end we can have zero or one else statement, but not more than one!

Finally, what would have happened if we had rearranged the order of the lines as
in Figure 2.11? Something bad happens here. Do you see what it is? In some cases,
the order in which we test our conditions is important, particularly when more than
condition may be True for our data.

2.6.3 Conditionals in the 1-2 Prediction Program

Take a look back at our alien’s 1-2 prediction program. We’ve talked about the vari-
ables and the functions there. Now take a look at the conditional statements. In
the getInput function, there is an if statement that is testing if the user’s input,
userReply, is either 1, 2, or 3. If it is, the value is returned. Otherwise, something
weird happens: The function getInput is called. This is odd! The function getInput
is calling itself ! This is called recursion and we’ll talk about that very soon. However,

28 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.6. CONDITIONAL STATEMENTS

def superExtraSpecial(number):
"""Determines the level of specialness of its single input."""

if number == 42:
print "That number is super special!"
return

elif number == 10**100:
print "That number is extra special!"
return

elif (42 <= number <= 142) or (number > 0 and not number % 7 == 0):
print "That number is special!"
return

else:
print "That is a silly boring number"
return

Figure 2.10: A program for determining special, extra special, and super special num-
bers.

def superExtraSpecial(number):
"""Attempts to determine the specialness level of its single

input."""

if (42 <= number <= 142) or (number > 0 and not number % 7 == 0):
print "That number is special!"

elif number == 42:
print "That number is super special!"
return

elif number == 10**100:
print "That number is extra special!"
return

else:
print "That is a silly boring number"
return

Figure 2.11: This program doesn’t quite do what it’s supposed to do, due to the order
in which we are checking numbers.

29 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

A Colorful Application of if, elif, and else

In 1852 Augustus DeMorgan revealed in a letter to fellow British mathematician
William Hamilton how he’d been stumped by one of his student’s questions:

A student of mine asked me today to give him a reason for a fact which
I did not know was a fact—and do not yet. He says that if a figure be
anyhow divided and the compartments differently coloured so that figures
with any portion of common boundary line are differently coloured—four
colours may be wanted, but not more. . .

DeMorgan had articulated the four-color problem: whether or not a flat map of regions
would ever need more than four colors to ensure that neighboring regions had different
colors. The problem haunted DeMorgan for the rest of his life, and he died before
Alfred Kempe published a proof that four colors suffice in 1879.
Kempe received great acclaim for his proof. He was elected a Fellow of the Royal
Society and served as its treasurer for many years; he was knighted for his accomplish-
ments. He also continued to investigate the four color theorem, publishing improved
versions of his proof and inspiring other mathematicians to do so.
However, in 1890 a colleague showed that Kempe’s proof (and its variants) were all
incorrect—and the mathematical community resumed its efforts. The four-color prob-
lem stubbornly resisted proof until 1976, when it became the first major mathematical
theorem proved using a computer. Kenneth Appel and Wolfgang Haken of the Univer-
sity of Illinois first established that every flat map must contain one of 1,936 particular
sub-maps that they defined. They next showed, using over 1200 hours of computer
time, that each of those 1,936 cases could not be part of a counterexample to the
theorem. Four colors did, in fact, suffice!
That program essentially used a giant conditional statement with 1,936 occurrences of
if, elif, or else statements. Such case analyses are quite common in computational
problems (although 1,936 cases is admittedly more than we might usually encounter).
We suspect that DeMorgan would feel better knowing that the question he couldn’t
answer wouldn’t be answered at all for over a century.

you might have guessed what is happening here: The input was not what we expected
(not a 1, 2, or 3), so we are invoking the getInput function again, in essence to give
the user a chance to try again.

Now check out the play function. It begins by calling getInput which (assuming
that the human user eventually enters a 1, 2, or 3) will eventually return a 1, 2, or
3. This value is then assigned to the variable userChoice. Then, the if statement
checks to see if userChoice is 3. If it is, the human player wants to end the experiment
so the program prints some information on what transpired in this experiment and
returns. Else, if the program’s prediction, thisGuess, is equal to the human user’s
guess, userChoice. If so, it computes its next guess and calls the play function to
play again. (That’s recursion again and we’ll talk about that soon.) Else, the guess
must have been incorrect and the program uses the same guess as its next guess and
plays again.

30 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.7. SCOPE

def demo(x):
r = f(x+6) + x
return r

def f(x):
r = g(x-1)
print x
x = 1
return r + x

def g(x):
r = x + 10
return r

>>> demo(13)
42

Figure 2.12: These functions use the same variable names!

2.7 Scope

We promised we would talk about recursion but we’ve consulted with our lawyers and
they told us we could sneak in a short section here on a slight tangent. Actually, it’s
not quite as much of a tangent as it may seem at first. Did you know that the word
tangent was evidently first used in 1583 by the Danish mathematician Thomas Fincke?
Speaking of Denmark, did you know that Legos were invented there? We digress.

We want to talk about scope here. Take a look at the code in Figure 2.12. How did
Python arrive at 42 as its answer in this case? Does Python get upset or confused by
the fact that each of the functions here has a variable named x and a variable named
r? How does changing the value of x in one function effect the value of x in another
function?

The secret here has to do with the way that Python (and, indeed, any self-respecting
programming language) deals with variables. Python has a large supply of metaphor-
ical lock boxes that it can use to store “precious” commodities. These lock boxes have
the special feature that their doors are on top and they are stackable. Figure 2.13
shows an artists rendition of a stack of lock boxes. We’ve put nice little windows in
the boxes so that you can see (but not tinker) with what’s inside. Notice that only
the box on the top of the stack has its door accessible.

Lock boxes? Doors? Windows? Are you CS professors crazy? Perhaps, but that’s
not really relevant here. Let’s take a closer look at our program in Figure 2.12. When
the call demo(13) is made, the value 13 is passed into the demo function’s input
variable named x. This variable is owned by demo and cannot be seen by “anyone”
outside of this function. Python, like most programming languages, likes to enforce
privacy.

The function demo needs to call f(x+6) since this is the first expression in the RHS
of the statement r = f(x+6) + x. However, demo wants to ensure that the “precious”

31 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

98

11

23

42

Figure 2.13: A stack of lock boxes. Only the box on top has its door accessible.

value of its variable x, currently, 13, is preserved. It worries that it might get changed
by the function f or perhaps one of f’s pernicious friends (like g). So, right before the
function call to f, Python automatically stores all of demo’s variables in a lock box for
safe-keeping. In this case, there is a variable called x and Python stores its value, 13.
This is shown in Figure 2.14(a).

When the function f is called, it gets the input 13 + 6 = 19. The value 19 is going
into f’s input variable x. Now x has value 19. The function demo is not worried about
this change in the value of x because it has locked up its own value of x in its secure
lock box. It will retrieve that value when f is done and returns control to demo.

Next, f calls g(19-1). Again, before doing so, it saves its own value of x, 19, in its
own lock box for safe-keeping. This lock box is stacked on top of the previous box as
shown in Figure 2.14(b). Now function g gets its input of 18 in its input variable of x.
It computes 10 + 18 = 28 and returns that value. When we return to function f, that
function immediately finds the lock box on the top of the stack, retrieves its value of
x from the box, and then removes that box from the stack. Now, f has restored its
original value 19 for x. The current situation is shown in Figure 2.14(c). Notice that
19 is the value that’s printed in the line print x in the second line of f. Now x is
changed to 1. Finally f returns 28 + 1 = 29 to the demo function. At this point demo
finds its lock box at the top of the stack, opens it, restores its original value of x to
13, and tosses the lock box. This value is now used in the rest of computation, and
the demo returns the value 29 + 13 = 42. Whew!

This stack of lock boxes is called the stack . In practice it is implemented using the
computer’s memory rather than steel boxes with cute doors and windows, but we like
the metaphor. We’ll revisit stacks in subsequent chapters.

32 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.8. RECURSION

x = 13 x = 13

x = 19

x = 13

(a) (b) (c)

Figure 2.14: The use of the stack when demo(13) is evaluated. (a) demo places its
value of x on the stack. (b) f places its value of x in a box on the top of the stack.
(c) The stack after g is done and t has retrieved its value of x

Where a variable’s value can be seen is called its scope. Our example demonstrates
that the scope of a variable is limited to the function in which it resides. That’s all
cool, but our lawyers have warned us that if we don’t talk about recursion now, you’ll
have grounds to sue us, so here we go!

2.8 Recursion

We haven’t forgotten about our alien. In fact, the alien is sitting at its street-side
booth and there are lots of people lined up waiting for free lemonade and a chance to
participate in the 1-2 prediction experiment. At the moment there are, let’s see, 42
people in line. The alien muses to itself, “I wonder how many different ways I could
arrange those 42 people.” You may know the answer, it’s 42× 41× 40 . . .× 3× 2× 1,
also known as “42 factorial” and written 42! (There are 42 people that could be chosen
to be the first in line, 41 who could get the next spot, and so forth.)

The alien decides that it would like to write a Python program to compute the
factorial of any positive integer. Fortunately, the alien has an extra laptop that runs
Python. Unfortunately, the alien is vexed by how to write such a program. Fortunately,
we observe that 42! = 42× 41! and, in general, n! = n(n− 1)!. That is, the factorial of
n can be expressed as n times the result of solving another smaller factorial problem.
This is called a recursive definition because it expresses the problem in terms of a
smaller version of the same problem. Unfortunately, it’s

not clear to me how this
helps.

Let’s try to capture the recursive definition as closely as we can in Python. This
may seem weird or even downright wrong at first, but let’s try. Figure 2.15 shows the
program. You might try running this program to see what happens.

Amazing! But how does this work? Let’s take a look at what happens when we run
factorial(3). We’ll explain it step-by-step and summarize the process in Figure 2.16.
The function begins with n equal to 3. Since n is not equal to 1, the condition in the
if statement is False and we continue down to the else part. At this point, we
see that we need to evaluate n * factorial(n-1) which requires calling the function
factorial with input 2. Python doesn’t realize—or even care—that the function that
is about to be called is the very same function that we’re currently running. It simply
uses the same policy that we’ve seen before: “Aha! A function call is coming up. I
better put my precious belongings in a lock box on the stack for safekeeping so that I

33 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

def factorial(n):
""" Recursive function for computing factorial of n. """

if n == 1:
return 1

else:
result = n * factorial(n-1)
return result

Figure 2.15: A recursive factorial program.

can retrieve them when this function call returns.”
In this case, n, with value 3, is the only variable that factorial owns at the

moment. So, factorial(3) puts the value of n equal to 3 away in the lock box for
later retrieval. Then, it calls factorial(2). Now factorial(2) runs. Notice that
n now has the value 2. Fortunately, the original value of n has been locked away for
safekeeping because we’ll need it later. For now though, factorial(2) again goes
to the else part where it sees that it needs to call factorial(1). Before doing so,
factorial(2) puts its value of n, namely 2, in its own lock box at the top of the stack.
Then it calls factorial(1).

Finally, factorial(1) is executed. Notice that n is now 1, so the expression n==1
evaluates to True and factorial(1) simply returns 1 and it’s done. But this 1 must
be returned to the function that called it. That’s true anytime there is a function
call! Recall that factorial(2) made that call. At this point, control is returned to
factorial(2) which immediately goes to its lock box at the top of the stack, opens
it, retrieves its value of n (which is 2), and discards the box from the top of the stack.
Now, factorial(2) resumes computing. It computes 2 * 1, assigns that value 2 to
the variable result and returns that result.

That result is returned to the place that factorial(2) was called. That was in
factorial(3), which now goes to the top of the stack, opens the lock box, retrieves its
value of n, and tosses the box. Now, n is 3 and factorial(3) computes 3*2 which is
6 and returns that value. The value is returned to us because we called factorial(3)
at the prompt and, voilá, we have our answer!

We’ll see a lot more recursion in the next chapter. Before we go back and take
a look at how recursion was used in our 1-2 prediction program, let’s just examine
why we even had the if n == 1: statement in our factorial program. What if we had
omitted this? If you’re not sure, try omitting it and running the program without the
if part.

The test if n == 1 is called a base case. (It’s similar to a base case in mathematical
induction. In fact, you may have noticed that recursion and induction are very similar
in spirit.) Without it, the program has no way of knowing when to stop. Base cases
are critically important in writing correct recursive functions.

It is normal for recursion to make your head spin at first. It becomes second nature
over time and we’ll see lots more of it in the next chapter. In the meantime, you might
like this quip from a former student of ours: “To understand recursion, you must first

34 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.9. IMPROVED MIND READING

understand recursion.”
Takeaway message: Recursion is not magic! It is simply one function calling

another, but it just happens that the function that we’re calling has the same name as
the function that we’re in!

2.8.1 Recursion in the 1-2 Prediction Program

Our alien’s 1-2 prediction program in Figure 2.1 uses recursion in a somewhat less
“fancy” way than in the factorial function that we just looked it. In the 1-2 prediction
program, recursion is really being used just to repeat a process. Let’s start by looking
at the getInput function. This function takes no input and returns the number entered
by the human user. If the input was 1, 2, or 3, getInput returns that value. If not,
the user typed something wrong, so we call getInput recursively to simply ask the
user to try again. We’ll loop here until the user finally types in a 1, 2, or 3.

It’s worth taking a moment to ponder what happens if we call getInput and
the user types in the number 4. Let’s call this the first call to getInput, just for
reference. The first call of getInput now calls getInput again. Let’s call this the
second call to getInput. If the human user types in a 2 now, that 2 gets returned.
But notice that it’s returned to whoever called the second call to getInput. It was
the first call to getInput that made that call, so it gets the number 2 back. Now, the
first call to getInput resumes where it left off. Where was that? It was in the line
return getInput(). The value of getInput() in that line is now 2, so the first call to
getInput returns that value of 2. Now, we’re done with recursion. The point here, is
that the recursive calls can stack or “wind” up. However, when the user finally types
in a good input, that input is passed back to the earlier recursive calls as they return
and “unwind”, eventually returning that good user input all the way back for us to
use.

Finally, let’s take a look at the recursion in the play function. This function
has three input variables. The first input variable, thisGuess, is the value that the
function will use as its current guess. The second input, correct, is the number of
times that the computer’s guess was correct. The third input, total, is the total
number of times that we’ve played.

Notice when we call this function initially, we call it with thisGuess equal to 1 (2
would have worked just as well!), correct equal to 0, and total equal to 0. In the
event that the our guess was the same as the user’s choice, we choose a new value for
our next guess (we chose the “other” value so that if the user typed a 1 this time then
we will guess a 2 next time and vice versa). We call play recursively with this new
guess and with the values of correct and total incremented by 1. On the other hand,
if we guessed wrong, the function keeps the next guess the same as the current guess
and calls play recursively with the total incremented by 1. This use of recursion is
purely for the purpose of looping. It may seem loopy, but

it’s actually quite
sensible.

2.9 Improved Mind Reading

Wow! You’ve just seen a good chunk of the foundations of programming. This is
a great time to pause and try out some of the ideas in your own programs. One

35 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

n=3

n=3

n=2

Places its value of n=3
on the top of the stack and
then calls factorial(2)

factorial(3):

Function call What happens here... What the stack looks like at this moment...

factorial(2): Places its value of n=2
on the top of the stack and
then calls factorial(1)

factorial(1):

n=3

n=2
Returns the value 1 to the
place where it was called,
namely factorial(2)

factorial(2): Takes the value 1 returned
from factorial(1), finds its own value
of n=2 at the top of the stack,
computes the product, 2*1, and
returns this value to the place where
it was called, namely factorial(3)

n=2

factorial(3): Takes the value 2 returned
from factorial(2), finds its own value
of n=3 at the top of the stack,
computes the product (3*2), and
returns this value, 6, to the place where
it was called...

Figure 2.16: What happens when we invoke factorial(3).

36 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

2.9. IMPROVED MIND READING

place to start is to try modifying the alien’s 1-2 prediction program. For example, our
prediction algorithm was pretty crude: Start guessing 1. If we guessed right, choose
the other possible guess next time. If we guessed wrong, stick with the same guess
next time.

There are more sophisticated algorithms that we could try. For example, imagine
that we kept track of the last three numbers that the human entered (when we start
the program, we might just fake it and pretend that the last three numbers were 1’s).
Then, our algorithm would look at what number was entered most often in the last
three times and use that number as its next guess.

How could we implement this in Python? One possibility is to modify the play
function so that it takes three extra arguments as input: The number that the human
entered three plays ago, two plays ago, and at the previous play. You might want
to try this or some other strategy. Get your friends to play and see if one algorithm
seems to do better than another.

In the next chapter, we’ll see some more advanced features of Python and some
more computational problem-solving approaches. These will allow you to add even
more sophisticated features to your 1-2 prediction program and to write entirely dif-
ferent and fun programs. In the meantime, congratulations on becoming a functional
programmer!

37 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 2. FUNCTIONAL PROGRAMMING

38 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Chapter 3

SuperFunctional
Programming

The most dangerous phrase in the language is, We’ve always done it this
way.

—Admiral Grace Hopper

3.1 Top-down Human Design

At a loss to explain why humans might be more predictable than machines at choosing
a “random” sequence of numbers, our alien plans further investigations into what
controls human behavior.

Caffeine seemed a strong first hypothesis as humans’ controlling agent. After all,
when the alien switched from free lemonade to free coffee for its experiments, par-
ticipation skyrocketed! The resulting input data did seem “shakier,” however, and
Starbucks’ continued threats of an anticompetitive-practices lawsuit convinced the
alien to look elsewhere.

“Well, people are controlled by their subsystems: the muscles, brains, nerves, and
all of the other components that make them so unusual,” the alien figured—reasoning Aliens, it turns out,

aren’t modular at all:
they’re just one, large
cell.

top-down about the humans observed so far. “But those subsystems are simply collec-
tions of cells—what controls those cells’ behavior?” A quick and (relatively) painless
“scan” revealed that it was a set of molecules that ran the show after all: proteins.
Each cell produced long chains of amino acids—called proteins—at astonishing rates.

Even more astonishing was that those one-dimensional chains worked by folding
up into all the machinery the cells needed for their trillion-strong conspiracy to act
human. Understanding proteins, the alien figured, would be the key to understanding
people.

“Creating a 1d protein-chain is no problem,” the alien noted—humans have that
down pat. But how will I know which 1d chains fold into 3d as desirable molecular
machines instead of disastrous ones? For that, the alien realizes that it needs another
program: one that simulates the folding process. With a folding simulator, the function
of the 3d folded protein could be predicted from the original 1d protein-chain. Indeed, protein folding is

the “Holy Grail” of
biochemistry—and it
remains unsolved by
humans or aliens. . .

39

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

3.2 Top-down Program Design

A protein-folding program is more complex than the alien’s 1-2 prediction. So, the
alien decides to write a first approximation by carefully planning what it will do. First,Or zeroth approximation

the overall task is decomposed into its subtasks; those subtasks are further analyzed,
in turn, all the way to the level of Python’s functions, it’s fundamental building blocks.

How will a folding program work? First it will set-up the data, defining a 1d list
of angles to represent the 1d chain of “protein parts.” Specifically, that data will be
the angles between consecutive protein parts. For the time being, the alien abstractsPicture of a three-link

chain with angles. away details like the fact that “protein parts” are called amino acids, and that amino
acids happen to come in 20 different flavors With the representation in place, the alienAlthough the alien does

muse hungrily about
exactly what those

flavors might be

imagines a top-level function, named fold, that takes as input the original list of 1d
protein parts and then folds it up!

Unfortunately, “folds it up!” isn’t a Python keyword. After filing a bug report
with Python’s author for this oversight, our alien decides to the break the task “fold
it up!” into smaller parts:

• First, the function will create a list of all of the partly-folded chains that are
immediate neighbors of the current input chain.

• Next, the function will winnow, or reduce, that list of many neighboring chains
to the single best neighbor. Biochemists’ best neighbors are the laziest! Thus,
the neighboring chain with the smallest total energy will remain.Nature is lazy, but hides

it well!
• Finally, the whole process repeats: the new, lower-energy angles become the

input to the next call to fold. En route, an interface can display the molecule
either graphically or textually.

• When all neighboring chains all require more energy than the original input to
fold, the folding is done. A stable state has been reached, at least until you add
heat—or caffeine!

But even the individual steps of the design above require refinement before they’re
“Pythonable.” How could we find all the immediate neighbors of a particular chain
(step one, above)? For simplicity, these neighbors could be all of the chains whose
internal angles are one degree away from the input chain’s. The task of creating
all of these lists of angles further decomposes into changing only the first angle and
delegating subsequent changes to a recursive call.

Taking a step back, this elaboration is called top-down design. At first, a “big
idea” is articulated. That idea is then fleshed out into constituent subtasks. Those
subtasks, too, receive more and more detailed analysis—until the pieces are simple
enough to express in a language like Python.

3.3 The alien’s protein-folding code

Listing 3.1, below, shows the alien’s final effort, a file named SuperFunFold.py, which
is available from URLHERE. You’ll need the helper file graphics.py, too. Notice that,
with Python, top-down design leads to code that is perhaps best read from the bottom
up! We next look at the parts of this code in more detail.

40 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.3. THE ALIEN’S PROTEIN-FOLDING CODE

Listing 3.1: Protein-folding code

The a l i e n ’ s pro te in−f o l d i n g program , SuperFunFold . py
This r e q u i r e s g r a p h i c s . py in the same ” f o l d ”er , as w e l l .
#
Remember , s c o f f i n g at a l i e n s == bad karma !

import graph i c s # be sure to have g r a p h i c s . py
import math , random , time

def pa i rw i s e en e rgy (d i s t) :
””” p a i r w i s e e n e r g y

This i s where the b i o /chem appears (or shou ld)
input : a s i n g l e va lue , the d i s t a n c e between two

p i e c e s (p e p t i d e s) o f the molecu le
output : the energy r e q u i r e d to maintain t h a t

d i s t a n c e
”””
” S t e r i c ” energy i s r e q u i r e d to ho ld atoms or molecu le s
so c l o s e t h a t t h e i r volumes o v e r l a p . We use an
e x p o n e n t i a l :
s t e r i c e n e r g y = math . exp ((2∗20)/ d i s t)

”Van der Waals” f o r c e s p u l l mo lecu les to a ” p r e f e r r e d ”
mutual d i s t a n c e o f 60. Here , q u a d r a t i c . More formal
e s t i m a t e s are ∗∗6 !
van der waa l s energy = abs (d i s t −60)∗∗2
we re turn the sum of t h e s e two e n e r g i e s
return s t e r i c e n e r g y + van der waa l s energy

def d i s t f r o m (po int) :
””” d i s t f r o m

one input : a l i s t o f [x , y] c o o r d i n a t e s (a p o i n t)
one output : a f u n c t i o n t h a t computes d i s t a n c e s

to the input p o i n t !
”””
x1 , y1 = point # ”unpack” p o i n t i n t o i t s two

c o o r d i n a t e s

Note t h a t we are d e f i n i n g f INSIDE d i s t f r o m !
def f (po int2) :

x2 , y2 = point2
d i s t = math . hypot (x1−x2 , y1−y2) # b u i l t in to

the math module
return d i s t

return f

41 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

def a l l p a i r w i s e d i s t a n c e s (po in t s) :
””” a l l p a i r w i s e d i s t a n c e s

input : a l i s t o f l i s t s o f two e lements (p o i n t s)
output : a l i s t o f a l l p a i r w i s e d i s t a n c e s among

the input p o i n t s
”””
i f l en (po in t s) < 2 : return []

f i r s t = po in t s [0]
r e s t = po in t s [1 :]

d i s t s w i t h o u t f i r s t = a l l p a i r w i s e d i s t a n c e s (r e s t)
d i s t s w i t h f i r s t = map(d i s t f r o m (f i r s t) , r e s t)

return d i s t s w i t h f i r s t + d i s t s w i t h o u t f i r s t

def compute E (ang l e s) :
””” compute E

input : a l i s t o f bond a n g l e s
output : the energy (E) r e q u i r e d to maintain t h o s e

a n g l e s
”””
po in t s = graph i c s . compute coord inates (ang l e s)
p a i r w i s e d i s t a n c e s = a l l p a i r w i s e d i s t a n c e s (po in t s)
E = sum(map(pa i rw i s e ene rgy , p a i r w i s e d i s t a n c e s))
return E

def a l l n e i g h b o r s (ang l e s) :
””” a l l n e i g h b o r s

input : a l i s t o f a n g l e s
output : a l i s t o f l i s t s o f ang les , wi th each ang le

1 degree away from i t s corresponding
input ang l e

”””
i f ang l e s == [] : return [[]]

a = ang l e s [0]
r e s t o f a n g l e s = a l l n e i g h b o r s (ang l e s [1 :])

return map(lambda R: [a−1]+R, r e s t o f a n g l e s) + \
map(lambda R: [a+1]+R, r e s t o f a n g l e s)

42 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.3. THE ALIEN’S PROTEIN-FOLDING CODE

def smal l e r E (angles1 , ang l e s2) :
””” smal l e r E

two i n p u t s : both are l i s t s o f bond a n g l e s w i t h i n a
molecu le

one output : the l i s t o f bond a n g l e s wi th s m a l l e r
energy (E)

”””
i f compute E (ang l e s1) < compute E (ang l e s2) :

return ang l e s1
else :

return ang l e s2

def f o l d (o l d a n g l e s) :
””” f o l d

input : a l i s t o f a n g l e s among the e lements in the
” chain ”

output : None , but each c a l l to f o l d pushes the
chain i n t o a lower−energy s t a t e (u n t i l a
miniimum i s reached)

”””
ALL angles = a l l n e i g h b o r s (o l d a n g l e s)

new angles = reduce (smal ler E , ALL angles , o l d a n g l e s)

i f new angles != o l d a n g l e s :
g raph i c s . updateChain (new angles) # update g r a p h i c s
time . s l e e p (0 . 0 5) # pause f o r 0.05 seconds
f o l d (new angles) # and keep going . . .

return

The program s t a r t s here . . .
raw input (” Hit ente r when you ’ re ready to f o l d . . . ”)

a l i s t o f i n i t i a l a n g l e s between the p i e c e s o f the p r o t e i n
i n i t i a l a n g l e s = [−11.37 , 8 . 51 , 15 .05 , −3.96 , −26.87 , −25.85 ,

2 5 . 8 9]

s e t up the g r a p h i c s
graph i c s . createChain (i n i t i a l a n g l e s)

run the f o l d i n g
f o l d (i n i t i a l a n g l e s)

when f o l d re turns , we ’ re f i n i s h e d !
print ” I fo ld , t h e r e f o r e I am. ”

43 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

Figure 3.1: Eight snapshots of the protein-folding animation. The code is is in List-
ing 3.1.

3.3.1 Disclaimers

Admittedly, this example abstracts away enough details that biochemists wouldn’t
bother to mock it. The details we’ve thrown away about molecule shape, interaction
with the surroundings, the factors contributing to the energy landscape, and atomic
and quantum effects could fill volumes. Yet, here, they are encapsulated in a sin-In fact, they do!

gle place: the topmost function pairwise energy. A run of this folding simulation
resulted in the snapshots below:

In contrast, a video of a few nanoseconds of a better modeled, 3d-rendered, andIt’s a really short video!

more accurate folding of a 1d chain into a 3d protein appears at http://www.youtube.
com/watch?v=fvBO3TqJ6FE.

But the abstraction has its advantages: for one, we have abstracted away Python’s
2d graphics and some coordinate geometry in the graphics module. Thus, it becomes
easy to improve the visualization: chapter 5 presents a 3d graphics module, vPython,
that could be used to “add volume” to our folding simulation.

Another advantage of the abstraction is that it isn’t too specialized to be able
to adapt to other tasks. For example, by breaking the chain’s bonds and adapting
the pairwise energy function to represent gravitational attraction, the same com-
putational scaffold results in an n-body simulation. Figure 3.2 shows snapshots of
a three-body simulation; now, the circles represent macroscopic interactions among
physical objects:

By the end of this chapter, you’ll be able to convert the biochemical simulation
into this physical simulation—or write it from scratch, for that matter! This n-bodyIt’s also at URLHERE.

simulation solves a problem old enough that Newton struggled over—and that remains

44 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.4. SEQUENCES

Figure 3.2: Eight snapshots of a three-body dynamic simulation. Gravity is modeled
in a vacuum of the non-Roomba sort. Note-I should probably make this 64 snapshots,
each 1/8 the size. . .

analytically intractable even today!

3.4 Sequences

So, how does the folding program work? First and foremost, it needs to handle ordered
collections of data. These are the lists of angles under consideration. The line

initial_angles = [-11.37, 8.51, 15.05, -3.96, -26.87, -25.85, 25.89]

uses the variable name initial angles to represent a list of seven floating-point
elements. Lists are one type of sequence datatype Python supports. This list represents
the starting state of the internal angles among a protein’s chain. A simplified version
appears in 3.3.

Strings, used in the 1-2 prediction program are a different type of built-in sequences.
We take a look at strings and lists in detail below.

3.4.1 Strings

Python’s sequences use delimiters to indicate beginning and end of the contained
elements. As you saw in the 1-2 prediction program, strings can use double-quotes as
delimiters, e.g., "this is a string". Single-quotes, as in ’this is a string’ are
also OK. The language does not distinguish between these versions, so that

>>> "this is a string" == ’this is a string’
True

45 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

Figure 3.3: Example of the list representation of angles for our linked chains.

46 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.4. SEQUENCES

However, a string must open and close with the same delimiter; otherwise, you will
get SyntaxError.

’’’ Python also has triple-quoted strings
These are used as docstrings and can
contain multiple lines. They can be
triple-double-quoted, too.

Ordinary strings must be typed as one line.
’’’

The empty string

As the above examples show, strings contain strings. In fact, Python’s strings may
only contain strings—or nothing at all. The “empty string” is "" or ’’.

A len function is available to return the length of a string:

>>> s = ’’
>>> len(s)
0

>>> s = ’Harvey Mudd College’
>>> len(s)
19

Note that spaces count: they are strings like any other. Be careful, because the string
of a single space is not the empty string:

>>> " " == ""
False

Ultimately, the individual characters of strings are represented as sequences of bits
in a machine’s memory (see section 4.1). As far as Python is concerned, if a string has
any elements, all of those elements are themselves strings.

Indices and slicing

Square brackets index into a string, yielding the value of the element at the index’s
position. Nonnegative indices count from the left, starting from 0; negative indices
count from the right. Thus,

"abcdefg[0]" == "a"

and

"abcdefg"[-1] == "g"

It possible to extract substrings, too, using both a left and right endpoint separated
by a colon. This is appropriately termed slicing the string. For example,

"abcdefg"[2:4] == "cd"

47 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

Figure with all of the indexing and slicing examples---we
have a slide with them all.

Figure 3.4: caption here

Note that the left endpoint is included, but the right end point is not! It is even
possible to include a third colon-separated value, which indicates a step size, i.e., how
often to include characters in the resulting slice, so that

"abcdefg"[0:5:2] == "ace"

There are many conventions that govern indexing and slicing: figure 3.5 provides
examples that cover most of them. Take a look at each expression and make sure you
understand how it works. The three most important conventions to keep in mind as
you manipulate strings are

• Counting elements from left-to-right starts from zero. That is, strings—-and all
sequences—in Python are zero-indexed. Remember that "string"[1] == "t"!

• Negative indices count from right-to-left, starting from -1 instead of 0. negative
step sizes move from right-to-left.

• If indices are omitted in a slice, they default to the front or end of the string.
Thus, "crest"[1:] == "rest" and "crest"[:] == "crest"!This full-sequence slice

turns out to be useful
because it copies the

data before returning it!

3.4.2 Lists

Python’s lists, on the other hand, are “strings” that can contain any type of element
at all. Lists are delimited by square brackets; two or more elements are separated by
commas. For example, [7,8,9] is a list of three integers, [] is the empty list, and
["jan",31] is a list of two elements of different types. Indexing and slicing—and all
of the conventions they carry—work for lists just as they work for strings. Figure 3.6
gives an opportunity to review those capabilities in the context of lists.

One subtlety worth keeping in mind: with lists and strings, slicing always returns
a sublist and substring, respectively. Indexing, on the other hand, returns an element
of the list or string.

3.4.3 Operators for lists vs strings

Lists and strings are examples of sequences with many capabilities beyond accessing
elements and sub-sequences. Figure 3.7 highlights the most common of these capa-
bilities: len returns the length of a sequence; in is a boolean operator that checks
for membership at the top-level of a sequence. In addition, the operators + and *
have special meaning for Python sequences. The addition operator concatenates two
sequences of the same type. That is, adding two sequences results in a new sequence
containing all of the elements, in order, of the left- and right-hand operands:

48 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.4. SEQUENCES

Figure 3.5: String-slicing examples

49 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

Figure 3.6: List-slicing examples

Figure with all of the sequence examples---we
have a slide with them all.

Figure 3.7: caption here

50 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.5. MATTERS OF IMPORT

>>> [2, 4] + [6, 8]
[2, 4, 6, 8]

Multiplication of a sequence by an integer n yields a concatenation of n copies of the
original sequence:

>>> 3 * ’ow! ’
ow! ow! ow!

Multiplication of one sequence by another is not supported, however!

3.4.4 Converting between data types

Python has a built-in function, type, that indicates the type of its input. Here are
two examples:

>>> type(5)
<type ’int’>

>>> type([])
<type ’str’>

As a thought experiment, you might guess at the type of the return value of type(42).
You can check your guess with type(type(42))

Type names, such asint and str, are themselves functions that convert data into
the named type, when such a conversion is possible. One common conversion, int, con-
verts a floating-point value to an integer by truncating that value, e.g., int(2.9) == 2.
Sometimes conversion results can be surprising—for instance, guess the number of el-
ements in list("[1,2]"). When the conversion isn’t valid, such as int("three"), Python can’t read!

Python will stop and emit a ValueError.
These conversions are made implicitly when computing with different numeric

types. For example, the division expression 355.0/113 has a left-hand operand of type
float and a right-hand operand of type int. Python converts the int 113 to the float
113.0 implicitly before performing the division and yielding the value 3.14159.... Easy as pi!

Watch out! If both operands are int, no conversion is made and the expression
355/113 yields the integer value 3.

Aside: maybe this section should go elsewhere?

3.5 Matters of import

But we’ve made so little progress with our alien’s protein-folding code! Indeed, we’ve
looked only at the first line of the overall program:

a list of initial angles in degrees between protein parts
initial_angles = [-11.37, 8.51, 15.05, -3.96, -26.87, -25.85,

25.89]

set up the graphics

51 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

graphics.createChain(initial_angles)

run the folding
fold(initial_angles)

when fold returns, we’re finished!
print "I fold, therefore I am."

The second line, graphics.createChain(initial angles), illustrates one of Py-
thon’s important capabilities. The createChain function does not appear in the
protein-folding file at all. Rather, it is in the file graphics.py. To use code from
graphics.py, make sure that the graphics.py file is in the primary program’s direc-
tory. Then, at the top of the primary program, include the lineIt’s coincidence that

directories are also called
“fold”ers.

import graphics

This statement says “OK, I will go and grab all of the code from graphics.py
and allow its use from here on.” In this case, the imported code sets up the graphical
subsystem, computes the coordinates of the input chain’s links, and displays it in a
window.

Such an imported file is a module, and to call one of its functions, preface the
function name with the module name:

graphics.createChain(initial_angles)

Many useful modules come with Python, and they can be invoked from the com-
mand line as well as within a file:

>>> import math
>>> math.sqrt(42)
6.4807...

>>> import random
>>> random.choice(["rock", "paper", "scissors"])
"rock"
>>> random.choice(["rock", "paper", "scissors"])
"scissors"
>>> random.choice(["rock", "paper", "scissors"])
"rock"

which results in a mean RPS player!
The collection of these importable modules is called Python’s library. It is enor-

mous, hugely useful, and beautifully documented on the Web at http://docs.python.
org/library/. What’s more, most of that documentation is built-in to the language.
The dir command provides a listing of available functions, and the help function
provides documentation on each:

52 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.6. FUNCTIONS ARE DATA, TOO: REDUCE, MAP, AND LAMBDA

>>> import math
>>> dir(math)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’, ’acos’, ’acosh’,
’asin’, ’asinh’, ’atan’, ’atan2’, ’atanh’, ’ceil’, ’copysign’,
’cos’, ’cosh’, ’degrees’, ’e’, ’exp’, ’fabs’, ’factorial’, ’floor’,
’fmod’, ’frexp’, ’fsum’, ’hypot’, ’isinf’, ’isnan’, ’ldexp’, ’log’,
’log10’, ’log1p’, ’modf’, ’pi’, ’pow’, ’radians’, ’sin’, ’sinh’,
’sqrt’, ’tan’, ’tanh’, ’trunc’]

>>> help(math.radians)
Help on built-in function radians in module math:

radians(...)
radians(x) -> converts angle x from degrees to radians

>>> math.radians(180)
3.1415926535897931

Data is available, too, in some modules:

>>> import math
>>> math.pi
3.1415926535897931

>>> math.e
2.7182818284590451

Aside: should we mention the from graphics import * option?

3.6 Functions are data, too: reduce, map, and lambda

3.6.1 Motivating reduce

From our detour through Python’s library we return to the “fold”:

def fold(old_angles):
"""fold

input: a list of angles among the elements in
the "chain"

output: None, but each call to fold pushes the
chain into a lower-energy state (until a
miniimum is reached)

"""
ALL_angles = all_neighbors(old_angles)

new_angles = reduce(smaller_E, ALL_angles, old_angles)

53 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

if new_angles != old_angles:
graphics.updateChain(new_angles) # update graphics
time.sleep(0.05) # pause for 0.05 seconds
fold(new_angles) # and keep going...

return

The first line after fold’s docstring computes and returns all of the chains neigh-
boring the input chain, old angles by exactly one degree in each angle. Before diving
into all neighbors, let’s run it a couple of times to build intuition:

>>> angles = [42]
>>> all_neighbors(angles)
[[41], [43]]

>>> angles = []
>>> all_neighbors(angles)
[[]]

>>> angles = [42, 100]
>>> ALL_angles = all_neighbors(angles)
>>> ALL_angles
[[41, 99], [41, 101], [43, 99], [43, 101]]

In each case, all neighbors returns a list of lists. The base case yields a list-of-
an-empty-list; recursive cases return a list-of-lists in which each sublist contains angles
that neighbor the input’s by 1 degree.

This is involved enough to warrant its own function, all neighbors, the topic of
the next sections. For now, suppose that ALL angles we have the return value from
all neighbors. Specifically, imagine the final example above, in which

after the call ALL_angles = all_neighbors(angles)
>>> ALL_angles == [[41, 99], [41, 101], [43, 99], [43, 101]]
True

The next line, new angles = reduce(smaller E, ALL angles, old angles),
computes which of the four elements of ALL angles has the smallest internal energy—
that smallest-energy list will be the new angles as the simulation continues.

3.6.2 reduce: a function that takes a function as input

The built-in Python function reduce accomplishes this task. Reduce takes three in-
puts: the second input must be a list that you’d like “reduced” to a single element of
that list. The third input is a “base case” of sorts. More detail to come. . . .

But it’s the first input to reduce that makes reduce different from the previous
functions we’ve seen. That first input to reduce must itself be a function. It’s said
that in Python functions are first-class data, because they themselves can be used in
the same way that data like numbers, strings, and lists. Functions can be inputs to

54 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.6. FUNCTIONS ARE DATA, TOO: REDUCE, MAP, AND LAMBDA

functions, the outputs of functions, and can even remain nameless, all in the way other
data can.

So, reduce’s first input must be a function. That input function must, in turn,
take two inputs—two inputs of the type contained in the list that is the second input.
Then, reduce applies its first input’s function “through” the second input’s list.

Apply a function “through” a list? Let’s explain this with some examples. We’ll
use min and max, functions built-in to Python that can take two inputs: min(42,5)
returns 5 and max(42,5) returns 42.

Then,

An example of reduce using min:
>>> reduce(min, [5,42,3,101010,2,18])
2

Here, reduce first applies min to the initial two elements of the list. When it gets
the result of min(5,42) == 5, it applies min to that result of 5 and the next element
in the list: min(5,3). It gets the result, 3, and applies min to 3 and 101010. This
process continues, making the calls min(3,2) and then min(2,18), yielding a final
return value of 2.

Thus, reduce has use the two-input function min to find the overall minimum of
an arbitrary list of elements.

Similarly,

An example of reduce using max:
>>> reduce(max, [5,42,3,101010,2,18])
101010

3.6.3 Reducing nothing at all?

What if we call reduce with an empty list? Python has no data to work with, so it
reports an error:

An example of reduce using min:
>>> reduce(min, [])

Traceback (most recent call last):
File "<pyshell#32>", line 1, in <module>

reduce(min, [])
TypeError: reduce() of empty sequence with no initial value

Because of this, reduce allows an optional third input. That third input is the
base-case value returned when the input list is empty. Also, it is the first value used
when the input list isn’t empty:

An example of reduce using min:
>>> reduce(min, [5,42,3,101010,2,18], -1)
-1

because the -1 is smaller than everything else in the list. In short,

reduce(f, L, e) == reduce(f, [e]+L)

55 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

3.6.4 One chain to rule them all

The power to reduce extends to any two-input function, including our own:

def plus(x, y):
return x + y

>>> reduce(plus, [3,4,5])
12

>>> reduce(plus, [1,3,5,9,11,13])
42

This will be the approach we use to find the minimum-energy molecule in our folding
simulation.

Because we want to reduce our list of possible chains to a single, minimum-energy
chain, reduce is the right approach. We need our own two-input function smaller E
that returns which of two inputs configurations requires less energy to maintain. Our
smaller E does only that; it delegates the actual energy computation to another call:

def smaller_E(angles1, angles2):
"""smaller_E

two inputs: both are lists of bond angles within a molecule
one output: the list of bond angles with smaller energy (E)

"""
if compute_E(angles1) < compute_E(angles2):

return angles1
else:

return angles2

Thus, the fold function makes the call

new_angles = reduce(smaller_E, ALL_angles, old_angles)

which finds the smallest-energy chain among ALL angles and old angles and then
names the result new angles.

3.6.5 A map of map

What about that energy computation itself? Writing compute E only postpones the
inevitable. It is in compute E where CS and BioChem will meet. Here’s the plan:

• Find all of the 2d coordinates of the vertices of the chain.

• Find all of the pairwise distances between pairs of those coordinates.

• Compute the energy for each of those pairs

• Sum up those pairwise energies.

In Python, this becomes compute E:

56 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.6. FUNCTIONS ARE DATA, TOO: REDUCE, MAP, AND LAMBDA

def compute_E(angles):
"""compute_E

input: a list of bond angles
output: the energy (E) required to maintain

those angles
"""
points = graphics.compute_coordinates(angles)
pairwise_distances = all_pairwise_distances(points)
E = sum(map(pairwise_energy, pairwise_distances))
return E

What is this map? Like reduce, map takes a function f as its first input and a list L
as its second input. Then, map returns a new list in which f has been applied to each
element of L. Here are three examples using the built-in abs, len, and sum:

>>> map(abs, [-5,-42,20,-1])
[5, 42, 20, 1]

>>> map(len, [[], [42], [42,42], [42,42,42]])
[0, 1, 2, 3]

>>> map(sum, [[], [42], [42,42], [42,42,42]])
[0, 42, 84, 126]

In compute E, above, the call map(pairwise energy, pairwise distances) re-
turns a list of the energy required to maintain each of the distances in pairwise dis-
tances. The call to sum returns the total energy, which is named E.

3.6.6 Use it or lose it

The all pairwise distances function takes in a list of coordinate pairs (“points”)
and returns all of the Euclidean distances among pairs of those points:

>>> points = [[0,0], [3,4]]
>>> all_pairwise_distances(points) # only one distance

between two points
[5.0]

>>> points = [[0,0], [3,4], [8,-8]]
>>> all_pairwise_distances(points) # three distances

among three points
[5.0, 11.313708498984761, 13.0]

and so on.
Writing all pairwise distances follows an algorithm-design strategy nicknamed

“use it or lose it.” The idea is to single out the first point in the input list, and then
split the problem into two parts:

57 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

• Finding all of the pairwise distances that use it—all the distances from other
points to the singled-out point

• Finding all of the pairwise distances that lose it—all the distances that don’t
use the singled-out point at all

The “lose it” half is easier, it’s simply a recursive call using the rest of the list! The
“use it” half requires finding the distance from each of the rest of the points to the first,
singled-out point—a perfect opportunity to use map! Here is all pairwise distances:

def all_pairwise_distances(points):
"""all_pairwise_distances

input: a list of lists of two elements (points)
output: a list of all pairwise distances among

the input points
"""
if len(points) < 2: return []

first = points[0]
rest = points[1:]

dists_without_first = all_pairwise_distances(rest)
dists_with_first = map(dist_from(first), rest)

return dists_with_first + dists_without_first

There is one surprise here: the call map(dist from(first), rest). Remember
that map requires its first argument to be a function. Thus, dist from(first) must
return a function! The next section shows how this works in Python.

3.6.7 Functions returning functions

The dist from(point) function takes as input a coordinate pair—a list of two ele-
ments. In order to be used by map, above, it needs to return a function. In particular,
it needs to return a function that returns the distance of its input to dist from’s
input, point!

Python makes it easy to define—and return—a function from within a function:

def dist_from(point):
"""dist_from

one input: a list of [x,y] coordinates (a point)
one output: a _function_ that computes distances

to the input point!
"""
x1, y1 = point # "unpack" point into its two coordinates

def f(point2):
x2, y2 = point2

58 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.6. FUNCTIONS ARE DATA, TOO: REDUCE, MAP, AND LAMBDA

dist = math.hypot(x1-x2, y1-y2) # built in to the
math module

return dist

return f

That’s all there is to it! Plus, we’ve leveraged math.hypot, the hypotenuse-finding
function in the math module.

3.6.8 The biochemistry, at last!

It is compute E’s function pairwise energy that models the energy required to main-
tain a particular distance between two links in our protein chain:

def pairwise_energy(dist):
"""pairwise_energy

This is where the bio/chem appears (or should)
input: a single value, the distance between two pieces

(peptides) of the molecule
output: the energy required to maintain that distance

"""
"Steric" energy is required to hold atoms or molecules
so close that their volumes overlap. We use an exponential:
steric_energy = math.exp((2*20)/dist)
"Van der Waals" forces pull molecules to a "preferred" mutual
distance of 60. Here, quadratic. More formal estimates are **6 !
van_der_waals_energy = abs(dist-60)**2
we return the sum of these two energies
return steric_energy + van_der_waals_energy

This is a remarkably rough approximation, but because it has been modularized
into its own well-defined function, it becomes easy to experiment with. For instance,
the alternative

def pairwise_energy(dist):
"""pairwise_energy, integrated from gravity’s inverse-square law
"""
G = 6.673e-11 # Gravitational constant, G
return -G/dist

yields the gravitational energy between two unit-mass objects, as it depends on the
distance dist between them.

More accurate estimates of the chemical pairwise energy between the links in pro-
tein chains would require distinguishing among the 20 different link (amino-acid) types,
resulting in 390 possible pairs of types. In addition, each link in a real protein has two
angles, not one, and is represented by 3d coordinates, not 2d.

The alien promises a full accounting of these nuances in the soon-to-be-released
version 2.0 of SuperFunFold.

59 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

3.6.9 Anonymous functions: lambda

Only one function from our original top-down design of SuperFunFold remains:
all neighbors. On input of a single list of angles, all neighbors seeks to return
a list of lists of angles, each a neighbor of the input, in the sense that its angles are
one degree away from each of the input’s corresponding angles. For example,

>>> all_neighbors([5, 42])
[[4, 41], [4, 43], [6, 41], [6, 43]]

It seems all neighbors lends itself to a recursive solution:

• If the input list is empty, it has no neighbors, so the result is [[]].

• Split the input list into a first angle a and a list of the rest of the angles.

• Find all of the neighbors of the list-of-the-rest-of-the-angles. Call the result N.

• Add the angle a+1 to each element of N—this is one half of the full set of neigh-
bors.

• Add the angle a-1 to each element of N—this is the other half of the full set of
neighbors.

The Python code follows this top-down design, now at the level of a single function,
closely. The one challenge appears in the steps that “add an angle to each element
of N”. Since it’s doing something to each element of a list, it’s a great opportunity to
use map! But how could we write a function that prepends a particular angle to each
element? Here is the code with placeholders in those spots:

def all_neighbors(angles):
"""all_neighbors

input: a list of angles
output: a list of lists of angles, with each angle 1

degree away from its corresponding input angle
"""
if angles == []: return [[]]

a = angles[0]
rest_of_angles = all_neighbors(angles[1:])

return map(FUNCTION_THAT_PREPENDS_[a-1], rest_of_angles) + \
map(FUNCTION_THAT_PREPENDS_[a+1], rest_of_angles)

We could write one or more helper functions that return an appropriate function
for each of those two cases, as we did with dist from.

But Python offers a quicker alternative when you need a small, task-specific func-
tion: anonymous functions. An anonymous function defines a small function without
the syntactic overhead of def, indented blocks, and return. The keyword used to
introduce an anonymous function is lambda; for this reason anonymous functions are
sometimes called lambda-expressions.

60 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

3.6. FUNCTIONS ARE DATA, TOO: REDUCE, MAP, AND LAMBDA

The expression lambda x: x + 1 is an example of an anonymous function with a
single input x and whose output is x+1. This lambda-expression can be used anywhere
that a function could be, such as in a direct application:

>>> (lambda x: x + 1)(41)
42

But anonymous functions are most common as an input to map:

>>> map(lambda x: x + 1, [1,2,3])
[2,3,4]

or, a two-input anonymous function for reduce:

>>> reduce(lambda x,y: x*y, [1,2,3,4])
24

The anonymous functions needed by all neighbors are short:

return map(lambda R: [a-1]+R, rest_of_angles) + \
map(lambda R: [a+1]+R, rest_of_angles)

and sweet!

3.6.10 And beyond. . .

Takeaway message: This chapter’s takeaway message is that functions can be used
in all of the same ways that data can be: as inputs, outputs, and without explicit
names.

This functional programming approach offers specific tools— map, reduce, and
lambda—and general design strategies, top-down and “use it or lose it” approaches,
to help you built software that is simultaneously powerful, succinct, and flexible.

Happy functioning!

61 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 3. SUPERFUNCTIONAL PROGRAMMING

62 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Chapter 4

Computer Organization

Computers are useless. They can only give you answers. —Pablo Picasso

4.1 Introduction to Computer Organization

When we think of a computer, we tend to focus on its most visible aspects: the A modern Intel
PentiumR© chip can
contain nearly a billion
transistors, each of which
has a specific job to do.
But don’t worry—we
won’t be getting quite
that complicated!

keyboard, display, and mouse. But what goes on inside the box? How does the
computer do all those fancy things? Recursion, for example, seems like magic—is the
computer actually a magical device?

In this chapter, we’ll be looking at computer organization: the techniques used
to turn rivers of electrons into useful computation. We’ll work from the ground up,
starting with a look at how to represent information electronically, moving on to
computational circuits, using those circuits to build a full-blown computer and, finally, All right, a

“partially-blown”
computer

program that computer in its own native language. Ultimately, we’ll see how programs,
including recursive ones, really work. The “magic” will be demystified!

4.2 Representing Information

At the most fundamental level, a computer doesn’t really know math or have any
notion of what it means to compute. Even when a machine adds 1 + 1 to get 2, it
isn’t really dealing with numbers. Instead, it’s manipulating electricity according to
specific rules.

To make those rules produce something that is useful to us, we need to associate
the electrical signals inside the machine with the numbers and symbols that we, as
humans, like to use.

4.2.1 Integers

The obvious way to relate electricity to numbers would be to assign a direct corre-
spondence between voltage (or current) and numbers. For example, we could let zero
volts represent the number 0, 1 volt be 1, 10 volts be 10, and so forth. There was a
time when things were done this way, in so-called analog computers. But there are

63 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

Figure 4.1: A three-way light bulb.

several problems with this approach, not the least of which would be the need to have
a million-volt computer! Instead, we use a simpler system: everything is built up usingThat is a shocking idea!

sequences of zeros and ones. This allows us to use lower voltages and simpler circuitry.In other words, the
current way of doing

things is not revolting.
It is easy to see how, for example, a light could be used to represent the numbers

0 and 1. We can agree ahead of time that when the light is off, it means 0, and when
it’s on, we are representing 1. What about bigger numbers? Well, light switches can
do that as well.

Consider the common “three-way” lamp. Internally, a three-way bulb has twoA three-way lamp really
has four switch

positions: off, and three
increasing brightness

levels.

filaments (Figure 4.1), one dim and one bright. For example, one might be 50 watts,

Watt have light bulbs
got to do with

computing!?

and the other 100. By choosing one, the other, or both, we can get 50, 100, or 150
watts’ worth of light.

This idea can be carried further; for example, a bulb with filaments of 50, 100, and
200 watts could produce any of 0, 50, 100, 150, 200, 250, 300, or 350 watts by choosing
various combinations. These particular seven wattages aren’t all that useful to us, so
we might instead use these values to represent the seven integers 0 through 6. That is,
we could agree that 0 watts represents the number 0, 50 watts represents the numberA bright idea!

1, and so forth.
Internally, a computer uses this same idea to represent integers. Instead of using

50, 100, and 200, as in our illuminating example above, computers use combinations
of numbers that are powers of 2. Let’s imagine that we have a bulb with a 20 watt
filament, a 21 watt filament, and a 22 watt filament. Then we could make 0 watts by
turning none of the filaments on, we could make 1 watt by turning on only the 20 watt
filament, we could make 2 watts by turning on the 21 watt filament, and so forth up
to 20 + 21 + 22 = 7 watts using all three filaments.

Imagine now that we had different powers of 2 to use in constructing our number:
20, 21, 22, 23. In the margin of this book, take a moment to try to write the numbersSorry, we’re using the

margin! Go find a
different place to try

this.

0, 1, 2, and so forth as high as you can go using 0 or 1 of each of these powers of 2.
Stop reading. We’ll wait while you try this.

If all went well, you discovered that you could make all of the integers from 0 to
15 using 0 or 1 of each of these four powers of 2. For example, 13 can be represented
as 20 + 22 + 23. Written another way, this is:

13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Notice that we’ve written the larger powers of 2 on the left and the smaller powers of
two on the right. This convention is useful, as we’ll see shortly. The 0’s and 1’s in
the equation above—the coefficients on the powers of 2—indicate whether or not the

64 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.2. REPRESENTING INFORMATION

particular power of 2 is being used. These 0 and 1 coefficients are called bits, which There are 10 kinds of
people in this world:
Those who understand
binary and those who
don’t.

stands for binary digits. Binary means “using two values”—the 0 and the 1 are the

That’s a bit of an odd
contraction!

two values here.
It’s convenient to use the sequence of bits to represent a number, without explicitly

showing the powers of two. For example, we would use the bit sequence 1101 to
represent the number 13 since that is the order in which the bits appear in the equation
above. Similarly 0011 represents the number 3. We often leave off the leading (that
is, the leftmost) 0’s, so we might just write this as 11 instead.

The representation that we’ve been using here is called base 2 because it is built
on powers of 2. Are other bases possible? Sure! You use base 10 everyday. In base
10, numbers are made out of powers of 10 and rather than just using 0 and 1 as the
coefficients, we use 0 through 9. For example, the sequence 603 really means

6 · 102 + 0 · 101 + 3 · 100

Other bases are also useful. For example, the Yuki Native American tribe lived in
Northern California and used base 8. In base 8 we use powers of 8 and the coefficients
that we use are 0 through 7. So, for example, the sequence 207 in base 8 means

2 · 82 + 0 · 81 + 7 · 80

which is 135 (in base 10). It is believed that the Yukis used base 8 because they
counted using the eight slots between their fingers. In Star Wars, the Hutts

have 8 fingers and
therefore also count in
base 8.

Notice that when we choose some base b (where b is some integer greater than or
equal to 2), the digits that we use as coefficients are 0 through b − 1. Why? It’s not
hard to prove mathematically that when we use this convention every positive integer
between 0 and bd − 1 can be represented using d digits. Moreover, every integer in
this range has a unique representation, which is handy since it avoids the headache of
having multiple representations of the same number. For example, just as 42 has no
other representation in base 10, the number 1101 in base 2 (which we saw a moment
ago is 13 in base 10) has no other representation in base 2.

Many computers use 32 bits to represent a number in base 2. This is called a “32-bit
computer”. Therefore, we can uniquely represent all of the positive integers between
0 and 232 − 1. That’s 4, 294, 967, 295. A computer that uses 64 bits to represent each
number can represent integers up to 264 − 1, which is roughly 18 quadrillion. In case you’re

wondering, that’s BIG!

4.2.2 Arithmetic

Arithmetic in base 2, base 8, or base 42 is analogous to arithmetic in base 10. For
example, let’s consider addition. In base 10, we simply start at the rightmost column Sum fun with addition.

where we add those digits and “carry” to the next column if necessary. For example,
when adding 17 + 25, 5 + 7 = 12 so we write down a 2 in the leftmost position and
carry the 1. That 1 represents a 10 and is therefore propagated to the next column
representing the “10’s place”.

Adding in base 2 is nearly identical. Let’s add 111 (which, you’ll recall is 7 in base
10) and 110 (which is 6 in base 10). We start at the leftmost (or “least significant”)
column and add. That sum is 1. Now we move to the next column. This is the 21

position or “2’s place”. Each of our two numbers has a 1 in this position. 1 + 1 = 2

65 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

but we only use 0’s and 1’s in base 2. This is analogous to adding 7 + 3 in base 10.
Rather than writing a 10 in that case, we write a 0 and carry the 1 to the next column.
Similarly, in base 2, for 1 + 1 we write 0 and carry the 1 to the next column. Do you
see why this works? Having a 2 in the “2’s place” is the same thing as having a 1 in
the “4’s place”. In general, having a 2 in the column corresponding to 2i is the same
as having a 1 in the next column, the one corresponding to 2i+1 since 2 · 2i = 2i+1.We’ll try not to get

carried away with these
examples, but you

should try adding a few
numbers in base 2 to

make sure that it makes
sense to you.

Takeaway message: Addition, subtraction, multiplication, and division in your
favorite base are also analogous to those operations in base 10!

4.2.3 Negative Numbers

Now that we are masters of arithmetic in base 2 (and thus in all bases!), let’s revisit
numbers briefly. In particular, while we know how to represent positive integers, how
about representing negative numbers. One approach might be to reserve one bit to
represent the sign of a number; for example, in a 32-bit computer we might use the
leftmost bit for this purpose: Setting that bit to 0 the number could mean that the
number represented by the remaining 31 bits is positive. If that leftmost bit is a 1
then the remaining number would be considered to be negative. This is called a sign-
magnitude representation. The price we pay is that we lose half of our range (since
we now have only 31 bits, in our example, to represent the magnitude of the number).
While we don’t mean to be too negative here, a bigger problem is that it’s tricky to
build computer circuits to manipulate sign-magnitude numbers. Instead, we use a
system called two’s complement .It’s so clever that it

deserves two
compliments.

The idea behind two’s complement is this: It would be very convenient if the
representation of a number plus the representation of its negation added up to 0. For
example, since 3 added to −3 is 0, it would be nice if the binary representation of 3
plus the binary representation of −3 added up to 0. We already know what the binary
representation of 3 is 11. Let’s imagine that we have an 8-bit computer (rather than
a 32-bit or a 64-bit computer), just to make this example easier. Then, including the
leading 0’s, 3 would be represented as 00000011. Now, how could we represent −3 so
that its representation added to 00000011 would be 0, that is 00000000?

Notice that if we “flip” all of the bits in the representation of 3, we get 11111100.
Moreover, 00000011 + 11111100 = 11111111. If we add one more to this we get
11111111 + 00000001 and when we do the addition with carries we get 10000000; a 1
followed by eight 0’s. If the computer is only using eight bits to represent each number
then that leftmost ninth bit will not be recorded! So, what will be saved is just the
lower eight bits 00000000—which is 0. So, to represent −3, we can simply take the
representation of 3, flip the bits, and then add 1 to that. Try it out to make sure that
you see how this works. In general, the representation of a negative number in the
two’s complement system involves flipping the bits of the positive number and then
adding 1.

4.2.4 Fractional Numbers

Integers are useful for a lot of things, but sometimes we need to work with numbers
fractional parts. For example, it would not be easy to get by without π!Proving that the

expression “as easy as
pi” is a misnomer.

66 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.2. REPRESENTING INFORMATION

One approach (which is often used in video and music players) is to just agree
among ourselves that everything is measured in units of some convenient fraction (just
as our three-way bulb works in units of 50 watts). For example, we might decide that
everything is in units of 0.01, so that the number 100111010 doesn’t represent 314 but
rather represents 3.14.

However, scientific computation often requires both more precision and a wider
range of numbers than this strategy affords. For example, chemists often work with
values as on the order of 1023 or more, while a nuclear physicist might use values as Avogadro’s number is

approximately
6.02× 1023.

small as 10−12 or even smaller.
Imagine that we are operating in base 10 and we have only 8 digits to represent our

numbers. We might use the first 6 digits to represent a number, with the convention
that there is an implicit 0 followed by a decimal point right before the first digit. For
example, the 6 digits 123456 would represent the number 0.123456. Then, the last
two digits could be used to represent the exponent on the power of 10. So, 123345678
would represent 0.123456 · 1078.

Computers use a similar idea to represent fractional numbers except that base 2 is
used in base 10. Moreover, we allow for negative exponents in order to represent very
small numbers. We also allow for the entire number to be negative. An important
detail that is often forgotten (but which we will see again later in this book) is that we
cannot represent all real numbers precisely, not even those in the range from 0 to 1.
The reason is that with a finite number of bits, we can only represent a finite number
of different numbers. However, there are an infinite number of real numbers—even
just in the range from 0 to 1. If you’d like to learn more about fractional numbers
(usually called “floating point”), you can read the Wikipedia article on IEEE floating
point, or visit http://steve.hollasch.net/cgindex/coding/ieeefloat.html.

4.2.5 Letters and Strings

As you know, computers don’t only manipulate numbers; they also work with symbols,
words, and documents. Now that we have ways to represent numbers as bits, we can
use those numbers to represent other symbols.

It’s fairly easy to represent the alphabet numerically; we just need to come to an
agreement on the encoding. For example, we might decide that 1 should mean “A”, 2
should mean “B”, and so forth. Or we could represent “A” with 42 and “B” with 97;
as long as we are working entirely within our own computer system it doesn’t really
matter. But if we want to send a document to a friend, it helps to have agreement.
Long ago, the American National Standards Institute (ANSI) published such an agree-
ment, called ASCII (the American Standard Code for Information Interchange). It
defined encodings for the upper- and lower-case letters, the numbers, and a selected set
of special characters—which, not coincidentally, happen to be precisely the symbols In ASCII, the number 42

represents the asterisk
(*).

printed on the keys of a standard U.S. keyboard.
You can look up the ASCII encoding on the web. Alternatively, you can use the

Python function ord to find the numerical representation of any symbol. For example: “ord” stands for
“ordinal”. You can think
of this as asking for the
“ordering number” of
the symbol

>>> ord(’*’)
42
>>> ord(’9’)

67 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

57

Why is the ordinal value of ’9’ reported as 57? Keep in mind that the 9, in quotes, is
just a character like the asterisk, a letter, or a punctuation symbol. It is appears as
character 57 in the ASCII convention. Incidentally, the inverse of ord is chr. Typing
chr(42) will return an asterisk symbol and chr(57) will return the symbols ’9’.

Each character in ASCII can be represented by 8 bits, a chunk commonly referred
to as a “byte.” Unfortunately, with only 8 bits ASCII can only represent 256 different4 bits are sometimes

called a “nybble”; we
take no responsibility for
this pathetic attempt at

a pun.

symbols. (You might find it entertaining to pause here and write a short program
that counts from 0 to 255 and, for each of these numbers, prints out the ASCII symbol
corresponding to that number. You’ll find that some of the symbols printed are “weird”
or even invisible. Snoop on the web to learn more about why this is so.) It may
seem that 256 symbols is a lot, but it doesn’t provide for accented characters used in
languages like French (Français), let alone the Cyrillic or Sanskrit alphabets or the
many thousands of symbols used in Chinese and Japanese. To cure that oversight,
the International Standards Organization (ISO) eventually devised a system called
Unicode, which can represent every character in every language, with room for futureThere are even unofficial

Unicode symbols for
Klingon!

growth. Because Unicode is somewhat wasteful of space for English documents, ISO
also defined several “Unicode Transformation Formats” (UTF), the most popular of
which is UTF-8 . You may already be using UTF-8 on your computer, but we won’t
go into the gory details here.

Of course, individual letters aren’t very interesting. Humans normally like to string
letters together, and computer scientists do the same. It’s easy to do that with a
sequence of numbers; for example, in ASCII the sequence 99, 104, 111, 99, 111, 108,
97, 116, 101 translates to “chocolate”. The only detail is that when you are given a
long string of numbers, you have to know when to stop; the usual convention is to
include a “length field” at the very beginning of the sequence. This number tells us
how many characters are in the string: for example, 9, 99, 104, 111, 99, 111, 108, 97,
116, 101.

4.2.6 Structured Information

Using the same concepts, we can represent almost any information as a sequence of
numbers. For example, a picture is just a sequence of colored dots, arranged in rows.
Each colored dot (also known as a “picture element” or pixel) can be represented as
three numbers giving the amount of red, green, and blue at that pixel. Similarly, a
sound is a time sequence of “sound pressure levels” in the air. A movie is a more
complex time sequence of single pictures, usually 24 or 30 per second, along with a
matching sound sequence.

In each case, all we need is a convention as to what the numbers represent and how
they should be interpreted by the computer. Complex objects like movies can be built
up from simpler ones like pictures, which in turn are built from even simpler ones like
numbers (which are themselves built from collections of bits). For bulky objects like
movies, we normally use compression algorithms to save space.A two-hour movie at TV

quality contains nearly
160 billion bytes.

68 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.3. LOGIC CIRCUITRY

George Boole

George Boole (1815-1864), an English mathematician, gave us the foundation of com-
putation in two pamphlets called Mathematical Analysis of Logic and Laws of Thought.
Using techniques similar to those in standard algebra, he showed how to symbolically
manipulate two-valued variables (i.e., 0 and 1, or true and false) in a consistent man-
ner. Using his methods, it was possible to engage in logical reasoning by following
simple mathematical principles.
In the mid-1930’s, Claude Shannon (1916-2001) realized that Boole’s ideas could be
applied to the construction of electrical circuits. Shannon recognized that Boole’s 0
and 1 could be represented as a switch being “on” or “off,” and that his mathematics
could be applied to designing circuits that could carry out useful computations.

4.3 Logic Circuitry

Now that we have adopted some conventions on the representation of data it’s time
to build devices that manipulate this data. In other words, it’s time to start building
a computer! We’ll begin with the logic of manipulating 0’s and 1’s, called Boolean
algebra. From there, we’ll build circuits that implement this logic and from there we’ll
build the elements of a real computer.

4.3.1 AND, OR, and NOT

We’ve actually seen the basics of Boolean algebra in Chapter 2 when we talked about
Python’s and, or, and not statements. The essence of Boolean algebra is entirely
captured in these three simple operations. In this chapter, we’ll use the upper-case
AND, OR, and NOT to indicate that we are talking about operations on bits rather We are writing these in

upper-case letters
because we are going to
capitalize on the power
of AND, OR, and NOT!

than Python. Recall that AND is a function that operates on two variables, each of
which can be 1 or 0 (alternatively, true or false). We define x AND y to be 1 if and
only if both x and y are 1, and 0 otherwise.

One way of specifying a Boolean function is with a truth table, which is simply a
listing of all possible combinations of values of the input variables, together with the
result produced by the function. For example, the truth table for AND is:

x y x AND y
0 0 0
0 1 0
1 0 0
1 1 1

In Boolean notation, AND is normally represented as multiplication; an exami-
nation of the above table shows that as long as x and y are either 0 or 1, x AND y
is in fact identical to multiplication. Therefore, we will often write xy to represent
x AND y.

Takeaway message: AND is true if and only if both of its arguments are true. If
either argument is false, AND is false. If x is 0, the result of AND is 0. If x is 1, the
result of AND is y. The same is true for y.

69 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

OR is a two-argument function that is true if either of its arguments are 1. The
truth table for OR is:

x y x OR y
0 0 0
0 1 1
1 0 1
1 1 1

OR is normally written using the plus sign; the first three lines of the above table
are indeed identical to addition, but note that the fourth is different.

Takeaway message: OR is true if either of its arguments is true. It is false if
and only if both arguments are false. If x is 0, the result of OR is y. If x is 1, the
result of OR is 1. The same is true for y.

Finally, NOT is a one-argument function that produces the opposite of its argu-
ment. The truth table is:

x NOT x
0 1
1 0

NOT is normally written using an overbar, e.g. x̄.

4.3.2 Making Other Boolean Functions

Amazingly, any function of Boolean variables, no matter how complex, can be ex-
pressed in terms of AND, OR, and NOT. In this section we’ll show how to do that.
This fundamental result will allow us to build circuits and, ultimately, a computer.

For example, consider a function described by the truth table below. This function
is known as “implication” and is written x⇒ y.

x y x⇒ y
0 0 1
0 1 1
1 0 0
1 1 1

This function can be expressed as x̄+ xy. To see why, try building the truth table
for x̄ + xy. That is, for each of the four possible combinations of x and y, evaluate
x̄+xy. For example, when x = 0 and y = 0, notice that x̄ is 1. Since the OR of 1 and
anything else is always 1, we see that x̄ + xy evaluates to 1 in this case. Aha! This
is exactly the value that we got in the truth table above for x = 0 and y = 0. If you
continue doing this for the next three rows, you’ll see that values of x⇒ y and x̄+ xy
always match. In other words, they are identical. This method of enumerating the
output for each possible input is a fool-proof way of proving that two functions are
identical, even if it is a bit laborious.

For simple Boolean functions, it’s often possible to invent an expression for the
function by just inspecting the truth table. However, it’s not always so easy to do
this—particularly when we have Boolean functions with more than two inputs. So,

70 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.3. LOGIC CIRCUITRY

it would be nice to have a systematic approach for building expressions from truth
tables. The minterm expansion principle provides us with just such an approach.

Let’s see how the minterm expansion principle works through an example. Specif-
ically, let’s try it out for the truth table for the implication function above. Notice
that when the inputs are x = 1 and y = 0, the truth table tells us that the output
is 0. However, for all three of the other rows (that is pairs of inputs), the output is
more “interesting”—it’s 1. We’ll build a custom-made logical expression for each of
these rows with a 1 as the output. First, consider the row x = 0, y = 0. Note that the
expression x̄ȳ evaluates to 1 for this particular pair of inputs because the NOT of 0 is
1 and the AND of 1 and 1 is 1. Moreover, notice that for every other possible pair of
values for x and y this term x̄ȳ evaluates to 0. Do you see why? The only way that
x̄ȳ can evaluate to 1 is for x̄ to be 1 (and thus for x to be 0) and for ȳ to be 1 (since
we are computing the AND here and AND only outputs 1 if both of its inputs are 1).
The term x̄ȳ is called a minterm. You can think of it as being custom-made to make
the inputs x = 0, y = 0 “happy” (evaluate to 1) and does nothing for every other pair Perhaps “minterms”

should be called
“happyterms”.

of inputs.
We’re not done yet! We now want a minterm that is custom-made to evaluate to

1 for the input x = 0, y = 1 and evaluates to 0 for every other pair of input values.
Take a moment to try to write such a minterm. It’s x̄y. This term evaluates to 1 if
and only if x = 0 and y = 1. Similarly, a minterm for x = 1, y = 1 is xy. Now that we
have these minterms, one for each row in the truth table that contains a 1 as output,
what do we do next? Notice that in our example, our function should output a 1 if the
first minterm evaluates to 1 or the second minterm evaluates to 1 or the third minterm
evaluates to 1. Also notice the words “or” in that sentence. We want to OR the values
of these three minterms together. This gives us the expression x̄ȳ + x̄y + xy. This
expression evaluates to 1 for the second, third, and fourth rows of the truth table as it
should. How about the first row, the “uninteresting” case where x = 0, y = 0 should
output 0. Recall that each of the minterms in our expression was custom-made to
make exactly one pattern “happy”. So, none of these terms will make the x = 1, y = 0
“happy” and thus, for that pair of inputs, our newly minted expression outputs a 0 as
it should!

It’s not hard to see that this minterm expansion principle works for every truth
table. Here is the precise description of the process:

1. Write down the truth table for the Boolean function that you are considering.

2. Delete all rows from the truth table where the value of the function is 0.

3. For each each remaining row we will create something called a “minterm” as
follows:

(a) For each variable that has a 1 in that row, write the name of the variable.
If the input variable is 0 in that row, write the variable with a negation
symbol to NOT it. Now AND all of these variables together.

4. Combine all the of the minterms for the rows using OR.

You might have noticed that this general algorithm for converting truth tables to
logic expressions only uses AND, OR, and NOT operations. It uses NOTs and ANDs

71 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

Figure 4.2: An electromagnetic switch.

x y

Figure 4.3: An AND gate constructed with switches .

to construct each minterm and then it uses OR to “glue” these minterms together.
This effectively proves that AND, OR, and NOT suffice to represent any Boolean
function!

The minterm expansion principle is useful because it allows us to construct a logical
expression for any truth table. Notice, however, that it doesn’t necessarily give us the
simplest expression possible. For example, for the implication function, we saw that
the expression x̄+ xy is correct. However, the minterm expansion principle produced
the expression x̄ȳ+x̄y+xy. These expressions are logically equivalent, but the first one
is undeniably shorter. Regrettably, the so-called “minimum equivalent expressions”
problem of finding the shortest expression for a Boolean function is very hard.A Harvey Mudd College

graduate, David
Buchfuhrer, recently

showed that the
minimum equivalent

expressions problem is
provably as hard as some
of the hardest (unsolved)
problems in mathematics

and computer science.
Amazing but true!

As we have seen, the minterm expansion principle doesn’t always produce the
simplest possible expression. However, it is guaranteed to always produce a correct
result, whereas inspecting the truth table and trying to write an expression is hard
and often leads to errors. For that reason, the minterm expansion is a good approach
for creating Boolean expressions. Moreover, the minterm expansion principle is an
algorithm, so it can be implemented on a computer and performed automatically!

Very nice because
computers perform

laborious tasks happily
and quickly.

4.3.3 Logic Using Electrical Circuits

Claude Shannon’s great insight was that it is possible to implement AND, OR, and
NOT using electrical circuits. Let’s imagine that our basic “building block” is an
electromagnetic switch as shown in Figure 4.3.3. When the electrical input x is “low”,
the switch stays open and thus no electrical signal flows from the power source to the
output. When the input on x is “high”, the magnet is activated and the switch closes,
allowing an electrical signal to flow from the power source to the output.

Let’s agree that a “low” electrical signal corresponds to the number 0 and a “high”
electrical signal corresponds to the number 1. Now, let’s build a device for computing
the AND function using switches. We can do this as shown in Figure 4.3. Notice that
when either x or y or both are 0, at least one switch remains open and there is no
electrical signal flowing from the power source to the output. However, when both x
and y are 1 both switches close and there is a signal, that is a 1, flowing to the output.
This is a device for computing x AND y. We call this an AND gate.

Similarly, the circuit in Figure 4.4 computes x OR y and is called an OR gate. The

72 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.3. LOGIC CIRCUITRY

x

y

Figure 4.4: An OR gate constructed with switches.

AND OR NOT

Figure 4.5: Symbols used for AND, OR, and NOT gates.

function NOT x can be implemented by constructing a switch that conducts if and
only x is 0.

While computers based on electromechanical switches were state-of-the-art in the
1930’s, computers today are built with transistorized switches that use the same prin-
ciples principles but are considerably smaller, more reliable, and more efficient. Since
the details of the switches aren’t terribly important to us, we abstract the gates using
symbols as shown in Figure 4.3.3. The symbols for AND

and OR are weird, and
it’s easy to confuse them.

We can now build circuits for any Boolean function! Starting with the truth table,
we use the minterm expansion principle to find an expression for the function. For
example, we used the minterm expansion principle to construct the expression x̄ȳ +
x̄y + xy for the implication function. We can convert this into a circuit using AND,
OR, and NOT gates as shown in Figure 4.6.

4.3.4 Computing With Logic

Now that we know how to implement functions of Boolean variables, let’s look at how
we can do arithmetic. In binary, the numbers from 0 to 3 are represented as 00, 01, 10,
and 11. We can use a simple truth table to describe how to add two two-bit numbers
to get a three-bit result:

Figure 4.6: A circuit for the implication function.

73 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

x y x+ y
00 00 000
00 01 001
00 10 010

...
...

01 10 011
01 11 100

...
...

11 11 110

In all, this truth table contains sixteen rows. But how can we apply the minterm
expansion principle to it? The trick is to view it as three tables, one for each bit of
the output. We can write down the table for the rightmost output bit separately, and
then create a circuit to compute that output bit. Next, we can repeat this process
for the middle output bit. Finally, we can do this one more time for the rightmost
output bit. While this works, it is much more complicated than we would like! If we
use this technique to add two 16-bit numbers, there will be 232 rows in our truth table
resulting in several billion gates.Ouch!

Fortunately, there is a much better way of doing business. Remember that two
numbers are added (in any base) by first adding the digits in the rightmost column.
Then, (we might have to carry to the next column) we add the digits in the next
column and so forth, proceeding from one column to the next, until we’re done. We
can exploit this addition algorithm by building a relatively simple circuit that does
just one column of addition. Such a device is called a full adder , (admittedly a funny
name given that it’s only doing one column of addition!). Then we can “chain” 16 full
adders together to add two 16-bit numbers or chain 64 copies of this device together if
we want to add two 64-bit numbers. The resulting circuit, called a ripple-carry adder ,
will be much simpler and smaller than the first approach that we suggested above.
Moreover, this “modular” approach is elegant. It allows us to design a component of
intermediate complexity (e.g. the full adder) and use that design to design a more
complex device (e.g. a 16-bit adder). This idea is idea of modularity and reuse is
central in computer science.

The full adder takes three inputs: The two digits being added in this column (we’ll
call them x and y) and the carry “in” value that was propagated from the previous
column (we’ll call that cin). There will be two outputs: The sum (we’ll call that s)
and the carry “out” to be propagated to the next column (we’ll call that cout). We
suggest that you pause here and build the truth table for this function. Since there are
three inputs, there will be 23 = 8 rows in the truth table. There will be two columns of
output. Now, treat each of these two output columns as a separate function. Starting
with the first column of output, the sum s, use the minterm expansion principle to
write a logic expression for s. Then, convert this expression into a circuit using AND,
OR, and NOT gates. Then, repeat this process for the second column of output, cout.
Now you have a full adder! Count the gates in this adder—its not a very big number.

Finally, we can represent this full adder abstractly with a box that has the three
inputs on top and the two outputs on the bottom. We now chain these together to
build our ripple-carry adder. A 2-bit ripple-carry adder is shown in Figure 4.7. How

74 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.3. LOGIC CIRCUITRY

FA
zco

x y ci

FA
zco

x y ci

0y0x1 y1 x0

z0z1z2

Figure 4.7: A 2-bit ripple-carry adder. Each box labeled “FA” is a full adder that
accepts two input bits plus a carry, and produces a single output bit along with a
carry into the next FA.

many gates would be used in total for a 16-bit ripple-carry adder? Your answer will
be in the hundreds rather than the billions required in our first approach!

Now that we’ve built a ripple-carry adder, it’s not a big stretch to build up many of
the other kinds of basic features of a computer. For example, consider building a mul-
tiplication circuit. We could do so from scratch using the minterm expansion principle
or we could observe that multiplication involves a number of addition steps. Using the
latter approach, we could use our modular design approach to build a multiplier out of
multiple ripple-carry adders. In any case, using just the minterm expansion principle
and modular design, we can now build virtually of the major parts of a computer.

4.3.5 Memory

There is one important aspect of a computer that we haven’t seen how to design:
memory! A computer can store data and then fetch those data for later use.(“Data” We almost didn’t

remember to talk about
this!

is the plural of “datum”. Therefore, we say “those data” rather than “that data”.)
In this section we’ll see how to build a circuit that stores a single bit (a 0 or 1). This
device is called a latch because it allows us to “lock” a bit and retrieve it later. Once
we’ve built a latch, we can use the principle of modular design to assemble many
latches into a device that stores a lot of data.

A latch can be created from two interconnected NOR gates: NOR is just OR
followed by NOT. That is, it’s truth table is exactly the opposite of the truth table
for OR as shown below.

x y x NOR y
0 0 1
0 1 0
1 0 0
1 1 0

A NOR gate is represented symbolically as an OR gate with a little circle at its output
(representing negation).

75 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

R

S

Q

Q

Figure 4.8: A latch built from two NOR gates.

Now, a latch can be constructed from two NOR gates as shown in Figure 4.8. The
input S is known as “set” while the input R is known as “reset”. The appropriateness
of these names will become evident in a moment.

What in the world is going on in this circuit!? To begin with, suppose that all of
R, S, and Q are 0. Since both Q and S are 0, the output of the bottom NOR gate,
Q̄, is 1. But since Q̄ is 1, the top NOR gate is forced to produce a 0. Thus, the latch
is in a stable state: the fact that Q̄ is 1 holds Q at 0.

Now, consider what happens if we change S (remember, it’s called “set”) to 1,
while holding R at 0. This change forces Q̄ to 0; for a moment, both Q and Q̄ are zero.
But the fact that Q̄ is zero means that both inputs to the top NOR gate are zero,
so its output, Q, must become 1. After that happens, we can return S to 0, and the
latch will remain stable. We can think of the effect of changing S to 1 for a moment
as “setting” the latch to store the value 1. The value is stored at Q. (Q̄ is just used
to make this circuit do its job, but it’s the value of Q that we will be interested in.)

An identical argument will show that R (remember, it’s called “reset”) will cause
Q to return to zero, and thus Q̄ will become 1 again. That is, the value of Q is reset
to 0! This circuit is commonly called the S-R latch.

What happens if both S and R become 1 at the same time? Try out this though
experiment. We’ll pause here and wait for you. Did you notice how this latch will
misbehave? When S and R are both set to 1 (this is trying to set and reset the circuit
simultaneously—very naughty) both Q and Q̄ will become 1. Now, if we let S and R
return back to 0, the inputs to both NOR gates are 0 and their outputs both become 1.
Now each NOR gate gets a 1 back as input and its output becomes 0. In other words,
the NOR gates are rapidly “flickering” between 0 and 1 and not storing anything! In
fact, other weird and unpredictable things can happen if the two NOR gates compute
their outputs at slightly different speeds. Circuit designers have found ways to avoid
this problem by building some “protective” circuitry that ensures that S and R can
never be simultaneously set to 1.

So, a latch is a one-bit memory. If you want to remember a 1, assert S for a moment;
if you want to remember a 0, assert R. If you aggregate 8 latches together, you can
remember an 8-bit byte. If you aggregate millions of bits, organized in groups of 8,
you have the Random Access Memory (RAM) that forms the memory of a computer.We’re sheepish about

making any RAM puns
here since you’ve

probably herd them
already.

76 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.4. BUILDING A COMPLETE COMPUTER

4.4 Building a Complete Computer

Imagine that you’ve been elected treasurer of your school’s unicycling club and its
time to do the books. You have a large notebook with all of the club’s finances. As “Balancing” the club’s

budget?! OK, OK, wheel
make no more unicycle
jokes!

you work, you copy a few numbers from the binder onto a scratch sheet, do some
computations using a calculator, and jot those results down on your scratch sheet.
Occasionally, you might copy some of those results back into the big notebook to save
for the future and then jot some more numbers from the notebook onto your scratch
sheet.

A modern computer operates on the same principle. Your calculator and the scratch
sheet correspond to the central processing unit (CPU) of the computer. The CPU is
where computation is performed but there’s not enough memory there to store all
of the data that you will need. The big notebook corresponds to the computer’s
memory. These two parts of the computer are physically separate components that
are connected by wires on your computer’s circuit board. See! We “spoke” the

truth; no unicycle jokes.What’s in the CPU? There are devices like ripple-carry adders, multipliers, and
their ilk for doing arithmetic. These devices can all be built using the concepts that
we saw earlier in this chapter, namely the minterm expansion principle and modular
design. The CPU also has a small amount of memory, corresponding to the scratch
sheet. This memory comprises a small number of registers where we can store data.
These registers could be built out of latches or other related devices. Computers
typically have on the order of 16 to 32 of these registers, each of which can store 32
or 64 bits. All of the CPU’s arithmetic is done using values in the registers. That is,
the adders, multipliers, and so forth expect to get their inputs from registers and to
save the results to a register, just as you would expect to use your scratch pad for the
input and output of your computations. We’re sticking to our

promise not to “tire” you
with unicycle jokes.

The memory, corresponding to the big notebook, can store a lot of data—probably
billions of bits! When the CPU needs data that is not currently stored in a register
(scratch pad), it requests that data from memory. Similarly, when the CPU needs to
store the contents of a register (perhaps because it needs to use that register to store
some other values), it can ship it off to be stored in memory.

What’s the point of having separate registers and memory? Why not just have all
the memory in the CPU? The answer is multifaceted, but here is part of it: The CPU
needs to be small in order to be fast. Transmitting a bit of data along a millimeter of
wire slows the computer down considerably! On the other hand, the memory needs to
be large in order to store lots of data. Putting a large memory in the CPU would make
the CPU slow. In addition, there are other considerations that necessitate separating Memory is slow. If the

CPU can read from or
write to a register in one
unit of time, it will take
approximately 100 units
of time to read from or
write to memory!

the CPU from the memory. For example, CPUs are built using different (and generally
much more expensive) manufacturing processes than memories.

Now, let’s complicate the picture slightly. Imagine that the process of balancing
the unicycle club’s budget is complicated. The steps required to do the finances involve
making decisions along the way (e.g. “If we spent more than $500 on unicycle seats
this year, we are eligible for a rebate.”) and other complications. So, there is a long
sequence of instructions that is written in the first few pages of our club notebook.
This set of instructions is a program! Since the program is too long and complicated
for you to remember, you copy the instructions one-by-one from the notebook onto
your scratch sheet. You follow that instruction, which might tell you, for example, to

77 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

John von Neumann (1903–1957)

One of the great pioneers of computing was John von Neumann (pronounced “NOY-
mahn”), a Hungarian-born mathematician who contributed to fields as diverse as set
theory and nuclear physics. He invented the Monte Carlo method (which we used to
calculate π in Section 1.1.1), cellular automata, the merge sort method for sorting,
and of course the von Neumann architecture for computers.
Although von Neumann was famous for wearing a three-piece suit everywhere—
including on a mule trip in the Grand Canyon and even on the tennis court—he was
not a boring person. His parties were always popular (although he sometimes sneaked
away from his guests to work) and he loved to quote from his voluminous memory of
off-color limericks. Despite his brilliance, he was a notoriously bad driver, which might
explain why he bought a new car every year.
Von Neumann died of cancer, perhaps caused by radiation from atomic-bomb tests.
But his legacy lives on in every computer built today.

add some numbers and store them some place. Then, you fetch the next instruction
from the notebook.

How do you remember which instruction to fetch next and how do you remember
the instruction itself? The CPU of a computer has two special registers just for this
purpose. A register called the program counter keeps track of the location in memory
where it will find the next instruction. That instruction is then fetched from memory
and stored in a special register called the instruction register . The computer examines
the contents of the instruction register, executes that instruction, and then increments
the program counter so that it will now fetch the next instruction.

This way of organizing computation was invented by the famous mathematician
and physicist, Dr. John von Neumann and is known as the von Neumann architecture.One of von Neumann’s

colleagues was
Dr. Claude Shannon—we
mentioned him earlier in
this chapter in our aside

about George Boole.
Shannon, it turns out,

was a very good
unicyclist.

While computers differ in all kinds of ways, they all use this fundamental principle.
In the next subsection we’ll look more closely at how this principle is used in a real
computer.

4.4.1 The von Neumann Architecture

We mentioned that the computer’s memory stores both instructions and data. We
know that data can be encoded as numbers and numbers can be encoded in binary.
But what about the instructions? Good news! Instructions too can be stored as
numbers by simply adopting some convention that maps instructions to numbers.

For example, let’s assume that our computer is based on 8-bit numbers and let’s
assume that our computer only has four instructions: add, subtract, multiply, and
divide. (That’s very few instructions, but let’s start there for now and then expand
later). Each of these instructions will need a number, called an operation code (or
opcode), to represent it. Since there are four opcodes, we’ll need four numbers, which
means two bits per number. For example, we might choose the following opcodes for
our instructions:

78 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.4. BUILDING A COMPLETE COMPUTER

Operation Meaning
00 Add
01 Subtract
10 Multiply
11 Divide

Next, let’s assume that our computer has four registers number 0 through 3. Imag- Computer scientists
often start counting from
0.

ine that we want to add two numbers. We must specify the two registers whose values
we wish to add and the register where we wish to store the result. If we want to add
the contents of register 2 with the contents of register 0 and store the result in register
2, we could adopt the convention that we’ll write “add 2, 0, 2”. The first two numbers
are the registers where we’ll get our input and the third number is the register where
we’ll store our result. In binary, “add 2, 0, 2” would be represented as “00 10 00
10”. We’ve added the spaces to help you see the numbers 00 (indicating “add”), 10
(indicating register 2 as the first register that we will add), 00 (indicating register 0 as
the second register that we will add), and 10 (indicating register 2 as the destination
where we will store the result).

In general, we can establish the convention that an instruction will be encoded
using 8 bits as follows: The first two bits (which we’ll call I0 and I1) represent the
instruction, the next two bits (S0 and S1) will encode the register containing the
first input to our instruction, the next two bits (T0 and T1) will encode the register
containing the second input to our instruction, and the last two bits (D0 and D1) will
encode the destination register where we will save the result of our instruction. This
representation is shown below.

I0 I1 S0 S1 T0 T1 D0 D1

Recall that we assume that our computer is based on 8-bit numbers. That is,
each register stores 8-bits and each number in memory is 8-bits long. Figure 4.9 shows
what our computer might look like. Notice the program counter at the top of the CPU.
Recall that this register contains a number that tells us where in memory to fetch the
next instruction. At the moment, this program counter is 00000000, indicating address
0 in memory.

The computer begins by going to this memory location and fetching the data that
resides there. Now look at the memory, shown on the left side of the figure. The
memory addresses are given both in binary (base 2) and in base 10. Memory location
0 contains the data 00100010. This 8-bit sequence is now brought into the CPU and
stored in the instruction register. The CPU’s logic gates decode this instruction. The
leading 00 indicates its an addition instruction. the following 10 and 00 indicate that
we need to get the data stored in registers 2 and 0, respectively. These values are
then sent to the CPU’s ripple-carry adder where they are added. The final 10 in the
instruction register indicate that the result of the addition should be stored in register
2. Since registers 0 and 2 contain 00000101 and 00001010, respectively, before the
operation, after the operation register 2 will contain the value 00001111.

In general, our computer operates by repeatedly performing the following proce-
dure:

1. Send the address in the program counter (commonly called the PC) to the
memory, asking it to read that location.

79 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

Program Counter 00000000
Instruction Register 00000000

Register 0 00000101
Register 1 00000000
Register 2 00001010
Register 3 00000000

Location Contents
(Binary) (Base 10)
00000000 0 00100010
00000001 1 00011010
00000010 2 10001100
00000011 3

. . .
11111111 255

Central Processing Unit (CPU) Memory

Figure 4.9: A computer with instructions stored in memory. The program counter
tells the calculator where to get the next instruction.

2. Load the value from memory into the instruction register.

3. Decode the instruction register to determine what instruction to execute and
which registers to use.

4. Execute the requested instruction. This step often involves reading operands
from registers, performing arithmetic, and sending the results back to the desti-
nation register. Doing so usually involves several sub-steps.

5. Increment the PC so that it contains the address of the next instruction in
memory. (It is this step that gives the PC its name, because it counts its way
through the addresses in the program.)

“Wait!” we here you scream. “The memory is storing both instructions and data!
How can it tell which is which?!” That’s a great question and we’re glad you asked.
The truth is that the computer can’t tell which is which. If we’re not careful, the
computer might fetch something from memory into its instruction register and try
to execute it when, in fact, that 8-bit number represents the number of pizzas that
the unicycle club purchased and not an instruction! One way to deal with this is to
have an additional special instruction called “halt” that tells the computer to stop
fetching instructions. In the next subsections we’ll expand our computer to have more
instructions (including “halt”) and more registers and we’ll write some real programs
in the language of the computer.

Takeaway message: A computer uses a simple process of repeatedly fetching its
next instruction from memory, decoding that instruction, executing that instruction,
and incrementing the program counter. All of these steps are implemented with digital
circuits that, ultimately, can be built using the processes that we’ve described earlier in
this chapter.

80 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.5. HMMM. . .

4.5 Hmmm. . .

The computer we discussed in Section 4.4 is simple to understand, but its simplicity
means it’s not very useful. In particular, a real computer also needs (at a minimum)
ways to:

• Move information between the registers and a large memory,

• Get data from the outside world,

• Print results, and

• Make decisions.

To illustrate how these features can be included, we have designed the Harvey Mudd
Miniature Machine, or Hmmm. Just like our earlier 4-instruction computer, Hmmm
has a program counter, an instruction register, a set of data registers, and a memory.
These are organized as follows:

• While our simple computer used 8-bit instructions, in Hmmm, both instructions
and data are 16 bits wide. That allows us to represent a reasonable range of Different computers have

different word sizes.
Most machines sold
today use 64-bit words;
older ones use 32 bits.
16-bit, 8-bit, and even
4-bit computers are still
used for special
applications. Your
digital watch probably
contains a 4-bit
computer.

numbers, and lets the instructions be more complicated.

• In addition to the program counter and instruction register, Hmmm has 16 regis-
ters, named R0 through R15. R0 is special: it always contains zero, and anything
you try to store there is thrown away.

• Hmmm’s memory contains 256 locations. Although the memory can be used for
either instructions or data, programs are prevented from reading or writing the
instruction section of memory. (Some modern computers offer a similar feature.)

Since the Hmmm instruction format has quite a few instructions, it’s inconvenient Hmmm’s instruction set
is large, but not
hmmmungous.

to try to program Hmmm by writing down the bits corresponding to the instructions.
Instead, we will use assembly language, which is a programming language where each
machine instruction receives a friendlier symbolic representation. For example, to
compute R3 = R1 + R2, we would write:

add r3, r1, r2

A very simple process is used to convert this mnemonic assembly language into the Is there a good
mnemonic for
remembering how to
spell “mnemonic”?

0’s and 1’s—the “machine language”—that the computer actually understands.
A complete list of Hmmm instructions, including their binary encoding, is given in

Figure 4.10 on page 93.

4.5.1 A Simple Hmmm Program

To begin with, let’s look at a program that will calculate the approximate area of
a triangle. It’s admittedly mundane, but it will illustrate several important features
of Hmmm. (We suggest that you follow along by downloading Hmmm from http: Not the least of which is

that writing even a short
program in assembly
language can be a
hmmmbling experience!

//www.cs.hmc.edu/hmmm and trying these examples out with us.)
Let’s begin by using our favorite editor to create a file named triangle1.hmmm

with the following contents:

81 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

#
Calculate the approximate area of a triangle.
#
First input: base
Second input: height
Output: area
#

0 read r1 # Get base
1 read r2 # Get height
2 mul r1 r1 r2 # b times h into r1
3 loadn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 halt

How Does It Work?

What does all of this mean? First, anything starting with a pound sign (“#”) is a
comment; Hmmm ignores it. Second, you’ll note that each line is numbered, starting
with zero. This number indicates the memory location where the instruction will be
stored.

You may have also noticed that this program doesn’t use any commas, unlike the
example add instruction on page 81. Hmmm is very lenient about notation; all of the
following instructions mean exactly the same thing:

add r1,r2,r3
ADD R1 R2 R3
ADD R1,r2, R3
aDd R1,,R2, ,R3

Needless to say, we don’t recommend the last two options!
So what do all of these lines actually do? The first two (0 and 1) read in the base

and height of the triangle. When Hmmm executes a read instruction, it pauses and
prompts the user to enter a number, converts the user’s number into binary, and stores
it into the named register. So the first-typed number will go into register R1, and the
second into R2.

The MULtiply instruction then finds b × h by calculating R1 = R1 × R2. This
instruction illustrates three important principles of Hmmm programming:

1. Most arithmetic instructions accept three registers: two sources and a destina-
tion.

2. The destination register is always listed first, so that the instruction can be read
somewhat like a Python assignment statement.

3. The source and destination can be the same.

After multiplying, we need to divide b×h by 2. But where can we get the constant
2? One option would be to ask the user to provide it via a read instruction, but that

82 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.5. HMMM. . .

seems clumsy. Instead, a special instruction, loadn (load number), lets us insert a
small constant into a register. (“Load” usually means “grab something and put it in
a register”; the converse is to “store” the contents of a register into memory.) As with
mul, the destination is given first; this is equivalent to the Python statement R2 = 2.

The DIVide instruction finishes the calculation, and write displays the result on
the screen. There is one thing left to do, though: after the write is finished, the
computer will happily try to execute the instruction at the following memory location.
Since there isn’t a valid instruction there, it will crash. So we need to tell it to halt
after it’s done with its work.

That’s it! But will our program work correctly? It would be hmmmurous
if we got this wrong.

Trying It Out

We can assemble the program by running hmmmAssembler.py from the command line:1
User-typed input is shown in blue and the prompt is shown using the symbol %. The
prompt on your computer may look different.

% ./hmmmAssembler.py

Enter input file name: triangle1.hmmm

Enter output file name: triangle1.hb

| ASSEMBLY SUCCESSFUL |

0 : 0000 0001 0000 0001 0 read r1 # Get base

1 : 0000 0010 0000 0001 1 read r2 # Get height

2 : 1000 0001 0001 0010 2 mul r1 r1 r2 # b times h into r1

3 : 0001 0010 0000 0010 3 loadn r2 2

4 : 1001 0001 0001 0010 4 div r1 r1 r2 # Divide by 2

5 : 0000 0001 0000 0010 5 write r1

6 : 0000 0000 0000 0000 6 halt

If you have errors in the program, hmmmAssembler.py will tell you; otherwise it
will produce the output file triangle1.hb (“hb” stands for “Hmmm binary”). We can
then test our program by running the Hmmm simulator:

% ./hmmmSimulator.py
Enter binary input file name: triangle1.hb
Enter debugging mode? n
Enter number: 4
Enter number: 5
10
% ./hmmmSimulator.py
Enter binary input file name: triangle1.hb
Enter debugging mode? n
Enter number: 5

1On Windows, you can navigate to the command line from the Start menu. On a Macintosh,
bring up the Terminal application, which lives in Applications/Utilities. On Linux, most GUIs offer
a similar terminal application in their main menu. The example above was run on Linux.

83 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

Enter number: 5
12

We can see that the program produced the correct answer for the first test case, but
not for the second. That’s because Hmmm only works with integers; division rounds
fractional values down to the next smaller integer just as it does in Python.

4.5.2 Looping

If you want to calculate the areas of a lot of triangles, it’s a nuisance to have to
run the program over and over. Hmmm offers a solution in the unconditional jump
instruction, which says “instead of executing the next sequential instruction, start
reading instructions beginning at address n.” If we simply replace the halt with a
jump:

#
Calculate the approximate areas of many triangles.
#
First input: base
Second input: height
Output: area
#

0 read r1 # Get base
1 read r2 # Get height
2 mul r1 r1 r2 # b times h into r1
3 loadn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 jump 0

then our program will calculate triangle areas forever.
What’s that jump 0 instruction doing? The short explanation is that it’s telling the

computer to jump back to location 0 and continue executing the program there. The
better explanation is that this instruction simply puts the number 0 in the program
counter. Remember, the computer mindlessly checks its program counter to determine
where to fetch its next instruction from memory. By placing a 0 in the program counter,
we are ensuring that the next time the computer goes to fetch an instruction it will
fetch it from memory location 0.

Since there will come a time when we want to stop, we can force the program to
end by holding down the Ctrl (“Control”) key and typing C (this is commonly written
“Ctrl-C” or just “^C”):

% ./hmmmSimulator.py
Enter binary input file name: triangle2.hb
Enter debugging mode? n
Enter number: 4
Enter number: 5

84 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.5. HMMM. . .

10
Enter number: 5
Enter number: 5
12
Enter number: ^C

Interrupted by user, halting program execution...

That works, but it produces a somewhat ugly message at the end. A nicer approach
might be to automatically halt if the user inputs a zero for either the base or the height.
We can do that with a conditional jump instruction, which works like jump if some
condition is true, and otherwise does nothing.

There are several varieties of conditional jump statements and the one we’ll use
here is called jeqz which is pronounced “jump if equal to zero”. This conditional
jump takes a register and a number as input. If the specified register contains the
value zero then the we will jump to the instruction specified by the number in the
second argument. That is, if the register contains zero then we will place the number
in the second argument in the program counter so that the computer will continue
computing using that number as its next instruction.

#
Calculate the approximate areas of many triangles.
Stop when a base or height of zero is given.
#
First input: base
Second input: height
Output: area
#

0 read r1 # Get base
1 jeqz r1 9 # Jump to halt if base is zero
2 read r2 # Get height
3 jeqz r2 9 # Jump to halt if height is zero
4 mul r1 r1 r2 # b times h into r1
5 loadn r2 2
6 div r1 r1 r2 # Divide by 2
7 write r1
8 jump 0
9 halt

Now, our program behaves politely:

% ./hmmmSimulator.py
Enter binary input file name: triangle3.hb
Enter debugging mode? n
Enter number: 4
Enter number: 5
10

85 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

Enter number: 5
Enter number: 5
12
Enter number: 0

The nice thing about conditional jumps is that you aren’t limited to just termi-
nating loops; you can also use them to make decisions. For example, you should now
be able to write a Hmmm program that prints the absolute value of a number. The
other conditional jump statements in Hmmm are included in the listing of all Hmmm
instructions at the end of this chapter.

4.5.3 Functions

Here is a program that computes factorials:

#
Calculate N factorial.
#
Input: N
Output: N!
#
Register usage:
#
r1 N
r2 Running product
#

0 read r1 # Get N
1 loadn r2,1
2 jeqz r1,6 # Quit if N has reached zero
3 mul r2,r1,r2 # Update product
4 addn r1,-1 # Decrement N
5 jump 2 # Back for more

6 write r2
7 halt

(If you give this program a negative number, it will crash unpleasantly; how could you
fix that problem?) The addn instruction at line 4 simply adds a constant to a register,
replacing its contents with the result. We could achieve the same effect by using loadn
and a normal add, but computer programs add constants so frequently that Hmmm
provides a special instruction to make the job easier.

But suppose you need to write a program that computes (nk) = n!
k!(n−k)! . Since we

need to compute three different factorials, we would like to avoid having to copy the
above loop three different times. Instead, we’d prefer to have a function that computes
factorials, just like Python has.

Creating a function is just a bit tricky. It can’t read its input from the user, and
it must return the value that it computed to whatever code called that function.

86 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.5. HMMM. . .

It’s convenient to adopt a few simple conventions to make this all work smoothly.
One such convention is to decide on special registers to be used for parameter passing ,
i.e., getting information into and out of a function. For example, we could decide that
r1 will contain n when the factorial function starts, and r2 will contain the result. (As
we’ll see later, this approach is problematic in the general case, but it’s adequate for
now.)

Our new program, with the factorial function built in, is:

#
Calculate C(n,k) = n!/k!(n-k)!.
#
First input: N
Second input: K
Output: C(N,K)
#
Register usage:
#
r1 Input to factorial function
r2 r1 factorial
r3 N
r4 K
r5 C(N,K)
#
Factorial function starts at address 15
#

0 read r3 # Get N
1 read r4 # Get K

2 mov r1,r3 # Calculate N!
3 call r14,15 # ...
4 mov r5,r2 # Save N! as C(N,K)

5 mov r1,r4 # Calculate K!
6 call r14,15 # ...
7 div r5,r5,r2 # N!/K!

8 sub r1,r3,r4 # Calculate (N-K)!
9 call r14,15 # ...
10 div r5,r5,r2 # C(N,K)

11 write r5 # Write answer
12 halt

13 nop # Waste some space
14 nop

87 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

Factorial function. N is in R1.
Return address is in R14.
15 loadn r2,1 # Initial product
16 jeqz r1,20 # Quit if N has reached zero
17 mul r2,r1,r2 # Update product
18 addn r1,-1 # Decrement N
19 jump 16 # Back for more

20 jumpi r14 # Done; return to caller

As you can see, the program introduces a number of new instructions. The simplest
is nop, the no-operation instruction, at lines 13 and 14. When executed, it does
absolutely nothing.

Why would we want such an instruction? If you’ve already written some small
Hmmm programs, you’ve probably discovered the inconvenience of renumbering lines.One of the hmmmdingers

of programming in
assembly language!

By including a few nops as padding, we make it easy to insert a new instruction in the
sequence from 0-15 without having to change where the factorial function begins.

Far more interesting is the call instruction, which appears at lines 3, 6, and 9.
Call partly works just like jump: it causes Hmmm to start executing instructions at
a given address, in this case 15. But if we had just used a jump, after the factorial
function calculated its result, it wouldn’t know whether to jump back to line 4, line 7,
or line 10! To solve the problem, the call uses register R14 to save the address of the
instruction immediately following the call.2

We’re not done, though: the factorial function itself faces the other end of the same
dilemma. R14 contains 4, 7, or 10, but it would be clumsy to write code equivalent
to “If R14 is 4, jump to 4; otherwise if R14 is 7, jump to 7; . . . ” Instead, the jumpi
(jump indirect) instruction solves the problem neatly, if somewhat confusingly. Rather
than jumping to a fixed address given in the instruction (as is done in line 19), jumpi
goes to a variable address taken from a register. In other words, if R14 is 4, jumpi
will jump to address 4; if it’s 7 it will jump to 7, and so forth.

4.5.4 Recursion

In Chapter 3 we learned to appreciate the power and elegance of recursion. But how
can you do recursion in Hmmm assembly language? There must be a way; after all,
Python implements recursion as a series of machine instructions on your computer.
To understand the secret, we first need to discuss a very cool technique called a stack
.

Stacks

You may recall that in Chapter 2 we talked about stacks (remember those stacks of
lock boxes)? Now we’re going to see precisely how they work.

A stack is something we are all familiar with in the physical world: it’s just a pile
where you can only get at the top thing. Make a tall stack of books; you can only see

2We could have chosen any register except R0 for this purpose, but by convention Hmmm programs
use R14.

88 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.5. HMMM. . .

the cover of the top one, you can’t remove books from the middle (at least not without
risking a collapse!), and you can’t add books anywhere except at the top.

The reason a stack is useful is because it remembers things and gives them back
to you in reverse order. Suppose you’re reading Gone With the Wind and you start
wondering whether it presents the Civil War fairly. You might put GWTW on a stack,
pick up a history book, and start researching. As you’re reading the history book, you
run into an unfamiliar word. You place the history book on the stack and pick up a
dictionary. When you’re done with the dictionary, you return it to the shelf, and the
top of the stack has the history book, right where you left off. After you finish your
research, you put that book aside, and voilá! GWTW is waiting for you.

This technique of putting things aside and then returning to them is precisely what
we need for recursion. To calculate 5!, you need to find 4! for which you need 3! and
so forth. A stack can remember where we were in the calculation of 4! and help us to
return to it later.

To implement a stack on a computer, we need a stack pointer , which is a register
that holds the memory address of the top item on the stack. Traditionally, the stack Again, this is just a

convention.pointer is kept in the highest-numbered register, so on Hmmm we use R15.
Suppose R15 currently contains 102,3 and the stack contains 42 (on top), 56, and

12. Then we would draw the stack like this:

Address Contents
R15 → 102 42

101 56
100 12

To push a value, say 23, onto the stack, we must increment R15 to contain the
address of a new location (103) and then store 23 into that spot in memory. The stack
will now look like:

Address Contents
R15 → 103 23

102 42
101 56
100 12

Later, to pop the top value off, we must ask R15 where the top is4 (103) and recover
the value in that location. Then we decrement R15 so that it points to the new stack
top, location 102. Everything is now back where we started.

The code to push something, say the contents of R4, on the stack looks like this:

addn r15,1 # Point to a new location
storei r4,r15 # Store r4 on the stack

The storei (store indirect) instruction stores the contents of R4 into the memory
location addressed by register 15. In other words, if R15 contains 103, the value in R4
will be copied into memory location 103.

Just as storei can put things onto the stack, loadi will recover them:
3We say that R15 points to location 102.
4We say we follow the pointer in R15.

89 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

loadi r3,r15 # Load r3 from the stack
addn r15,-1 # Point to new top of stack

Important note: in the first example above, the stack pointer is incremented
before the storei; in the second, it is decremented after the loadi. This ordering
is necessary to make the stack work properly; you should be sure you understand it
before proceeding further.

Saving Precious Possessions

When we wrote the (nk) program in Section 4.5.3, we took advantage of our knowledge
of how the factorial function on line 15 worked. In particular, we knew that it only
modified registers R1, R2, and R14, so that we could use R3 and R4 for our own
purposes. In more complex programs, however, it may not possible to partition the
registers so neatly. This is especially true in recursive functions, which by their nature
tend to re-use the same registers that their callers use.

The only to be sure that a called function won’t clobber your data is to save it
somewhere, and the stack is a perfect place to use for that purpose. When writing a
Hmmm program, the convention is that you must save all of your “precious possessions”
before calling a function, and restore them afterwards. Because of how a stack works,
you have to restore things in reverse order.

But what’s a precious possession? The quick answer is that it’s any register that
you plan to use, except R0 and R15. In particular, if you are calling a function from
inside another function, R14 is a precious possession.

Many newcomers to Hmmm try to take shortcuts with stack saving and restoring.
The common mistake is to reason, “I know that I’m calling two functions in a row, soIt’s a common mistake,

but to err is hmmman. it’s silly to restore my precious possessions and save them again right away.” Although
you can get away with that trick in certain situations, it’s very difficult to get it right,
and you are much more likely to cause yourself trouble by trying to save time. We
strongly suggest that you follow the suggested stack discipline rigorously to avoid
problems.

Let’s look at Hmmm program that uses the stack. We’ll use the recursive algorithm
to calculate factorials:

Calculate N factorial, recursively
#
Input: N
Output: N!
#
Register usage:
#
r1 N! (returned by called function
r2 N

0 loadn r15,100 # Initialize stack pointer
1 read r2 # Get N
2 call r14,5 # Recursive function finds N!
3 write r1 # Write result

90 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.5. HMMM. . .

4 halt

Function to compute N factorial recursively
#
Inputs:
#
r2 N
#
Outputs:
#
r1 N!
#
Register usage:
#
r1 N! (from recursive call)
r2 N (for multiplication)

5 jeqz r2,18 # Test for base case (0!)

6 addn r15,1 # Save precious possessions
7 storei r2,r15 # ...
8 addn r15,1 # ...
9 storei r14,r15 # ...

10 addn r2,-1 # Calculate N-1
11 call r14,5 # Call ourselves recursively to get (N-1)!

12 loadi r14,r15 # Recover precious possessions
13 addn r15,-1 # ...
14 loadi r2,r15 # ...
15 addn r15,-1 # ...

16 mul r1,r1,r2 # (N-1)! times N
17 jumpi r14 # Return to caller

Base case: 0! is always 1
18 loadn r1,1
19 jumpi r14 # Return to caller

The main program is quite simple (lines 0–4): we read a number from the user, call
the recursive factorial function, and write the answer to halt.

The factorial function is only a bit more complex. After testing for the base case
of 0!, we save our “precious possessions” in preparation for the recursive call (lines
6–9). But what is precious to us? The function uses registers R1, R2, R14, and R15.
We don’t need to save R15 because it’s the stack pointer, and R1 doesn’t yet have
anything valuable in it. So we only have to save R2 and R14. We follow the stack
discipline, placing R2 on the stack (line 7) and then R14 (line 9).

91 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

After saving our precious possessions, we call ourselves recursively to calculate
(N − 1)! (10–11) and then recover registers R14 (12) and R2 (14) in reverse order,
again following the stack discipline. Then we multiply (N − 1)! by N , and we’re done.

It is worth spending a bit of time studying this example to be sure that you
understand how it operates. Draw the stack on a piece of paper, and work out how
values get pushed onto the stack and popped back off when the program calculates 3!.

4.5.5 The Complete Hmmm Instruction Set

This finishes our discussion of Hmmm. We have covered all of the instructions except
sub, mod, jnez, jgtz, and jltz; we trust that those don’t need separate explanations.Note that sub can be

combined with jltz to
evaluate expressions like

a < b.

For convenience, Figure 4.10 summarizes the entire instruction set, and also gives the
binary encoding of each instruction.

As a final note, you may find it instructive to compare the encodings of certain
pairs of instructions. In particular, what is the difference between add, mov, and nop?
How does call relate to jump? We will leave you with these puzzles as we move on to
imperative programming.

4.5.6 A Few Last Words

What actually happens when we run a program that we’ve written a programming lan-
guage such as Python? Let’s put Python aside for a moment. In some programming
languages (e.g. C++) the entirety of the program is first “compiled” into machine
language (the binary equivalent of assembly language) using a program called a com-
piler . This compiled program looks like the Hmmm code that we’ve written and is
executed on the computer. In other languages (e.g. Python and Java), each line of the
program is translated one-line-at-a-time into machine language by a program called
an interpreter .

What’s the difference between the two approaches? In the compiled approach, the
entire program is converted into machine language before it is executed. The program
runs very fast but if there is an error when the program runs, we probably won’t get
very information from the computer other than seeing that the program “crashed”.
In the interpreted version, the interpreter serves as a sort of “middle-man” between
our program and the computer. The interpreted can examine our instruction before
translating it into machine language. Many bugs can be detected and reported by
the interpreter before the instruction is ever actually executed by the computer. The
“middle-man” slows down the execution of the program but provides an opportunity
to detect potential problems. In any case, ultimately every program that we write
is executed as code in machine language. This machine language code is decoded by
digital circuits that execute the code on other circuits.No more hmmming is

music to my ears! Takeaway message: We’ve now seen how a computer works from the ground up
and how to write complex programs on in the language of the machine!

92 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

4.5. HMMM. . .

Assembly Format Opcode X Y Z Description

halt B 0000 0000 0000 0000 Halt program
read rX B 0000 xxxx 0000 0001 Read user input into reg-

ister rX
write rX B 0000 xxxx 0000 0010 Print the contents of reg-

ister rX on the screen
jumpi rX B 0000 xxxx 0000 0011 Set program counter to

address in rX
loadn rX, n B 0001 xxxx nnnn nnnn Load the small signed con-

stant n into register rX
load rX, n B 0010 xxxx nnnn nnnn Load register rX with

memory word at address n
store rX, n B 0011 xxxx nnnn nnnn Store contents of register

rX into memory word at
address n

loadi rX, rY A 0100 xxxx yyyy 0000 Load register rX from
memory word addressed
by rY: rX = memory[rY]

storei rX, rY A 0100 xxxx yyyy 0001 Store contents of regis-
ter rX into memory word
addressed by rY: mem-
ory[rY] = rX

addn rX, n B 0101 xxxx nnnn nnnn Add the small signed con-
stant n to register rX

add rX, rY, rZ A 0110 xxxx yyyy zzzz Set rX = rY + rZ
mov rX, rY A 0110 xxxx yyyy 0000 Set rX = rY
nop A 0110 0000 0000 0000 Do nothing
sub rX, rY, rZ A 0111 xxxx yyyy zzzz Set rX = rY − rZ
mul rX, rY, rZ A 1000 xxxx yyyy zzzz Set rX = rY * rZ
div rX, rY, rZ A 1001 xxxx yyyy zzzz Set rX = rY / rZ
mod rX, rY, rZ A 1010 xxxx yyyy zzzz Set rX = rY % rZ
jump n B 1011 0000 nnnn nnnn Set program counter to

address n
call rX, n B 1011 xxxx nnnn nnnn Set rX to (next) program

counter, then set program
counter to address n

jeqz rX, n B 1100 xxxx nnnn nnnn If rX = 0 then set program
counter to address n

jnez rX, n B 1101 xxxx nnnn nnnn If rX 6= 0 then set program
counter to address n

jgtz rX, n B 1110 xxxx nnnn nnnn If rX > 0 then set program
counter to address n

jltz rX, n B 1111 xxxx nnnn nnnn If rX < 0 then set program
counter to address n

Figure 4.10: The Hmmm instruction set.

93 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 4. COMPUTER ORGANIZATION

94 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Chapter 5

Imperative Programming

5.1 Motivation: Measuring the Stroop Effect

Imagine you are a student in an introductory psychology class. You have just learned Imagining this is
particularly easy if you
are in an intro psych
class right now.

about the Stroop Effect, a cognitive phenomenon that demonstrates how difficult it
is to ignore the semantics of text when attempting to focus on a property of the text
itself.

If you’re not already familiar with the Stroop Effect, the best way to understand it
is to experience it firsthand. Here’s what you should do. First, look at the strings of
X’s in Figure 5.1 and, as fast as you can, state out loud what color each string of X’s
is. For the most accurate results you should time yourself. Now, look at the words in
Figure 5.2. Again, as fast as you can (without making mistakes), say what color the
text of each word is. Do not read the word itself, rather just say what color its ink is.

You probably found that you could complete the first task must faster than you
could complete the second. At the very least, it was probably harder for you to
complete the second task because you kept wanting to read the words rather than state
their color. If you found that this was indeed the case, then you have just experienced
the Stroop Effect–the tendency of the semantic meaning of words to interfere with
your cognition regardless of how much you try to ignore it.

However, you might also have noticed that this experiment wasn’t very accurate.
You probably didn’t time yourself that precisely, and it certainly didn’t measure up to
the standards for controlled experiments. The psychologists who originally discovered
the Stroop Effect used paper and stopwatches in their experiments. Now, psychologists
rely heavily on computer programs to run their studies.

Figures 5.3–5.6 show an application to measure the Stroop Effect. You can run this
application yourself; it is included with the code samples with this book. Need better
instructions about how to run this application and where to get it. The application
shows a series of string using different colors of text; it then asks the user to enter the
color of the strings as fast as possible. Some of the strings are simply X’s, and others
are color names. When the color names differ from the color of the text in which
they’re displayed, our ability to state their color tends to slow down. The application
assigns a different key to each color, using keys that the user can easily reach on the

95 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

Figure 5.1: Read the color of each line out loud as fast as possible.

96 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.1. MOTIVATION: MEASURING THE STROOP EFFECT

BLACK

RED

YELLOW

RED

YELLOW

BLUE

RED

BLACK

BLACK

RED

BLUE

BLACK

BLUE

RED

YELLOW

BLUE

RED

BLACK

YELLOW

RED

BLUE

Figure 5.2: Read the color of each line out loud as fast as possible.

97 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

The Stroop Effect

History of the Stroop Effect and some interesting things about it. How does one cite
sources in a sidebar?

Figure 5.3: The initial screen of an application to measure the Stroop Effect. Colored
strings will appear in the window that currently contains the word “Test.”

keyboard. When the user has completed both sets of trials, the program outputs the
mean time and standard deviation for each set, e.g.:

textData:

average time: 1.36892001152 seconds; st dev: 0.581104066849 seconds

nonTextData:

average time: 0.845719995499 seconds; st dev: 0.240744437515 seconds

At first you might think, “I could never write this program. That’s way too
advanced!” If these were your thoughts, you’re in for a surprise. In this chapter youEven if you already know

how to write this
program, this chapter

provides new techniques
for doing so simply and

elegantly. . .

will learn all of the tools you need to build this and similar applications.
Before we begin to introduce these conceptual tools, we motivate them by analyzing

what the Stroop Effect program needs to do. As we saw in Chapter 3, the essence of
any computer program is its data: the form of the input, its transformation (through
computation), and the desired output. Take a few moments to think about how you
might design the program demonstrated above. What data do you need to gather and
store? How do you need to process the data? What do you need to produce as output?

Although there are many ways to actually write the program, the essence of the
computation remains the same from one implementation to another. The key compo-
nents that we need to implement this program are:

• The ability to repeat a task (e.g., showing a string to the user) many times.

• The ability to store and manipulate data in different ways (e.g., storing the user’s
responses, the time it took the user to respond, and the mapping between colors
and keystrokes).

98 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.1. MOTIVATION: MEASURING THE STROOP EFFECT

Figure 5.4: The instructions given to the user for the Stroop Test.

Figure 5.5: A trial with X’s.

99 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

Figure 5.6: A trial with a color name.

• The ability to display colored strings to the user

• The ability to gather input from the user

Throughout the rest of this chapter we will learn ways to perform each of the above
tasks.

5.2 Repeated Tasks: Loops

One of the core abilities this program needs to perform a single action (or series of
actions) multiple times. We need to show the user a number of example words and
then collect and store what color they input. The algorithm that performs this data-
collecting part of the experiment looks something like:

• Repeat the following 25 times:

– Display the name of a color in a different color “ink”

– Record the user’s answer and the time that it took the user to respond

– Clear that screen

We could just copy 25 times a piece of code that displays one string and collects the
user’s response. But the program would be long and inflexible: we may want to change
it to 50 trials—or only 10—later on. It would be tedious—and time-consuming—to
manually copy and paste the correct part of the code Furthermore, we might want toIt’s not worth

copying-and-pasting even
if you’ve mastered all of

your editor’s
shortcuts. . .

let the experimenter set the number of trials on the fly, instead of setting it before the
program runs.

We have already seen one way to perform repeated tasks in Chapter 3: recursion.
This chapter presents another way to perform these same repeated tasks: iteration or
loops.

Just as recursion allows a programmer to express self-similarity in a natural way,
loops naturally express sequential repetition. Recursion and loops are equal in their

100 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.2. REPEATED TASKS: LOOPS

computational power: any recursive program can be rewritten using loops (and vice-
versa). Some people have a strong preference for one style over the other, but both
are fundamental tools for solving computational problems!

5.2.1 Recursion vs. Iteration at the Low Level

In chapters 3 and 4 you saw how to write recursive programs (both in Python and in
Hmmm). In fact, in Chapter 4 you also saw how to write iterative programs in Hmmm,
although we didn’t call them that. In this section we will define the difference between
recursion and iteration using familiar Hmmm examples that you have already seen. If you skipped

Chapter 4, no
worries—you might
jumpi to Section 5.2.2.

To illustrate the difference between iteration and recursion at the Hmmm level of
abstraction, consider our factorial program. We’ve already seen a recursive Hmmm
implementation of factorial:

00 read r1 # Read input from the user into r1
01 loadn r15 42 # load the top of the stack (42) into r15
02 call r14 5 # call factorial, return address in r14
03 jump 21 # when factorial returns, skip to the printing
04 nop # skip a line
05 jnez r1 8 # if n is greater than 0, go to line 8
06 loadn r13 1 # else we’re at the base case. Load 1 into r13
07 jumpi r14 # and return it
08 storei r1 r15 # store n on the stack
09 addn r15 1 # increment SP
10 storei r14 r15 # store return address on the stack
11 addn r15 1 # increment SP
12 addn r1 -1 # n = n-1
13 call r14 5 # recursive call to factorial with n-1
14 addn r15 -1 # back from recursive call, decrement SP
15 loadi r14 r15 # restore return address
16 addn r15 -1 # decrement SP
17 loadi r1 r15 # restore n
18 mul r13 r13 r1 # multiply return value from recursive call by n
19 jumpi r14 # return
20 nop # skip a line
21 write r13 # print factorial(n)
22 halt # done

which corresponds to the following python code:

def factorial(n):
if n == 0:

return 1
else

answer = factorial(n - 1)
return n * answer

n = input()

101 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

This figure will be an illustration of the number of n’s on the stack at its deepest value
when recursive fact is called with n=3.

Figure 5.7:

print factorial(n)

Certainly, this program does a set of tasks multiple times—namely it calculates
the factorial of n, then n-1, then n-2, etc.—without us having to write a separate set
of instructions for each of those values that n takes on.

Now consider the alternative Hmmm implementation of factorial that we saw in
Chapter 4. The version below is the iterative implementation of factorial:

00 read r1 # read n from the user
01 loadn r13 1 # load 1 into the return register

(base case return value)
02 jeqz r1 06 # if we are at the base case, jump to the

end
03 mul r13 r13 r1 # else multiply the answer by n
04 addn r1 -1 # and decrement n
05 jump 02 # go back to line 2 and test for base case

again
06 write r13 # we’re done so print the answer
07 halt # and halt

While this version calculates the same factorial function, it does that calculation
in a manner very different from the recursive implementation. First, it does not use
the stack. In the recursive implementation above, the code repeatedly stores values
for n on the stack. As illustrated in Figure 5.7, when the user inputs 3, there are
3 separate values of n (1, 2 and 3) stored on the stack when the code reaches the
base case. However, in the iterative implementation, we simply modify n, without
storing its value on the stack. In effect, we immediately use the current value of n by
multiplying it onto the answer, and then we lose it forever.

Second, the iterative version repeats code differently: the jump instruction on line
5 instructs the Hmmm interpreter to go back to line 2 and repeat the instruction there,
completely forgetting where this jump came from. On the other hand, the “recursive”
version jumps to the top of the factorial program, remembering where it came from,
so that when the factorial program finishes it can continue where it left off.

These two differences are at the heart of iteration. Iteration does not bother with
the stack: it simply modifies the values of its local data to determine when to stop
repeating what it is executing. Instead of recursion, iteration relies on loops, small
blocks of code that execute (potentially) many times without calling the entire function
from the beginning each time.

In the factorial example, lines 2 through 5 form the loop itself— they will repeat
over and over until n becomes equal to 0. Note that the local copy of n is modified—no
value for n is stored on the stack. So once the code changes n’s value, it can never get
the old value back.

102 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.2. REPEATED TASKS: LOOPS

1 data = []

2 for i in [0, 1, 2]:

3 startTime = getTime()

4 showNextWord()

5 answer = getUserAnswer()

6 endTime = getTime()

7 data += [endTime-startTime]

8 print "Congratulations. You're done."

loop header

loop body

Figure 5.8: A for-loop to collect timing data from the user Fix with raw input and a
few more labels. . .

Now that you have seen iteration at the assembly-language level, we show how
Python can do the same thing using for and while loops.

5.2.2 Definite Iteration: for loops

In many cases, we want to repeat a certain computation a specific number of times.
Python’s for-loop expresses this idea. Let’s take a look at how we can use a for-loop
to implement the iteration in the Stroop effect data-collection we motivated above.

To begin, assume the user will respond to only 3 color strings; it will be clear how
to increase the number of examples from there. To make the larger structure clear, we
abstract away details of the timing and string-display into getTime and showNextWord
functions.

1 data = []

2 for i in [0, 1, 2]:
3 startTime = getTime()
4 showNextWord()
5 answer = raw_input()
6 endTime = getTime()
7 data += [endTime-startTime]

8 print "Congratulations. You’re done."

Figure 5.8 shows an annotated for-loop that collects three pieces of data and ac-
cumulates them in the list variable data. This for-loop will repeat its body, lines 3–7,
exactly 3 times. Let’s look closely at how this works. Line 2 above is the header of
the loop, with five required parts:

1. The keyword for

103 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

2. The name of a variable that will control the loop. In our case that variable is
named i. It’s safest to use a new variable name, created just for this for loop,
or one whose old value is no longer needed.

3. The keyword in

4. A sequence such as a list or a string. In our case it is the list [0, 1, 2].

5. A colon, the end of the header and the start of the for-loop body

Lines 3–7 are called the body of the loop. The instructions in the loop body must be
indented consistently within the loop header, just as statements within functions are.
Note that line 8 above is not part of the loop body because it is not indented.

We agree: for-loops look good, but how do they work? The for-loop operates
by taking the control variable (e.g. i above) and sequentially giving it the value of
each element in the list. Every time the control variable gets a new value, all of the
instructions in the loop body are executed, in order. When the bottom of the loop
body is reached, execution jumps (just like an unconditional Hmmm jmp) back to the
top of the loop, and the control variable is assigned the next element in sequence.
When there are no more values remaining in the sequence, the loop ends and Python
continues executing the instructions after the loop body—here, on line 8.

To get a better sense of how this process works, imagine “unrolling” the loop to
view, at once, all of the statements that all of the loop iterations will execute. The
loop is equivalent to with the following code:

data = []

start loop iteration 1
i = 0
startTime = getTime()
showNextWord()
answer = raw_input()
endTime = getTime()
data += [endTime-startTime]

go back to the start of the loop for iteration 2
i = 1
startTime = getTime()
showNextWord()
answer = raw_input()
endTime = getTime()
data += [endTime-startTime]

go back to the start of the loop for iteration 3
i = 2
startTime = getTime()
showNextWord()
answer = raw_input()
endTime = getTime()

104 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.2. REPEATED TASKS: LOOPS

data += [endTime-startTime]

There are no more values in the list for i, so exit the loop
print "Congratulations. You’re done."

So how could we ask the user to respond to four examples instead of three? Easy! Four fors!

We could modify the loop header to be:

for i in [0, 1, 2, 3]:

What about 25 iterations? Well, we could replace the list [0, 1, 2, 3] with the
list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] but who wants to type
all that? (We certainly didn’t find it very fun!) Instead, we can use the built-in range
function to automatically generate that list:

for i in range(25):
Remember that
range(25) does indeed
generate that 25-element
list from 0 to 24.Another common question is “Does the control variable have to be named i?” The

answer is no. You should avoid using a name that you have already used earlier in
your function—except perhaps another loop index—but otherwise any name is allowed,
though the rules for good variable names still apply.

5.2.3 How is the control variable used?

In the example above, the control variable took on a new value at every iteration
through the loop, but we never actually used the variable in the body of the loop.
Therefore, it didn’t matter what the list of elements in our for loop header was—
these elements were ignored. We could have accomplished the same thing with any
three-element list header:

for i in [’I’, ’love’, ’Spam’]:

or

for i in [42, 42, 42]:

This is perfectly fine for the cases where you want pure repetition, but sometimes
the value of the control variable is important to the ongoing computation. For example,
consider this iterative version of the factorial function. Here we’ve named the control
variable factor to suggest its role:

def factorial(n):
answer_so_far = 1
for factor in range(1, n+1):

answer_so_far = answer_so_far * factor
return answer_so_far

When we call factorial(4), the loop becomes:

for factor in range(1, 5):
answer_so_far = answer_so_far * factor

105 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

What happens here?

• After the first time through the loop answer so far holds the result of its pre-
vious value (1) times the value of factor (1). When the loop completes its first
iteration answer so far will be 1 (i.e. 1*1).

• In the second iteration through the loop answer so far will again be assigned
to hold the product of the previous value of answer so far times factor. Since
factor’s value is now 2, answer so far will equal 1*2, or 2, when this second
loop iteration ends.

• After the third time through the loop, answer so far will be 2*3 or 6, and the
fourth time through answer so far will become 6*4, or 24.

The loop repeats exactly 4 times because range(1, 5) has four elements: [1, 2, 3,
4].

Unrolled, this four-iteration loop created by factorial(4) becomes

factorial function begins
answer_so_far = 1

loop iteration 1
counter = 1
answer_so_far = answer_so_far * factor # answer_so_far will become 1
iteration 2
factor = 2
answer_so_far = answer_so_far * factor # answer_so_far will become 2
iteration 3
factor = 3
answer_so_far = answer_so_far * factor # answer_so_far will become 6
iteration 4
factor = 4
answer_so_far = answer_so_far * factor # answer_so_far will become 24

loop ends, 24 is returned

5.2.4 Accumulating answers

Consider what happened to answer so far throughout the iterations above. It started
with a basic value and it changed each time through the loop, so that when the loop
completed the returned answer-so-far was, in fact, the correct, final answer to the
computation we had been seeking. This technique of accumulation is widespread, and
the variable that approaches the desired result is called an accumulator .

Let’s look at another example. The listDoubler function below returns a new list
in which each element is double the value of its corresponding element in the input
list, L. Which variable is the accumulator here?

def listDoubler(L):
dblList = []

106 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.2. REPEATED TASKS: LOOPS

for elem in L:
dblList += [2*elem]

return dblList

>>> listDoubler([20, 21, 22])
[40, 42, 44]

In this case, the accumulator, dblList, is growing in length one element at a time
instead of one factor at a time as in factorial.

Let’s consider one more example where the loop control variable’s value is impor-
tant to the functionality of a loop. Returning to our Stroop Effect program, let’s write
a loop that calculates the average time difference between the control trials (display-
ing strings of X’s) and the Stroop trials (displaying color words in different colors).
Assume that the data for our trials, averaged over several users, is in two lists, named
controlData and stroopData.

Each element in the list holds the mean time it took a user to respond to the control
or Stroop strings, e.g., for three users the data might be

>>> controlData
[1.77, 2.42, 2.01]
>>> stroopData
[5.02, 4.92, 5.88]

There are many ways to approach this problem of finding the average differences
between corresponding elements in these two lists. Here, to motivate another nuance
of loops, we will

• Repeat the following for each user:

• initialize a variable totalDiff to 0

– find the difference between the control time and the Stroop time
– add this difference to the value of the totalDiff variable

• after the above loop ends, divide totalDiff by the number of trials.

How could we express this in Python? A first instinct might begin as follows:

totalDiff = 0
for time in controlData:

Get the corresponding time out of stroopData...

but we reach a dead-end at this point. We have the element from the controlData
list, but we have no way of getting the corresponding element from the stroopData
list. Can you think of a way to solve this problem—before peeking at the solution
below?

Here’s our next attempt—this time, more successful:

totalDiff = 0
for index in range(len(controlData)):

totalDiff += controlData[index] - stroopData[index]
aveDiff = totalDiff / float(len(controlData))

107 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

We use the range command to force the loop control variable to iterate over the
index of each term the list! With this index we can access the same position in both
lists each time through the loop. Again, the accumulator idiom plays a central role:
totalDiff starts at an appropriate basic value, 0, and the new differences are added
in with each pass through the loop. In this case, additional work (the division) was
needed to obtain the desired average. Note the float cast: this ensures that the
division is floating-point, not integer.

Finally, this code makes a big assumption: it assumes that the lengths of the two
lists are the same. What would happen if controlData were longer than stroopData?
Or vice versa? How might we fix these problems? We leave these questions as food
for thought. . . .or coffee for thought!

5.2.5 Indefinite Iteration: while loops

In all of the examples above, we knew exactly how many times we wanted the loop to
run. However, in many cases, we can’t know how many iterations we need—how long
we run the loop depends on some external factor out of our control.

Let’s continue with our Stroop Effect analyzer. Above we assumed that the exper-
iment would run for a specific number of trials. But what if the user gets the answer
wrong? Should we count that trial, or ask the user to try again?

It seems clear that we shouldn’t simply count that trial as correct, since if we did
the user could “fool” the system by simply pressing the same button for every trial.
We could simply ignore wrong answers, but then we would almost certainly end up
with a different number of trials for each user of the program.

A reasonable approach is to throw out trials in which the user answers incorrectly.
That way, we end up with a predetermined number of correct trials. Yet the user will
need to respond to an indefinite number of color-string prompts, since neither we nor
the user knows in advance how many incorrect answers will occur.

For-loops always run a definite number of times, so this situation calls for a different
kind of loop: the while-loop. A while loop runs as long as its boolean condition is true.

Let’s take a look at the structure of a while loop that implements the new desired
behavior for our Stroop Effect program.

numCorrectDesired = 25
numCorrectSoFar = 0
data = []

while numCorrectSoFar < numCorrectDesired:
startTime = getTime()
correctColor = showNextWord()
answer = raw_input()
endTime = getTime()
if isCorrect(answer, correctColor):

data += [endTime-startTime]
numCorrectSoFar = len(data)

print "Congratulations. You’re done."

108 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.2. REPEATED TASKS: LOOPS

The while loop is similar to the for-loop in that it consists of a loop header (line 3)
and a loop body (lines 4–9). The loop header consists of the following three elements,
in order:

1. The keyword while

2. A boolean expression. In our example this expression is numCorrectSoFar <
numCorrectDesired

3. A colon

As with for-loops, the loop body must be indented within the loop header. Thus, the
congratulatory last line in the above example is not inside the loop body.

A while loop will execute as long as the boolean expression in the header evaluates
to True. In this case, the loop will keep repeating as long as the length of the data
array is less than 25. Notice that we’ve introduced a little more functionality to handle
checking the user’s answer. The isCorrect function takes the name of the displayed
color (in correctColor) and the user’s answer to see if user was correct.

We only add elements to the data list if the user’s answer is correct, so the
number of correct elements corresponds to the length of data. This is the line
numCorrectSoFar = len(data), which runs each loop iteration. As long as we don’t
have 25 correct trials, the loop will repeat. After the 25th correct response, the loop
condition evaluates to False, and the loop halts. After the loop halts, any code after
the loop begins to execute—the congratulatory message, in this example.

5.2.6 for loops vs. while loops

Often it’s clear whether a computational problem calls for definite (for) or indefinite
(while) iteration. In other cases you may feel less, well, definite.

It is always possible to use a while-loop to emulate the behavior of a for-loop. For
example, we could express the factorial function with a while-loop as follows:

def factorial(n):
answer = 1
while n > 0:

answer = answer * n
n = n-1

return answer

Here we’ve used answer instead of answer so far with the understanding that answer
will not actually hold the value of the desired answer until the end of the loop—this
is a common style for naming accumulator variables. . . . that saves typing!

Be careful! Sometimes when people try to use a while loop for a situation like this
their code ends up looking like this:

def factorial(n):
answer = 1
while n > 0:

answer = answer * n
return answer

109 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

What happens when you run factorial(5) using the function above? The loop will
run, but it will never stop!

This while loop depends on the fact that n will eventually reach 0, but in the body
of the loop we never change the value of n! Python will happily continue multiplyingand we never get n!

answer * n forever—or at least until you get tired of waiting and hit Ctrl-C to stop
the program.

See if you can spot the error in the following version:

def factorial(n):
answer = 1
while n > 0:

answer = answer * n
n = n-1
return answer

This code will also run forever. But why, when we definitely do decrease n? This bug
is more subtle. Remember that the while loop runs only the code in the body of the
loop before repeating. Because the statement that subtracts 1 from n is not indented,
it is not part of the while-loop’s body. Again, the loop variable does not change within
the loop, and it runs forever.

A loop that never ends is called an infinite loop and it is a common programmingThe Apple Corporation’s
address is One Infinite

Loop, Cupertino, CA
bug. When using a while loop, remember to update your loop-control variable inside
the loop. It’s an advantage of for loops that this updating is done automatically!

5.2.7 Creating infinite loops on purpose

Sometimes infinite loops can come in handy. They’re not actually infinite, but the
idea is that we will stop them when we are “done,” and we don’t have to decide what
“done” means until later in the loop itself.We’re

pro-procrastination! For example, consider a slightly modified version of the Stroop program. This one
counts how many examples the user describes before making a mistake:

numCorrect = 0

while True: # run forever -- or at least as long as needed...
colorChosen = showNextWord()
answer = raw_input()
if isCorrect(answer, colorChosen):

numCorrect += 1
else:

break

print "You got", numCorrect, "correct before you made a mistake."

The body of the else statement contains one instruction: the break instruction.
break will immediately halt the execution of the loop that it appears in, causing the
code to jump to the next line immediately after the loop body. break can be used
in any kind of loop, and its effect is always the same–if the code reaches a break

110 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.2. REPEATED TASKS: LOOPS

statement, Python immediately exits the containing loop and proceeds with the next
line after the loop. If you have one loop inside another loop (a perfectly OK thing to
do, as you’ll see below), the break statement exits only the innermost loop.

You might ask, “Do we really need a break?” After all, the loop above can be Yes!

written with a more informative condition:

numCorrect = 0
mistake = False

while not mistake:
colorChosen = showNextWord()
answer = getUserAnswer()
if isCorrect(answer, colorChosen):

numCorrect += 1
else:

mistake = True

print "You got", numCorrect, "correct before you made a mistake."

Which approach is better? It’s a matter of style. Some prefer the “delayed decision”
approach, writing loops that appear to run too long, only to break out of them from
the inside; others prefer to put all of the conditions directly in the loop header. The
advantage of the latter approach is that the condition helps clarify the context for the
loop.

5.2.8 Iteration is efficient

The heart of imperative programming is the ability to change the value of variables—
one or more accumulators—until a desired result is reached. These in-place changes
can be more efficient, because they save the overhead of recursive function calls. For
example, on our aging iMac, the Python code

counter = 0
while counter < 10000:

counter = counter + 1

ran in 2.6 milliseconds. The “equivalent” recursive program

def increment(value, TIMES):
if TIMES <= 0: return value
return increment(value+1, TIMES-1)

counter = increment(0, 10000)

ran more than an order of magnitude slower, in 38.3 milliseconds.
Why the difference? Both versions evaluate 10,000 boolean tests; both execute

the same 10,000 additions. The difference comes from the overhead of building and
removing the stack frames used to implement the function calls made recursively.

Memory differences are even more dramatic: storing partial results on the stack
can quickly exhaust even today’s huge memory stores. Our recursive version runs out
of memory before it’s able to complete 20,000 nested calls.

111 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

5.2.9 Assignment by reference

The assignment and re-assignment of values to one variable—the accumulator—charac-Should you choose to accept it

terizes imperative programming with loops. All of these assignments are efficient, but
only if the size of the copied data is small! Floating-point values and typical
integers are stored in a small space, often the size of one register, 32 or 64 bits. They
can be copied from place to place rapidly. For example, the assignment operation

suppose x refers to the value 42 right now
y = x

runs extremely fast, probably best measured in nanoseconds, as suggested by the
timings in the previous section.

Lists, on the other hand, can grow very large. Consider this code:

suppose that L holds the value of range(1000042) right now
M = L

This assignment makes L2 refer to a 1,000,042-element list—a potentially expensive
proposition, if it involved 1,000,042 individual integer assignments like the y = x ex-
ample above. What’s more, there’s no guarantee the elements of L aren’t lists them-
selves. . . .

How does Python make both integer and list assignments efficient? It does so
through a simple, single rule for all of its datatypes:

Assignments copy a single reference.

Reference? Recall from Chapter 2 that all Python variables consist of both a
reference, their memory address, and a value, the data that is referred to by that
reference. We typically think only of the value of a variable, but you can also view the
reference with Python’s built-in id function:

>>> x = 42
>>> x # Python will reply with x’s value
42
>>> id(x) # asks for x’s reference (its memory location)
16793500 # this will be different on your machine!

Make a figure with box and arrows
Python makes assignment efficient by only copying the reference, and not the data:

>>> x = 42 # this puts the value 42 in the next memory
slot, 16793500 and then it gives x a copy of that
memory reference

>>> y = x # this copies x’s memory reference into y’s

>>> id(x) # asks for x’s reference (its memory location)
16793500
>>> id(y) # asks for y’s reference (its memory location)
16793500

112 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.2. REPEATED TASKS: LOOPS

Make a figure with box and arrows
As you would expect, changes to x do not affect y:

>>> x = 43 # this puts 43 in the next memory slot, 16793488
>>> id(x)
16793488 # x’s reference has changed
>>> id(y)
16793500 # but y’s has not

Make a figure with box and arrows
Assignment happens the same way, regardless of the datatypes involved: It is possible to

reprogram how
assignment works for
user-defined datatypes,
but this is the default.

>>> L = [42,43] # this will create the list [42,43] and give its
location to L

>>> M = L # give M that reference, as well

>>> L # the values of each are as expected
[42,43]
>>> M
[42,43]

>>> id(L) # asks for L’s reference (its memory location)
538664
>>> id(M) # asks for M’s reference (its memory location)
538664

Make a figure with box and arrows
As with integers, if an assignment is made, one reference is copied :

>>> L = [44] # will create the list [44] and make L refer to it
>>> id(L) # L’s reference has changed
541600
>>> id(M) # but M’s has not
538664

Make a figure with box and arrows
For lists, however, our diagram is drawn to highlight an important difference be-

tween lists and integers: a list refers to the memory location of a collection of poten-
tially many elements, each of which has its own reference to the underlying data! We
use a cloud to emphasize that the whole collection of references is our single list.

Because assignment copies only one memory reference, L and M contain exactly the
same set of references as their elements!

This one-reference rule can have surprising repercussions. Consider this example,
in which x, L[0], and M[0] start out by holding the same reference to the value 42:

>>> x = 42 # to get started
>>> L = [x] # similar to before
>>> M = L # give M that reference, as well

113 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

>>> id(x) # all refer to the same data
16793500
>>> id(L[0])
16793500
>>> id(M[0])
16793500

What happens when we change L[0]?

>>> L[0] = 43 # this will change the reference held by the
"zeroth" element of L

>>> L[0]
43 # not surprising at all
>>> M[0]
43 # aha! L and M contain the SAME REFERENCES
>>> x
42 # x is a distinct reference

Let’s see

>>> id(L[0]) # indeed, the reference of that zeroth element
has changed

16793488
>>> id(M[0]) # but the elements of M are
16793488
>>> id(x) # x is still, happily, the same as before
16793500

5.2.10 Mutable datatypes can be changed using other names!

Note that M[0] has been changed in the above example, even though no assignment
statements involving M[0] were run! Datatypes, such as lists, that allow assignment via
shared references are called mutable. They are mutable, because their components
can mutate “out from under them,” through another reference that points to the sameTwo images

here—mutation can be
good. . . or bad.

component parts.
Datatypes that do not allow changes to a variable’s value—except by direct re-

assignment via the variable’s name—are termed immutable. Integers, floating-point
values, and booleans are examples of immutable types. This isn’t surprising, because
they do not have any accessible component parts that could mutate anyway.Python lets you compute

what bits make up these
datatypes, but you can’t

change—or even
read—the individual bits

themselves.

Types with component parts can also be immutable: for example, strings are an
immutable type. If you try to change a piece of a string, Python will complain:

>>> s = ’immutable’
>>> s[0] = ’ ’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: ’str’ object does not support item assignment

114 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.3. TAKING ADVANTAGE OF MUTABLE DATA: SORTING FOR STROOP

Keep in mind that, mutable or immutable, you can always change the data to
which a variable refers:

>>> s = ’immutable’
>>> s
’immutable’
>>> s = ’mutable’
>>> s
’mutable’

Take-home message

There are a few key ideas to keep in mind:

• All Python variables have both a reference and a value.

• Python assignment copies one reference.

• Mutable types allow assignment to component parts—this enables the value of
a variable to change through other references that share its component parts.

• Immutable types do not allow assignment to component parts—but reassignment
of the whole variable and its reference remains possible.

5.3 Taking advantage of mutable data: Sorting for
Stroop

At the beginning of this chapter we introduced the two key components of imperative
programming: iteration and data mutation. We have already discussed iteration in
some depth. We have seen small examples of how mutable datatypes differ from
immutable ones. In this section we return to our Stroop Effect example in order to
motivate and illustrate a real example of data mutation and iteration together.

Imagine that we have collected data for our trials, and they reside in the lists
controlData and stroopData. Now, we would like to sort these lists from smallest
to largest. This will make the lists easier to analyze, for example, to find the median
result among each dataset.

Sorting is an important topic of study in computer science in its own right. Here
we will discuss one sorting algorithm, but there’s much more to be said on the subject. . . . and Don Knuth has

said a lot of it!To develop our algorithm, we start with small cases: what are the computational
pieces that enable the rearrangement of a list?

A two-element list is the smallest (non-trivial) case to consider: in the worst case,
the two elements would need to swap places with each other.

In fact, this idea of a swap is all we need! Imagine a large list that we’d like sorted
in ascending order.

• First, we could find the smallest element. Then, we could swap that smallest
element with the first element of the list.

115 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

• Next, we would search for the second-smallest element, which is the smallest
element of the rest of the list. Then, we could swap it into place as the second
element of the overall list.

• We continue this swapping so that the third-smallest element takes the third
place in the list, do the same for the fourth, . . . and so on. . . until we run out of
elements.

This algorithm is called MinSort because it proceeds by repeatedly selecting the
minimum remaining element and moving it to the next position in the list. It is one
variety of Selection Sort . MaxSort is another variety; it works by swapping the largest
element remaining in each iteration.

What functions will we need to write MinSort? It seems we need only two:

• index of min(L,starting index), which will return the index of the smallest
element in L, starting from index starting index.

• swap(L,i,j), which will swap the values of L[i] and L[j]

Here is the Python code for this algorithm:

def selectionSort(L):
’’’sorts L iteratively and in-place’’’
for starting_index in range(len(L)):

min_elem_index = index_of_min(L, starting_index)
swap(L, starting_index, min_elem_index)

Here is index of min:

def index_of_min(L, start_index):
’’’returns the index of the min element at or after start_index’’’
min_elem_index = start_index
for i in range(start_index, len(L))

if L[i] < L[min_elem_index]
min_elem_index = i

return min_elem_index

And swap:

def swap(L, i, j):
’’’swaps the values of L[i] and L[j]’’’
tmp = L[i] # store the value of L[i] for a moment
L[i] = L[j] # make L[i] refer to the value of L[j]
L[j] = tmp # make L[j] refer to that stored value

Notice that the code above does not return anything. But when we run it, we see
that it works. After the call to selectionSort, our list is sorted!

>>> stroopData # Assume this list is already populated with data
[1.54, 0.43, 2.22, 2.12, 1.09]
>>> selectionSort(stroopData)
>>> stroopData
[0.43, 1.09, 1.54, 2.12, 2.22]

116 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.3. TAKING ADVANTAGE OF MUTABLE DATA: SORTING FOR STROOP

5.3.1 Why selectionSort works

Why does this code work? What is more, why does it work even though swap does not
have a return statement? There are two key factors.

First, lists are mutable. Thus, two (or more) variables can refer to the same list, and
changing list elements through one variable changes the value of all of the variables.
But where are the two variables referring to the same list? It seems that stroopData
is the only variable referring to the original five-element list in the example above.

This is the second factor: when inputs are passed into functions, the function
parameters are assigned to each input just as if an assignment statement had been
explicitly written, e.g.,

L = stroopData

occurs at the beginning of the call to selectionSort(stroopData).
As a result, as long as L and stroopData refer to the same list, any changes that

are made to L’s elements will affect stroopData’s elements—because L’s elements and
stroopData’s elements are one and the same thing.

The take-home message here is that passing inputs into a function is equivalent
to assigning those inputs to the parameters of that function. Thus, the subtleties of
mutable and immutable datatypes apply, just as they do in ordinary assignment.

The following figure illustrates what is happening before and after the first call to
swap in the above example.

FIGURE
When swap finishes, its variables disappear. But notice that even though swap’s

L, i, j, and tmp are gone, the value of the list has been changed in memory. Because
swap’s L and selectionSort’s L and the original stroopData are all references to
the same collection of mutable elements, the effect of assignment statements on those
elements will be shared among all of these names. After all, they all name the same
list!

5.3.2 A swap of a different sort

Consider a very minor modification to the swap and selectionSort functions that
has a very major impact on the results:

def selectionSort(L):
’’’sorts L iteratively and in-place’’’
for starting_index in range(len(L)):

min_elem_index = index_of_min(L, starting_index)
swap(L[starting_index], L[min_elem_index]) # now elements!

def swap(a, b):
’’’swaps the values of a and b’’’
tmp = a
a = b
b = tmp

The code looks almost the same, but now it does not work!

117 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

>>> stroopData # Assume this list is already populated with data
[1.54, 0.43, 2.22, 2.12, 1.09]
>>> selectionSort(stroopData)
>>> stroopData
[1.54, 0.43, 2.22, 2.12, 1.09]

The variables a and b in swap indeed do get swapped, as the following before-and-
after figure illustrates. But nothing happens to the elements of L or, to say the same
thing, nothing happens to the elements of stroopData.

Figures 42? illustrates what is happening before and after the call to swap
Figure 42?
What happened? This time, swap has only two parameters, a and b, whose refer-

ences are copies of the references of L[start index] and L[min elem index], respec-
tively. Keep in mind Python’s mechanism for assignment:

Assignments make a copy of a single reference.

Thus, when swap runs this time, its assignment statements are working on copies
of references. All of the swapping happens just as specified, so that the values referred
to by a and b are, indeed, reversed. But the references held within selectionSort’s
list L have not changed. Thus, the value of L does not change. Since the value of
stroopData is the value of L, nothing happens.

5.3.3 2D Arrays and Nested Loops

It turns out that you can store more than just numbers in lists: arbitrary data can
be stored. We’ve already seen many examples in Chapter 3 where lists were used to
store strings, numbers, and combinations of those datatypes. Lists of lists are not only
possible, but powerful and common.

In an imperative context, lists are often called arrays, and in this section we exam-
ine another common array structure: arrays that store other arrays, often called 2D
arrays.

The concept behind a 2D array is simple: it is just a list whose elements themselves
are lists. For example, the code

>>> A = [[5,6],[7,8]]

creates a list named A where each of A’s elements is itself a list. Figure 5.9 illustrates
this 2D array graphically.

You can access the individual elements in the 2D array by using nested indices.
For example:

>>> A[0] # Get the first element of A
[5,6]
>>> A[0][0] # Get the first element of A[0]
5
>>> A[1][1] # Get the second element of A[1]
8

118 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.3. TAKING ADVANTAGE OF MUTABLE DATA: SORTING FOR STROOP

list

A

list

list

list

A[0]

A[1]

A[2]

A[2][3]

A[0][0]

1 2 3 4

5 6 7 8

9 10 11 12

Figure 5.9: A graphical depiction of a 2D array. Following our model from above, the
green box is stored in the CPU, and the rest of the data (including the references to
other lists) is stored in memory.

We can also ask questions about A’s height (the number of rows) and its width
(the number of columns):

>>> len(A) # The number of elements (rows) in A
3
>>> len(A[0]) # The number of elements in a list in A (i.e.,

the number of columns)
4

Typically, arrays have equal-length rows, though “jagged” arrays are certainly possible.
This 2d structure turns out to be a very powerful tool for representing data. Re-

turning to our Stroop example, we can immediately see an application: a 2d array
could hold all of the raw timing data from the many trials run by many users. Each
row could represent a single user’s data; each column would represent an individual
trial.

You could then analyze that data, e.g., to find the mean response time for each
user individually:

def findMeans(data):
’’’findMeans(data): returns a list where each element

in the list is the mean for a particular user’s response
time.

input data: a 2D array where each row is data from a
single user

’’’
means = []
for dataset in data:

total = 0.0

119 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

for elem in dataset:
total += elem

means += [total/len(dataset)]
return means

In the above code, the outer loop controls the iteration over the individual users. That
is, the value of datasets is an entire list each iteration of the for loop. The inner loop
then iterates over the elements in an individual user’s data. In other words, elem is
simply a number.

We can also write the above code as follows:

def findMeans(data):

means = []
for user in range(len(data)):

total = 0.0
for datapoint in range(len(data[user])):

total += data[user][datapoint]
means += [total/len(data[user])]

return means

This code does the same thing, but we use the indexed version of the for loop
instead of letting the for loop iterate directly over the elements in the list. Either
construct is fine, but the latter makes the next example more clear.

If we have the user’s data stored as a 2D array, it’s also easy to analyze the data
in the other dimension. For example, we can calculate the average time that all users
took on each individual trial (i.e., the average across users on the first trial, the second
trial, etc):

def meansOfTrials(data):
’’’meansOfTrials(data): returns a list where each element

in the list is the mean for a particular trial across
users.

input data: a 2D array where each row is data from a
single user

’’’
means = []
if len(data) == 0:

return means
for datapoint in range(len(data[0])):

total = 0.0
for user in range(data):

total += data[user][datapoint]
means += [total/len(data)]

return means

Notice that this code is extremely similar to the code above, but we’ve reversed
which loop is on the outside. Now the outer loop iterates over the data points (columns)

120 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.3. TAKING ADVANTAGE OF MUTABLE DATA: SORTING FOR STROOP

and the inner loop iterates over the user. Because the inner loop runs completely
through from beginning to end every time the outer loop runs, the inner loop will sum
over all users for a single data point.

5.3.4 Dictionaries

So far we’ve looked at one mutable datatype: arrays. Of course, there are many
others. In fact, in the next chapter you’ll learn how to create your own mutable data
types. But more on that later. For now we will examine a built-in datatype called a
dictionary that allows us to create mappings between pieces of data.

To motivate the need for a dictionary, let’s once again return to the Stroop Effect
program. During the trials, the user is shown a colored string (either X’s or color
names) and asked to respond with the color of the string. Above we also included a
function that would determine if the user had entered the correct key for the color
that was displayed. We did not write that function, but let’s go ahead and write it
now:

def isCorrect(answer, colorChosen):
’’’Given the user’s answer and the color displayed, return True

if the user entered the correct keystroke for the color.
input: answer: a string representing the key the user pressed

colorChosen: a string (all lower case) representing
the color displayed.

’’’
if colorChosen == ’green’ and answer == ’d’:

return True
if colorChosen == ’red’ and answer == ’f’:

return True
if colorChosen == ’black’ and answer == ’j’:

return True
if colorChosen == ’yellow’ and answer == ’k’:

return True
return False

This function will work, but you might already but uncomfortable with it (and if
you’re not yet, you will be!). First, it seems tedious to have to list each color and key
in a separate if statement (yes, we could combine them all into 1 if statement, but
it would be a LONG if statement). However, the more pressing concern is that the
mapping between colors and keys is hard-coded in this function. In our example, we
arbitrarily chose a mapping between keys and colors to try to make it easy for users to
reach all of the color keys. However, this mapping might not be one we permanently
want to use. What if we change the colors we’re using? Or what if we decide it would
be a better idea to simply map each color to the first letter of its name? We would
have to go into this function and change the mapping by changing the code.

This might not seem like a big deal, but what if we rely on these mappings in other
places too? (For example, the code that displays the instructions to the user certainly
needs to know the mapping from colors to keys to communicate them to the user). If

121 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

one mapping or color changed, we would have to go through and find all of the places
in the code that needed to be changed. This process would be tedious and it’s likely
that we would miss at least one place, leading to hand-to-find errors.

In short, succinct design is important!
What we need is a single place to store this mapping that we can pass around to

all of the functions that need to know about it. This is where the dictionary comes
in handy! A dictionary allows you to create mappings between pieces of (immutable)
data (the keys) and other pieces of (any kind of) data (the values). Here’s an example
of how they work:

>>> d = {} # creates a new empty dictionary
>>> d[’green’] = ’d’ # create an association between

’green’ and ’d’
’green’ is the key and ’d’ is the value

>>> d[’red’] = ’f’ # ditto for ’red’ and ’f’
>>> d # display the mappings currently in

the dictionary
{’green’: ’d’, ’red’: ’f’}
>>> d[’red’] # get the item mapped to ’red’
’f’
>>> d[’f’] # get the item mapped to ’f’. Will

cause an error because mappings are
one-way--’f’ is not a valid key.

Traceback (most recent call last):
File "<pyshell#14>", line 1, in <module>
d[’f’]

KeyError: ’f’
>>> d.has_key(’f’) # Check whether a key is in the

dictionary
False
>>> d.keys() # Get the keys in the dictionary
[’green’, ’red’]
>>> d[1] = ’one’ # keys can be any immutable type
>>> d[1.5] = [3, 5, 7] # values can also be mutable, and

we can mix types in the same
dictionary

>>> d
{1.5: [3, 5, 7], 1: ’one’, ’green’: ’d’, ’red’: ’f’}
>>> d[[1, 2, 3]] = ’one’ # Keys cannot be mutable

Traceback (most recent call last):
File "<pyshell#36>", line 1, in <module>
d[[1, 2, 3]] = ’one’

TypeError: list objects are unhashable
>>> keyMap = {’green’: ’d’, ’red’: ’f’, ’black’:’j’, ’yellow’:’k’}
>>> keyMap # a shorthand way to create a dictionary
{’black’: ’j’, ’green’: ’d’, ’yellow’: ’k’, ’red’: ’f’}

122 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.4. DISPLAYING COLORED STRINGS (RANDOMLY)

The order in which the key-value pairs appear in Python’s output of keyMap represents
its internal representation of the data.

Now let’s look at how adding a dictionary simplifies our Stroop Effect code:

def isCorrect(answer, colorChosen, keyMap):
’’’Given the user’s answer and the color displayed, return True

if the user entered the correct keystroke for the color.
input: answer: a string representing the key the user pressed

colorChosen: a string (all lower case) representing
the color displayed.
keyMap: A dictionary mapping colors to keystrokes.

’’’
return keyMap[colorChosen] == answer

Pretty simple. . . and flexible too!

5.4 Displaying Colored Strings (Randomly)

We’ve almost got all the pieces we need to build our Stroop Effect program. The last
major piece we are missing is the ability to display colored strings to the user.

There are many ways to accomplish this task. In this section we will look at only
one: a graphical package for Python called vPython. vPython is introduced more
thoroughly in the next section. Here we will use it only for its display abilities.

First, to use vPython, we have to include it in our program by placing the following
line at the top of our file:

from visual import *

Now, creating colored strings in vPython is simple. Strings in vPython are called
labels, and to create and display a new label all you have to do is type:

>>> displayLabel = label(text=’Test’, height=24, box=0,
opacity=0, color=color.black)

You will see a new window pop up with a text string in the window that says “Test”.
The label function is similar to, but not the same as functions we’ve seen before.
First, it’s not a “normal” function, but rather a special function called a constructor
that creates a new object . Briefly, objects are simply custom data structures, like lists
and dictionaries, but defined by the user. We’ll talk much more about objects in the
next chapter, so don’t worry too much about their details right now. Second, the
arguments to the label constructor look a bit strange: Why do they involve equals
signs? This is because the label constructor takes a number of optional arguments.
That is, we can choose to pass in these arguments or not. If we don’t pass them in,
Python will simply use a default value for each argument. Because we are not required In fact, the label

constructor takes many
more arguments than we
are passing here, all of
which are set to their
default values.

to include all the arguments to this function, we have to tell Python which value goes
with which argument, hence the equals signs.

Unfortunately, the background for the window that pops up is also black by default,
making the text hard to read. To change the background color, we need to use the
line:

123 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

How Color Is Represented on the Computer

A description of how color is represented on the computer.

>>> scene.background = color.white

This syntax probably looks especially funky, but it won’t after you finish the next
chapter. For now all you need to know is that scene is a variable that holds the window
that is created when we first make a new label. It is a global variable, which means
that we can access it from any function. It is automatically created by vPython when
the first object is created (notice that we did not have to set its value). To change the
background color, we set its background property. color.white is a representation of
the color white that is built-in to vPython. vPython also has built-in representations
for other common colors, including black, red, blue, yellow, green, orange, etc.

After the initial setup of the program, we would like to clear the text label from
the screen. In vPython we do this by simply making the label invisible as follows:

>>> displayLabel.visible = False

To display new text strings in different colors, we just use the line above, substi-
tuting the word “Text” for the text we want to display and the color for the color we
would like to use for the text.

The final piece in our puzzle is to somehow randomize the order in which we display
the colored strings. Let’s assume we have a list of colors, e.g.:

>>> listOfColors = [color.red, color.blue, color.black, color.yellow]

and we would like to choose one color randomly from the list. To do this we can use
the random package which is built in to Python. As usual when using a package, we
need to include a line at the top of our file:

from random import *

Then we can use any function that is available in that package. In this case we want
the choice(L) function. This function will choose a member of this list L at random
and return it. To display a string of X’s in a randomly chosen color we could write:

>>> chosenColor = choice(listOfColors)
>>> displayLabel = label(text=’XXXXX’, height=24, box=0, opacity=0,

color=chosenColor)

A side note: it is not ideal to force the user to press Enter after each response.
However, because this requirement is constant in all of our trials, it should not affect
the overall experiment results. There are other ways of collecting user input, which we
will learn about later, that solve this problem.—perhaps vPython’s event-handling?

124 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.5. PUTTING IT ALL TOGETHER: PROGRAM DESIGN

This figure will list the data and computation that the program will perform.

Figure 5.10: Data and computation in the Stroop Effect program

This figure will give variable names and data types for the data listed in the above
figure.

Figure 5.11: Variables in the Stroop Effect program

5.5 Putting It All Together: Program Design

Now that we’ve got all the tools, it’s time to construct the whole Stroop Effect program.
However, as a disclaimer, large scale program design can at times feel more like an
art than a science. There are certainly guiding principles and theories, but you rarely Maybe more science

than art!“just get it right” on your first try, no matter how careful you are. So expect that in
implementing any program of reasonable size, you’ll need to make a couple of revisions.
Think of it like writing a paper—if you like writing papers. CS is at least as creative

and precise as careful
writing; don’t be afraid
of creating—and
redoing—several drafts!

The first step to program design is trying to figure out what data your program is
responsible for and how that data comes into the program (input), gets manipulated
(computation) and is output from the program (output). In fact, this task is so
important that we had you do this at the beginning of the chapter. Figure 5.10 shows
one possible list of the data our program must keep track of and the computation it
must perform.

After identifying the data your program must keep track of, the next step is to
decide what data structures you will use to keep track of this data. Do you need
ints, lists, or dictionaries, or some other structure entirely? Take a moment to choose
variable names and data types for each of the pieces of data listed in Figure 5.10. Our
answers are shown in Figure 5.11.

Finally, now that we have identified our data and the computation that our program
needs to perform, we are ready to start writing functions. We can start with any
function we like–there’s no right order as long as we are able to test each function as
we write it.

5.5.1 A program to quantify the Stroop Effect

Listing 5.1, on the following page, gives a complete solution.

125 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

Listing 5.1: A Stroop-Effect Program

from v i s u a l import ∗
from random import ∗
from time import ∗

def runStroopTest () :
’ ’ ’ runStroopTest () : c o n t r o l s the o v e r a l l e x e c u t i o n

o f the Stroop Test program . ’ ’ ’
NUM TRIALS = 25

nonTextData = []
textData = []

nonTextStr ings = [’ xxxxx ’]
keyMap = { ’ b lue ’ : ’ d ’ , ’ red ’ : ’ f ’ , ’ b lack ’ : ’ j ’ ,

’ ye l low ’ : ’ k ’ }
colorMap = { ’ b lue ’ : c o l o r . blue , ’ red ’ : c o l o r . red ,

’ b lack ’ : c o l o r . black , ’ ye l low ’ : c o l o r . ye l low }

d i sp layLabe l = l a b e l (t ex t=’ Test ’ , he ight =24, box=0,
opac i ty =0, c o l o r=c o l o r . b lack)

scene . background = c o l o r . white

p r i n t I n s t r u c t i o n s (keyMap)

d i sp layLabe l . v i s i b l e = False

textSecond = cho i c e ([True , Fa l se])
i f textSecond :

nonTextData = runTr ia l s (NUM TRIALS, nonTextStrings ,
colorMap , keyMap)

textData = runTr ia l s (NUM TRIALS, keyMap . keys () ,
colorMap , keyMap)

else :
s w i t c h the order to g e t ba lance
textData = runTr ia l s (NUM TRIALS, keyMap . keys () ,

colorMap , keyMap)
nonTextData = runTr ia l s (NUM TRIALS, nonTextStrings ,

colorMap , keyMap)

analyzeAndDisplay ({ ’ nonTextData ’ : nonTextData ,
’ textData ’ : textData })

126 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.5. PUTTING IT ALL TOGETHER: PROGRAM DESIGN

def analyzeAndDisplay (dataSets) :
’ ’ ’ Analyze s e t s o f data p o i n t s

input :
d a t a s e t s : a d i c t i o n a r y mapping from d a t a s e t name

(s t r i n g) to d a t a s e t (l i s t) . ’ ’ ’
Right now t h i s f u n c t i o n s imply p r i n t s the mean and
standard d e v i a t i o n o f each data s e t . However , in the
f u t u r e t h i s cou ld do many more e x c i t i n g t h i n g s l i k e f i t
f u n c t i o n s to the data and p l o t them or a g g r e g a t e data
over many us ers (t h a t might be b e t t e r in a s e p a r a t e
f u n c t i o n) .
for dsname in dataSets . keys () :

print dsname + ” : ”
print ”\ taverage time : ” , ave (dataSets [dsname]) , \

” seconds ; s t dev : ” , s tdev (dataSets [dsname]) , \
” seconds ”

def ave (L) :
’ ’ ’ ave (L) : r e t u r n s the average o f a l i s t o f numbers .

input L : a l i s t o f numbers ’ ’ ’
return sum(L) / f l o a t (l en (L))

def stdev (L) :
’ ’ ’ s t d e v (L) : r e t u r n s the standard d e v i a t i o n o f a l i s t

o f numbers .
input L : a l i s t o f numbers ’ ’ ’

m = ave (L)
t o t a l = 0
for num in L :

t o t a l += (num−m)∗∗2
t o t a l = t o t a l / f l o a t (l en (L)−1)
return math . s q r t (t o t a l)

127 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

def remove (L , item) :
’ ’ ’ remove (L , item) : re turn a l i s t c o n t a i n i n g a l l the

e lements o f L e x c e p t f o r the f i r s t occurence o f item .
Does not change L .

input L : a l i s t
input item : an element t h a t may or may not be in

the l i s t ’ ’ ’
retL = []
found = False
for elem in L :

i f elem == item and not found :
found = True

else :
retL += [elem]

return retL

def p r i n t I n s t r u c t i o n s (c o l o r s) :
’ ’ ’ p r i n t I n s t r u c t i o n s (c o l o r s) : p r i n t s the i n s t r u c t i o n s f o r

the Stroop t e s t t r i a l s .
input c o l o r s : a d i c t i o n a r y mapping c o l o r s t r i n g s

to key s t r o k e s ’ ’ ’

print ” Please p o s i t i o n the d i s p l a y window so that i t i s ”
print ” next to t h i s window , where you can see both”
print ”windows e a s i l y . The d i s p l a y window may be”
print ” ’ h id ing ’ behind the other windows . ”
raw input (” Press <Enter> when you are ready ”

” to cont inue . . . ”)
print ”\n\n”
print ” In t h i s experiment you w i l l be shown s t r i n g s o f ”
print ” text in d i f f e r e n t c o l o r s You w i l l be show the ”
print ” s t r i n g s in two rounds . In one round , the text ”
print ” s t r i n g s w i l l s p e l l words . In the other , i t w i l l ”
print ” j u s t be Xs . For each s t r i n g you see , p l e a s e input ”
print ” the COLOR of the text as f a s t as you can , us ing ”
print ” the f o l l o w i n g key mapping : ”
for ks in c o l o r s :

print ”\ tPre s s ” , c o l o r s [ks] , ” then <Enter> f o r ” , ks

print ”\n\n”
print ” In each case , p l e a s e work as qu i ck ly as p o s s i b l e , ”
print ” t ry ing not to make mistakes . I f you make a”
print ” mistake , you w i l l be shown another s t r i n g . ”

128 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

5.5. PUTTING IT ALL TOGETHER: PROGRAM DESIGN

def runTr ia l s (numTrials , s t r i n g s , colorMap , keyMap) :
’ ’ ’ runTr ia l s (numTrials , s t r i n g s , colorMap , keyMap) : Run

the t r i a l s f o r the s t r o o p t e s t and re turn the time data
c o l l e c t e d from the t r i a l s , as a l i s t .
input :

i n t numTrials : the number o f t r i a l s to run
l i s t s t r i n g s : a l i s t o f s t r i n g s to d i s p l a y f o r

the t e x t
d i c t i o n a r y colorMap : a d i c t i o n a r y t h a t maps c o l o r

s t r i n g s to c o l o r s
d i c t i o n a r y keyMap : a d i c t i o n a r y t h a t maps c o l o r

s t r i n g s to k e y s t r o k e s t r i n g s ’ ’ ’

i = 0
raw input (”\n\ npress <Enter> when ready ”

” to begin round . . . ”)
data = []

while i < numTrials :
c = cho i c e (s t r i n g s)
colorsRemove1 = remove (colorMap . keys () , c)
cColor = cho i c e (colorsRemove1)
beforeTime = time ()
d i sp layLabe l = l a b e l (t ex t=c , he ight =24, box=0,

opac i ty =0,
c o l o r=colorMap [cColor])

answer = raw input ()
afterTime = time ()
d i sp layLabe l . v i s i b l e = 0
i f answer == keyMap [cColor] :

data += [afterTime−beforeTime]
i += 1

else :
print ”INCORRECT. Try Again”

print ”Round over ”
return data

129 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 5. IMPERATIVE PROGRAMMING

130 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Chapter 6

OOPs! Object-Oriented
Programs

I paint objects as I think them, not as I see them. —Pablo Picasso

Imagine that you’re a rocket scientist working on a project to launch a rocket This material, as cool as
it is, is not rocket
science.

to the planet Spamiter. You have been assigned the task of testing some software
that determines whether the rocket has sufficient fuel to perform a mission-critical
maneuver. As you test the software, you notice that it often reports that there is not
enough fuel to perform the maneuver when, in fact, you are certain there is just the
right amount of fuel. Your task is to figure out what’s wrong and find a way to fix it.

Each of the rocket’s two fuel tanks has a capacity of 1000 units and the fuel gauge
for each tank reports a value between 0 and 1.0, indicating the fraction of the capacity
remaining in that tank. Here is an example of one of your tests, where fuelNeeded
represents the fraction of a 1000 unit tank required to perform the maneuver while
tank1 and tank2 indicate the fraction of the capacity of each of the two tanks. The
last statement is checking to see if the total amount of fuel in the two tanks equals or
exceeds the fuel needed for the maneuver.

>>> fuelNeeded = 42.0/1000
>>> tank1 = 36.0/1000
>>> tank2 = 6.0/1000
>>> tank1 + tank2 >= fuelNeeded
False

Notice that 36
1000 + 6

1000 = 42
1000 and the fuel needed is exactly 42

1000 . Strangely though,
the code reports that there is not enough fuel to perform the maneuver, dooming the
ship to fail to perform its mission. Bummer!

When you print the values of fuelNeeded, tank1, tank2, and tank1 + tank2 you
see the problem:

>>> fuelNeeded
0.042000000000000003
>>> tank1

131

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

0.035999999999999997
>>> tank 2
0.0060000000000000001
>>> tank1 + tank2
0.041999999999999996

This example of numerical imprecision is the result of the inherent error that arisesTo be precise,
imprecision occurs

because computers use
only a fixed number of

bits of data to represent
data. Therefore, only a

finite number of different
quantities can be stored.

In particular, the
fractional part of a

floating-point number,
the mantissa, must be
rounded to the nearest

one of the finite number
of values that the

computer can store,
resulting in the kinds of

unexpected behavior
that we’ve seen here.

when computers try to convert fractions into floating-point numbers (numbers with a
decimal-point representation). However, assuming that all of the quantities that you
measure on your rocket are always rational numbers—that is fractions with integer
numerators and denominators—this imprecision problem can be avoided! How? In-
tegers don’t suffer from imprecision. So, for each rational number, we can store its
integer numerator and denominator and then do all of our arithmetic with integers.

For example, the rational number 36
1000 can be stored as the pair of integers 36 and

1000 rather than converting it into a floating-point number. To compute 36
1000 + 6

1000 we
can compute 36 + 6 = 42 as the numerator and 1000 as the denominator. Comparing
this to the fuelNeeded value of 42

1000 involves comparing the numerators and comparing
the denominators, which involves comparing integers and is thus free from numerical
imprecision.

So, it would be great if Python had a way of dealing with rational numbers as pairs
of integers. That is, we would like to have a rational numbers type of data (or data

A rational thing to have! type, as computer scientists like to call it) just as Python has an integer data type, a
string data type, and a list data type (among others). Moreover, it would be great if
we could do arithmetic and comparisons of these rational numbers just as easily as we
can do with integers.

The designers of Python couldn’t possibly predict all of the different data typesOr even a fraction of
them all. that one might want. Instead, Python (like many other languages) has a nice way

to let you, the programmer, define your own new types and then use them nearly as
easily as you use the built-in types such as integers, strings, and lists.

This facility to define new types of data is called object-oriented programming or
OOP and is the topic of this chapter. By the end of this chapter, you will be a master
of object-oriented programs (OOPs). You will be able to define your own types of data
and then use them in programs that are substantially easier to read and write than
without OOPs.

6.1 A Rational Solution

Let’s get started by defining a rational-number type. To do this, we build a Python
“workshop” for constructing rational numbers. This workshop is called a class and it
looks like this:

class Rational:
def __init__(self, num, denom):

self.numerator = num
self.denominator = denom

Don’t worry about the weird syntax; we’ll come back in a moment and take a closer
look at the details. For now, the big idea is that once we’ve written this Rational

132 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

6.1. A RATIONAL SOLUTION

class (and saved it in a file with the same name but with the suffix .py at the end,
in this case Rational.py) we can “manufacture” new rational numbers to our heart’s
content. Here’s an example of calling this “workshop” to manufacture two rational
numbers 36

1000 and 6
1000 :

r1 = Rational(36, 1000)
r2 = Rational(6, 1000)

What’s going on here? When Python sees the instruction

r1 = Rational(36, 1000)

it does two things. First, it manufactures an empty object which we’ll call self. Perhaps this is selfish
of Python.Actually, self is a reference to this empty object as shown in Figure 6.1.

Figure 6.1: self refers to a new empty object. It’s only empty for a moment!

Next, Python looks through the Rational class definition for a function named
__init__ (notice that there are two underscore characters before and after the word
“init”). That’s a funny name, but it’s a convention in Python. Notice that in the
definition of __init__ above, that function seems to take three inputs (or “argu-
ments”) whereas the instruction r1 = Rational(36, 1000) has only supplied two
inputs. That’s weird, but—as you may have guessed—the first input argument is
passed in automatically by Python and it is a reference to the new empty self object
that we’ve just had manufactured for us.

The __init__ function takes the reference to our new empty object called self,
and it’s going to add some data to that object. The values 36 and 1000 are passed in to
__init__ as num and denom, respectively. Now, when the __init__ function executes
the line self.numerator = num, it says, “go into the object referenced by self, give
it a variable called numerator, and give that variable the value that was passed in
as num.” Similarly, the line self.denominator = denom says “go into the object
referenced by self, give it a variable called denominator, and give that variable the
value that was passed in as denom.” Note that the the names num, denom, numerator,
and denominator are not special—they are just the names that we chose for all of
these variables.

The last thing that happens in the line

r1 = Rational(36, 1000)

is that the variable r1 is now assigned to be a reference to the object that Python just
created and we initialized. We can see the contents of the rational numbers as follows:

>>> r1.numerator
36
>> r1.denominator
1000

The “dot” in r1.numerator is saying, “go to the object called r1 and look at the
variable named numerator.” We used the “dot” in the function __init__ as well:

133 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

self.numerator = num. The “dot” was doing the same thing there. It said, “go into
the self object and look at the variable named numerator.” (It may seem strange
to you that in the latter case, we were telling Python to “look” at a variable that
didn’t exist yet. But this is just Python being Python. Remember, if you have a
statement like myNum = 42 then if myNum has been defined earlier, its value is just
changed. However, if this is the first mention of myNum then Python gladly creates a
new variable called myNum.) Figure 6.2 shows the situation now.

Figure 6.2: r1 refers to the Rational object with its numerator and denominator.

In our earlier example, we “called” the Rational “workshop” twice to make two
different rational numbers in the example below:

r1 = Rational(36, 1000)
r2 = Rational(6, 1000)

The first call, Rational(36, 1000) manufactured a rational number, self, with
numerator 36 and denominator 1000. This was called self, but then we assigned
r1 to refer to this object. Similarly, the line r2.numerator is saying, “go to the object
called r2 and look at its variable named numerator.” It’s important to keep in mind
that since r1 and r2 are referring to two different objects, each one has its “personal”
numerator and denominator. This is shown in Figure 6.3.

Figure 6.3: Two Rational numbers with references r1 and r2.

Let’s take stock of what we’ve just seen. First, we defined a workshop—technically
known as a class—called Rational. This Rational class describes a template for
manufacturing a new type of data. That workshop can now be used to manufacture
a multitude of items—technically known as objects—of that type. Each object will
have its own variables, in this case numerator and denominator, each with their own
values.

That’s cute, but is that it? Remember that our motivation for defining theThis would be a short
chapter if that was the

whole story!
Rational numbers was to have a way to manipulate (add, compare, etc.) rational
numbers without having to convert them to the floating-point world where numerical
imprecision can cause headaches (and rocket failures, and worse).

Python’s built-in data types (such as integers, floating-point numbers, and strings)
have the ability to be added, compared for equality, etc. We’d like our Rational
numbers to have these abilities too! We’ll begin by adding a function to the Rational
class that will allow us to add one Rational to another and return the sum, which will
be a Rational as well. A function defined inside a class has a special fancy name—it’s
called a method of that class.

Our add method in the Rational class will be used like this:

>>> r1.add(r2)

This should return a Rational number that is the result of adding r1 and r2. So, we
should be able to write:

134 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

6.1. A RATIONAL SOLUTION

>>> r3 = r1.add(r2)

Now, r3 will refer to the new Rational number returned by the add method. The
syntax here may struck you as funny at first, but humor us; we’ll see in a moment why
this syntax is sensible.

Let’s write this add method! If r1 = a
b and r2 = c

d then r1 + r2 = ad+bc
bd . The

resulting fraction might be simplified by dividing out by terms that are common to
the numerator and the denominator, but let’s not worry about that for now. Here is
the Rational class with its shiny new add method:

class Rational:
def __init__(self, num, denom):

self.numerator = num
self.denominator = denom

def add(self, other):
newNumerator = self.numerator * other.denominator +

self.denominator * other.numerator
newDenominator = self.denominator*other.denominator
return Rational(newNumerator, newDenominator)

What’s going on here!? Notice that the add method takes in two arguments, self
and other, while our examples above showed this method taking in a single argument.
(Stop here and think about this. This is analogous to what we saw earlier with the
__init__ method.)

To sort this all out, let’s consider the following sequence:

>>> r1 = Rational(1, 2)
>>> r2 = Rational(1, 3)
>>> r3 = r1.add(r2)

The instruction r1.add(r2) does something funky: It calls the Rational class’s add
method. It seems to pass in just r2 to the add method but that’s an optical illusion!
In fact, it passes in two values: first it automatically passes a reference to r1 and then
it passes in r2. This is great, because our code for the add method is expecting two
arguments: self and other. So, r1 goes into the self “slot” and r2 goes into the
other slot. Now, the add method can operate on those two Rational numbers, add
them, construct a new Rational number representing their sum, and then return that
new object.

Here’s the key: Consider some arbitrary class Blah. If we have an object myBlah of
type Blah, then myBlah can invoke a method foo with the notation myBlah.foo(arg1,
arg2, ..., argN). The method foo will receive first a reference to the object Blah
followed by all of the N arguments that are passed in explicitly. Although we’ve been
calling this first implicit argument “self”, this is not necessary. It can be called
anything at all. Python just knows that the first argument is always the automatically
passed in reference to the object before the “dot”. The beauty of this seemingly weird
system is that the method is invoked by an object and the method “knows” which
object invoked it. Snazzy! “Snazzy” is a technical

term.Now, for example, we could type:

135 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

>>> r3.numerator
>>> r3.denominator

What we would we see? We’d see the numerator and denominator of the Rational
number r3. In this case, the numerator would be 5 and the denominator would be 6.

Notice that instead of typing r3 = r1.add(r2) above, we could have instead have
typed r3 = r2.add(r1). What would have happened here? Now, r2 would have
called the add method, passing r2 in for self and r1 in for other. We would have
gotten the same result as before because addition of rationals is commutative.

6.2 Overloading

So far, we have built a basic class for representing rational numbers. It’s neat and
useful, but now we’re about to make it even spiffier. You probably noticed that the“Spiffy” is yet another

technical term. syntax for adding two Rational numbers is a bit awkward. When we add two integers,
like 42 and 47, we certainly don’t type 42.add(47), we type 42+47 instead.

It turns out that we can use the operator “+” to add Rational numbers too!
Here’s how: We simply change the name of our add method to __add__. Those
are two underscore characters before and two underscore characters after the word
add. Python has a feature that says “if a function is named __add__ then when the
user types r1 + r2, I will translate that into r1.__add__(r2).” How does Python
know that the addition here is addition of Rational numbers rather than addition of
integers (which is built-in)? It simply sees that r1 is a Rational, so the “+” symbol
must represent the __add__ method in the Rational class. We could similarly define
__add__ methods for other classes and Python will figure out which one applies based
on the type of data in front of the “+” symbol.

This feature is called overloading . We have overloaded the “+” symbol to give itThis is “good”
overloading. “Bad”
overloading involves
more than 18 units.

a meaning that depends on the context in which it is used. Many, though not all,
object-oriented programming languages support overloading. In Python, overloading
addition is just the tip of the iceberg. Python allows us to overload all of the normal
arithmetic operators and all of the comparison operators such as “==”, “!=”, “<”,
among others.

Let’s think for a moment about comparing rational numbers for equality. Consider
the following scenario, in which we have two different Rationals and we compare them
for equality:

>>> r1 = Rational(1, 2)
>>> r2 = Rational(1, 2)
>>> r1 == r2
False

Why did Python say “False”? The reason is that even though r1 and r2 look the
same to us, each one is a reference to a different object. The two objects have identical
contents, but they are different nonetheless, just as two identical twins are two different
people. Another way of seeing this is that r1 and r2 refer to different blobs of memory,
and when Python sees us ask if r1 == r2 it says “Nope! Those two references are not to
the same memory location.” Since we haven’t told Python how to compare Rationals

136 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

6.2. OVERLOADING

in any other way, it simply compares r1 and r2 to see if they are referring to the very
same object.

So let’s “overload” the “==” symbol to correspond to a function that will do the
comparison as we intend. We’d like for two rational numbers to be considered equal
if their ratios are the same, even if their numerators and denominators are not the
same. For example 1

2 = 42
84 . One way to test for equality is to use the “cross-

multiplying” method that we learned in grade school: Multiply the numerator of
one of the fractions by the denominator of the other and check if this is equal to the
other numerator-denominator product. Let’s first write a method called __eq__ to
our Rational number class to test for equality.

def __eq__(self, other):
return self.numerator * other.denominator ==

self.denominator * other.numerator

Now, if we have two rational numbers such as r1 and r2, we could invoke this method
with r1.__eq__(r2) or with r2.__eq__(r1). But because we’ve used the special
name __eq__ for this method, Python will know that when we write r1 == r2 it
should be translated into r1.__eq__(r2). There are many other symbols that can be
overloaded. (To see a complete list of the methods that Python is happy to have you
overload, go to http://www.Python.org/doc/2.5.2/ref/customization.html.)

For example, we can overload the “>=” symbol by defining a method called __ge__ This example serves to
doubly underscore the
beauty of overloading!

(which stands for greater than or equal). Just like __eq__, this method takes two
arguments: A reference to the calling object that is passed in automatically (e.g.
self) and a reference to another object to which we are making the comparison. So,
we could write our __ge__ method as follows:

def __ge__(self, other):
return self.numerator * other.denominator >=

self.denominator * other.numerator

Notice that there is only a tiny difference between how we implemented our __eq__
and __ge__ methods. Take a moment to make sure you understand why __ge__ works.

Finally, let’s revisit the original fuel problem with which we started the chapter.
Recall that due to numerical imprecision with floating-point numbers, we had experi-
enced mission failure:

>>> fuelNeeded = 42.0/1000
>>> tank1 = 36.0/1000
>>> tank2 = 6.0/1000
>>> tank1 + tank2 >= fuelNeeded
False

In contrast, we can now use our slick new Rational class to save the mission!

>>> fuelNeeded = Rational(42, 1000)
>>> tank1 = Rational(36, 1000)
>>> tank2 = Rational(6, 1000)
>>> tank1 + tank2 >= fuelNeeded
True

Mission accomplished! We hope that you aren’t
feeling overloaded at this
point. We’d feel bad if
you “object”ed to what
we’ve done here.

137 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

6.3 Printing an Object

Our Rational class is quite useful now. But check this out:

>>> r1 = Rational(1, 2)
>>> r2 = Rational(1, 3)
>>> r3 = r1 + r2
>>> r3
<Rational.Rational instance at 0x6b918>
>>> print(r3)
<Rational.Rational instance at 0x6b918>

0x6b918!? What the
heck is that?!

Notice the strange output when we asked for r3 or when we tried to print(r3). In
both cases, Python is telling us, “r3 is a Rational object and I’ve given it a special
internal name called 0x blah, blah, blah.”

What we’d really like, at least when we print(r3), is for Python to display the
number in some nice way so that we can see it! You may recall that Python has a
way to “convert” integers and floating-point numbers into strings using the built-in
function str. For example:

>>> str(1)
’1’
>>> str(3.141)
’3.141’

So, since the print function wants to print strings, we can print numbers this way:

>>> print(str(1))
1
>>> print("My favorite number is "+str(42))
My favorite number is 42

In fact, other Python types such as lists and dictionaries also have str functions:

>>> myList = [1, 2, 3]
>>> print("Here is a very nice list: " + str(myList))
Here is a very nice list: [1, 2, 3]

Python lets us define a str function for our own classes by overloading a special
method called __str__ . For example, for the Rational class, we might write the
following __str__ method:

def __str__(self):
return str(self.numerator) + "/" + str(self.denominator)

What is this function returning? It’s a string that contains the numerator followed
by a forward slash followed by the denominator. When we type print(str(r3)),
Python will invoke this __str__ method. That function first calls the str function
on self.numerator. Is the call str(self.numerator) recursive? It’s not! Since
self.numerator is an integer, Python knows to call the str method for integers here
to get the string representation of that integer. Then, it concatenates to that string

138 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

6.4. A FEW MORE WORDS ON THE SUBJECT OF OBJECTS

a another string containing the forward slash , /, indicating the fraction line. Finally,
to that string it concatenates the string representation of the denominator. Now, this
string is returned. So, in our running example from above where r3 is the rational
number 5

6 , we could use our str method as follows:

>>> r3
<Rational.Rational instance at 0x6b918>
>>> print("Here is r3: "+str(r3))
Here is r3: 5/6

Notice that in the first line when we ask for r3, Python just tells us that it is a reference
to Rational object. In the third line, we ask to convert r3 into a string for use in the
print function. By the way, the __str__ method has a closely related method named
__repr__ that you can read about on the Web.

6.4 A Few More Words on the Subject of Objects

Let’s say that we wanted (for some reason) to change the numerator of r1 from its
current value to 42. We could simply type

r1.numerator = 42

In other words, the internals of a Rational object can be changed. Said another way,
the Rational class is mutable. (Recall our discussion of mutability in the previous
chapter.) In Python, classes that we define ourselves are mutable (unless we add
fancy special features to make them immutable). To fully appreciate the significance
of mutability of objects, consider the following pair of functions:

def foo():
r = Rational(1, 3)
bar(r)
print r

def bar(input):
input.numerator += 1

What happens when we invoke function foo? Notice that function bar is not returning
anything. However, the variable input that it receives is presumably a Rational
number and foo increments the value of this variable’s numerator. Since user-defined
classes such as Rational are mutable, this means that the numerator of the Rational
object that was passed in will have its numerator changed!

How does this actually work? Notice that in the function foo, the variable r
is a reference to the Rational number 1

3 . In other words, this Rational object is
somewhere in the computer’s memory and r is the address where this blob of memory
resides. When foo calls bar(r) it is passing the reference (the memory location) r to
foo. Now, the variable input is referring to that memory location. When Python sees
input.numerator += 1 it first goes to the memory address referred to by input, then
uses the “dot” to look at the numerator part of that object, and increments that value

139 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

by 1. When bar eventually returns control to the calling function, foo, the variable r
in foo is still referring to that same memory location, but now the numerator in that
memory location has the new value that bar set.

This brings us to a surprising fact: Everything in Python is an object! For example,You might say that
Python is “class”y! Our

legal team objected to us
using the word

“everything” here, but
it’s close enough to the
truth that we’ll go with

it.

Python’s list datatype is an object. “Wait a second!” we hear you exclaim. “The
syntax for using lists doesn’t look anything like the syntax that we used for using
Rationals!” You have a good point, but let’s take a closer look.

For the case of Rationals, we had to make a new object this way:

r = Rational(1, 3)

On the other hand, we can make a new list more simply:

myList = [42, 1, 3]

In fact, though, this list notation that you’ve grown to know and love is just a con-
venience that the designers of Python have provided for us. It’s actually a shorthand
for this:

myList = list()
myList.append(42)
myList.append(1)
myList.append(3)

Now, if we ask Python to show us myList it will show us that it is the list [42, 1, 3].
Notice that the line myList = list() is analogous to r = Rational(1, 3) except
that we do not provide any initial values for the list. Then, the append method of the
list class is used to append items onto the end of our list. Lists are mutable, so each
of these appends changes the list!

Indeed, the list class has many other methods that you can learn about online. For
example, the reverse method reverses a list. Here’s an example, based on the myList
list object that we created above:

>>> myList
[42, 1, 3]
>>> myList.reverse()
>>> myList
[3, 1, 42]

Notice that this reverse method is not returning a new list but rather mutating the
list on which it is being invoked.

Before moving on, let’s reflect for a moment on the notation that we’ve seen for
combining two lists:

>>> [42, 1, 3] + [4, 5]
[42, 1, 3, 4, 5]

How do you think that the “+” symbol works here? You got it—it’s an overloaded
method in the list class! That is, it’s the __add__ method in that class!

Strings, dictionaries, and even integers and floats are all objects in Python! How-
ever, a few of these built-in types, such as strings, integers, and floats were designed to

140 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

6.5. WHY ARE OOPS IMPORTANT?

be immutable. Recall from the previous chapter that this means that their internals
cannot be changed. You can define your own objects to be immutable as well, but it
requires some effort and it’s rarely necessary, so we won’t go there.

6.5 Why are OOPs Important?

This is all cool, but why is object-oriented programming important? That’s a fair
question. As we’ve seen in our Rational example, one benefit of object-oriented
programming is that it allows us to define new types of data. You might argue, “Sure,
but I could have represented a rational number as a list or tuple of two items and then
I could have written functions for doing comparisons, addition, and so forth without
using any of this class stuff.” You’re absolutely right, but you then have exposed a lot
of yucky details to the user that she or he doesn’t want to know about. For example,
the user would need to know that rational numbers are represented as a list or a tuple
and would need to remember the conventions for using your comparison and addition
functions. One of the beautiful things about object-oriented programming is that all of
this “yuckiness” (more technically, “implementation details”) is hidden from the user, “Yucky” is not a

technical term.providing a layer of abstraction between the use and the implementation of rational
numbers.

Layer of abstraction?! What does that mean? Imagine that every time you sat in
the driver’s seat of a car you had to fully understand various components of the engine,
transmission, steering system, and electronics just to operate the car. Fortunately, the
designers of cars have presented us with a nice layer of abstraction: The steering
wheel, pedals, and dashboard. We can now do interesting things with our car without
having to think about the low-level details. As a driver, we don’t need to worry about
whether the steering system uses a rack and pinion or something entirely different.
This is precisely what classes provide for us. The inner workings of a class are securely
“under the hood,” available if needed, but not the center of attention. The user of
the class doesn’t need to worry about implementation details; she or he just uses the
convenient and intuitive provided methods. By the way, the “user” of your class is
most often you! You too don’t want to be bothered with implementation details when
you use the class—you’d rather be thinking about bigger and better things at that
point in your programming.

Is object-oriented programming just used to represent new numerical types such as
rational numbers? Not at all! Virtually any program that has different logical parts
can benefit from the object-oriented design and programming. Indeed, we’ll soon see
an example in 3D graphics. In fact, although we’ve been talking about object-oriented
programming, the truth is that “object-oriented” is really a design principle. But the acronym

“OODs” is nowhere near
as good “OOPs”!

Object-oriented design is the computer science version of modular design, an idea
that engineers pioneered long ago and have used with great success. Classes are mod-
ules. They encapsulate logical functionality and allow us to reason about and use
that functionality without having to keep track of every part of the program at all
times. Moreover, once we have designed a good module/class we can reuse it in many
different applications.

Takeaway message: Classes—the building blocks of object-oriented designs and
programs—provide us with a way of providing abstraction that allows us to concentrate

141 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

on using these building blocks without having to worry about the internal details of how
they work. Moreover, once we have a good building block we can use it over and over
in all different kinds of programs.

6.6 Getting Graphical with OOPs

We’ve seen that object-oriented programming is cool and, hopefully, you now believe
that it’s useful. If not, this section should convince you! Next, we’re going to look at
how object-oriented programming gets used in computer graphics. If you wish, youWarning! This section

contains graphical
language!

can even write your own very cool 3D graphics programs in Python as you read this
section.

Computer graphics offers a particularly compelling domain where object-oriented
programming is truly the secret to all happiness. Before we get into the nuts-and-bolts,
let’s stop and do a quick thought experiment. Imagine that you’re a computer graphics
animator for the upcoming video game Attack of the Three-Eyed Aliens. Imagine thatAye, yay, yay! (Or Eye,

eye, eye!) the characters in this animation each have a face with three eyes, a nose, two ears,
and a mouth with upper and lower lips. Notice that the face has three eyes. If we’ve
defined an Eye class, we can simply make three instances (objects) of this class rather
than define each eye from scratch. Similarly, we might define an Ear class and a Lip
class. Then, the Face class could be defined using these “lower level” classes and might
look something like this:

Class Face:
def __init__(self):

self.leftEye = Eye()
self.middleEye = Eye()
self.rightEye = Eye()
self.leftEar = Ear()
self.rightEar = Ear()
self.upperLip = Lip()
self.lowerLip = Lip()

Now, if you wanted to twitch just the left ear, you could make a change that one
object in the face without having to think about the rest of the face. Moreover, as you
defined your swarm of thousands of characters, each one of them would have a face
that is simply an instance of this Face class.Let’s Face it, that’s slick!

Time to get real; let’s do some 3D graphics! Python has many wonderful add-on
“modules” that allow it to do all kinds of amazing things. One of these modules,
called VPython, allows you to use Python to write interactive 3D graphics programs.
Of course, video games leap to mind as an obvious application, but scientists use
VPython to write scientific visualizations (for example to understand the dynamics of
interacting atoms, molecules, or planets), and there are numerous other places where
3D graphics are fun and useful. If you search for “VPython” in your favorite search
engine, you’ll find the link. From there, you can download VPython to your own
computer (it’s free) and find great documentation.

In this section, we’ll look at some of the highlights of VPython and, particularly,
its connection to object-oriented programming. Using a computer that has VPython

142 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

6.6. GETTING GRAPHICAL WITH OOPS

installed, we can type the following two lines:

>>> from visual import *
>>> b = box()

The first line is simply importing everything from VPython’s visual package that
support 3D graphics. The second line is the interesting one. VPython has a class
called box, and we are asking for an object of type box and assigning b to refer to it.

If all goes well on your computer, a window will pop up that looks like a gray
square. It’s actually a 3D box, it’s just that we’re looking at it face-on. You can
rotate and zoom in and out as follows: In the display window, click and drag with
the right mouse button (hold down the command key on a Macintosh). Drag left or
right, and you rotate around the scene. To rotate around a horizontal axis, drag up or
down. Click and drag up or down with the middle mouse button to zoom in or out of
the scene (on a 2-button mouse, hold down the left and right buttons; on a 1-button
mouse, hold down the Option key).

Just like our Rational class had attributes such as numerator and denominator,
the box class has attributes as well. One of them is called color. Recall that you
can get the value of an attribute by typing the name of the object followed by a dot
followed by the name of the attribute:

>>> b.color
(1.0, 1.0, 1.0)

Huh?! VPython represents color using a tuple with three values, each between 0.0
and 1.0. The three elements in this tuple indicate how much red (from 0.0, which is
none, to 1.0, which is maximum), green, and blue, respectively, is in the color of the
object. So, (1.0, 1.0, 1.0) means that we are at maximum of each color, which amounts
to bright white. If you want to make the color bright red, you could type

>>> b.color = (1.0, 0.0, 0.0)

Play with this a bit and let us know when you’re ready to move on. We’ll wait. Maybe.

The box class has other attributes too. One of them is called pos and, you guessed
it, it stores the position of the box in 3 dimensions. The coordinate system used by
VPython is what’s called a “right-handed” coordinate system: If you stick out your
thumb, index finger, and middle finger so that they are perpendicular to one another,
the positive x axis is your thumb, the positive y axis is your index finger, and the
positive z axis is your middle finger. Said another way, before you starting rotating If your roommate sees

you staring at your
fingers, just explain that
you are doing something
very technical.

around in the display window with your mouse, the horizontal axis is the x axis, the
vertical axis is the y axis, and the z axis points out of the screen.

Take a look at the position of the box by typing b.pos. You’ll notice that you see
the following:

>>> b.pos
vector(0, 0, 0)

VPython has a class called vector, and pos is an object of this type. Nice! The box Is vector class also called
linear algebra?class is defined using the vector class. See! We told you classes were useful. “OK,” we

hear you concede grudgingly, “but what’s the point of a vector (no pun intended)?”

143 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

The point is that the vector class has some methods defined in it for performing vector
operations, but let’s not worry about that now. However, we can now move our boxTake a look at these

operations on the
VPython web site in

order to dot your i’s and
cross your t’s or, more

precisely, to dot your
scalars and cross your

vectors!

like this:

>>> b.pos = vector(0, 1, 2)

Boxes have other attributes too. For example the size attribute is a vector that
indicates the size of the box and the up attribute is a vector that indicates which way

You can size up these
attributes in each of the

three directions on the
VPython web site too.

is “up.” By the way, VPython has lots of other shape classes including spheres, cones,
cylinders, and many more. While these objects have their own particular attributes
(for example a sphere has a radius), all VPython objects share some useful methods.
One of these methods is called rotate. Not surprisingly, this method rotates its object.
Let’s take rotate out for a spin!

Try this with the box b that we defined above:

>>> b.rotate(angle=pi/4)

We are asking VPython to rotate the box b by π
4 radians. (The rotation is, by default,

specified in radians about the x axis. You’ll see on the VPython web site that we
can use degrees instead and that rotation can be set to occur about any axis.) What
is rotate actually doing? It is simply applying a transformation that changes the
attributes of the box so that it is in the right position and orientation! In other words,
when an object invokes its rotate method, that method recalculates the attributes of
the object and then VPython simply renders the object on the screen. Try doing a“Render” is just a fancy

way of saying “draw.” rotation and looking at the object’s up attribute afterwards.
Finally, let’s put this all together to write three short VPython programs. First,

let’s write a very short program that rotates a red box forever:

from visual import *

def spinbox():
myBox = box()
myBox.color = (1, 0, 0)
while True:

Slow down the animation to 60 frames per second.
Try removing this line or changing 60 to something else.
rate(60)
myBox.rotate(angle=pi/100)

Second, take a look at the program below. Try to figure out what it’s doing before
you run it.

from visual import *
import random

def spinboxes():
boxList = []
for boxNumber in range(0, 10):

x = random.randint(-5, 5) # random integer between -5 and 5

144 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

6.6. GETTING GRAPHICAL WITH OOPS

Figure 6.4: A weird “face” shape made of a box and three spheres.

y = random.randint(-5, 5)
z = random.randint(-5, 5)
red = random.random() # random number between 0 and 1
green = random.random()
blue = random.random()
newBox = box()
newBox.pos = vector(x, y, z)
newBox.color = (red, green, blue)
boxList.append(newBox)

while True:
for myBox in boxList:

rate(60)
myBox.rotate(angle=pi/100)

This is very cool! We now have a list of objects and we can go through that list and
rotate each of them.

Finally, what if we want to define a new kind of shape? We can define a class for
this new shape and then make as many objects of this shape type as we like. For
example, let’s write a class for a simplified version of the face class for the video game
that we mentioned at the beginning of this section. For the sake of simplicity, we’ll
just have a block head and three eyes, as shown in Figure 6.4. (You are, of course,
welcome to add the lips and ears on your own!) Here we only pay lip

service to additional
features.

We’ll define the Face class using box and three spheres, and then we’ll put these
body parts into a list called parts just as we put cubes into a list in the previous
example. Putting the parts into a list allows us to manipulate them more easily. For
example notice that we have also defined a move method that takes x, y, z as inputs
and shifts (or “translates”) the face from its current position by the vector (x, y, z).

145 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

CHAPTER 6. OOPS! OBJECT-ORIENTED PROGRAMS

By placing all of the body parts into a list, the move method simply uses a for loop
to change the pos of each body part.

from visual import *

class Face:
def __init__(self):

self.head = box() # box head
self.leftEye = sphere() # left eye
self.middleEye = sphere() # middle eye
self.rightEye = sphere() # right eye

self.leftEye.color = (1, 0, 0) # the left eye is red...
self.leftEye.radius = 0.25 #... and has a small radius...
self.leftEye.pos = vector(-0.5, 0.2, 0.5) #... move it here

self.middleEye.color = (0, 1, 0) # the middle eye is green...
self.middleEye.radius = 0.25
self.middleEye.pos = vector(0, 0.2, 0.5)

self.rightEye.color = (0, 0, 1) # The right eye is blue...
self.rightEye.radius = 0.25
self.rightEye.pos = vector(0.5, 0.2, 0.5)

Finally, all of the body parts go into a list
self.parts = [self.head, self.leftEye, self.middleEye,

self.rightEye]

def move(self, x, y, z):
moveVector = vector(x, y, z)

for part in self.parts:
part.pos = part.pos + moveVector

Before we let you go hang out with your friends, or eat a pizza, or write the
complete implementation of Attack of the Three-Eyed Aliens, let’s just point out the
loveliness of this object-oriented idea. By defining classes, we can provide the user of
the class with an abstraction that allows her or him (and, in fact, it may be you) to
just think about the important things (like being able to add rational numbers or move
a funny-looking face). Indeed, we can build a hierarchy of abstraction: a character in
our video game could be a class that is now defined in terms of a face and other parts.
A parade could be defined as a list of these characters along with other attributes, and
so on and so forth.

All right, enough, go have your pizza!

146 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

Index

__eq__, 137
__init__, 133
__str__, 138
2D arrays, 118

accumulation, 106
accumulator, 106
adder

full, 74
Algorithms, 2
analog computers, 63
AND, 69
AND gate, 72
arguments, 21
arrays, 118
ASCII, 67
assembly language, 81
assignment statement, 19
Attack of the Three-Eyed Aliens, 142
attributes, 143

base 10, 65
base 2, 65
base case, 34
Binary, 65
bits, 65
body, 104
Boole, George, 69
Boolean algebra, 69
Boolean expression, 26
byte, 68

central processing unit (CPU), 77
class, 134
comment, 14
comparison operators, 27
compiler, 92
compression, 68

conditional jump, 85
conditional statement, 26
constructor, 123

docstring, 14

four-color problem, 30
functions, 14

global variable, 124

header, 103

immutable, 114
infinite loop, 110
instruction register, 78
interpreter, 92
iteration, 100
iterative, 102

jump
conditional, 85
unconditional, 84

keys, 122
keyword, 21
Knuth, Donald, 5

layer of abstraction, 141
logic symbols, 73
loops, 100

MaxSort, 116
method, 134
MinSort, 116
minterm expansion principle, 71
modular design, 141
modularization, 16
mutable, 114

147

INDEX

no-operation, 88
NOT, 70
number representations

sign-magnitude, 66
numerical imprecision, 132
nybble, 68

object, 123
object-oriented programming, 132
objects, 134
opcode, 78
operation code, 78
optional arguments, 123
OR, 70
OR gate, 72
overloading, 136

parameter passing, 87
PC, 79
Picobot, 5, 5–12
pixel, 68
program counter, 78

Random Access Memory (RAM), 76
recursive definition, 33
registers, 77
ripple-carry adder, 74

S-R latch, 76
scope, 33
Selection Sort, 116
Shannon, Claude, 69, 72
sign-magnitude, 66
signature, 21
stack, 32, 88, 88–90

pop, 89
push, 89

stack discipline, 90
stack pointer, 89
state, 7
statements, 18
strings, 68
Stroop Effect, 98
Stuff, 1, 4

truth table, 69
two’s complement, 66

unconditional jump, 84
UTF, 68
UTF-8, 68

values, 122
Variables, 18
von Neumann architecture, 78
von Neumann, John, 78

while-loop, 108

zoogenesis, 2

148 Draft for review, version 83, 2009-08-27 23:57:53Z
c© 2009 Harvey Mudd College

DO NOT CIRCULATE

