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ABSTRACT
When streaming 360° video, it is possible to reduce bandwidth by
5× with approaches that spatially segment video into tiles and only
stream the user’s viewport. Unfortunately, it is difficult to accu-
rately predict a user’s viewport even 2-3 seconds before playback.
This results in rebuffering events owing to misprediction of a user’s
viewport or network bandwidth dips, which hurts interactive ex-
perience. However, avoiding rebuffering by naively skipping tiles
that do not arrive by the playback deadline may lead to incomplete
viewports and degraded experience.

In this paper, we describe Dragonfly, a new 360° system that
preserves interactive experience by avoiding playback stalls while
maintaining high perceptual quality. Dragonfly prudently skips tiles
using amodel that defines an overall utility function to decidewhich
tiles to fetch, and at which qualities they should be fetched, with
the goal of optimizing user experience. To minimize incomplete
viewports, it also fetches a low quality masking stream. Using a
user study with 26 users and emulation-based experiments we
show that Dragonfly has higher quality, and lower overheads, than
state-of-the-art 360° streaming approaches. For instance, in our
study, 65% of sessions have a rating of 4 or higher (Good/Excellent)
with Dragonfly, while only 16% of sessions with Pano, and 13% of
sessions with Flare achieve this rating.
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1 INTRODUCTION
The tremendous success of Internet video has led to a growing inter-
est in new forms of video content in recent years. An increasingly
popular new form, 360° video, is generated using 360° cameras, and
permits viewers to choose any viewing angle within a 360° field of
view [10, 17]. With 360° video users do not just passively consume
content, but actively engage with it. Rather than view video in a
linear fashion, and from publisher-specified perspectives, users may
interactively traverse the content along many different paths from a
perspective of their choice, with different users observing different
perspectives of the same content.

Although in its infancy, there is much interest in 360° video
in various domains including entertainment, education, and e-
commerce [1, 3, 4, 17]. Recent surveys of video marketers and
consumers [2, 15] indicate 360° video can lead to better user en-
gagement and persuasion metrics.

Unlike traditional video, which must primarily handle uncer-
tainty in network bandwidth (network uncertainty), 360° video must
also deal with uncertainty in how the user interacts with the video
(motion uncertainty). Two classes of solutions have emerged for 360°
video. The first, used by traditional video publishers (e.g., YouTube,
Facebook), treats 360° video like conventional video streaming,
encoding and streaming the entire 360° view to the client. Unfor-
tunately, while this permits users to view the content from any
perspective, it is prohibitively expensive — it can consume 5-6×
the bandwidth needed to stream only the relevant portions of the
video to the user [7, 16, 29, 32].

A second class of approaches, which we term view-centric, in-
volves predicting a user’s viewport (portion of the video visible to
the user), and tailoring transmission based on the prediction. These
approaches stream the entire viewport [37, 38], or a subset [21, 24],
at a higher quality. They transmit regions outside the viewport at
lower quality [21, 24], or not at all [38]. Beyond temporally splitting
video into chunks, as in conventional video streaming, they spatially
segment each chunk into tiles (§2). Each tile may be independently
encoded and downloaded, and may be encoded at different qualities.
Most view-centric approaches stall playback if any viewport tile is
unavailable prior to the playback deadline, and focus on optimizing
perceptual quality of the viewport and minimizing stalls, much like
traditional video streaming.

Challenge. View-centric approaches can significantly reduce band-
width consumption as long as they correctly predict the viewport.
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Unfortunately, the accuracy in predicting a user’s viewport de-
grades significantly with look-ahead (i.e., how much in advance of
playback the prediction is made). The accuracy can be as low as
25.5% (median) for a look-ahead of 3 seconds (§2). This makes it
difficult to correctly handle network and motion uncertainty simul-
taneously. On the one hand, a small look-ahead window improves
viewport prediction, but makes the scheme vulnerable to network
bandwidth dips, potentially resulting in network-induced stalls in
video playback. On the other hand, a large look-ahead window may
result inmotion-induced stalls since not all tiles relevant to the user’s
viewport may be fetched before playback. In fact, state-of-the-art
systems [24, 38] report significant rebuffering.

Contributions. Existing approaches stall playback until all tiles
relevant to a user arrive. This is especially undesirable in 360° set-
tings, where a user may move during the stall event, potentially
changing the viewport that must be fetched, resulting in further
cascaded stalls (§2). Dragonfly, our proposed 360° streaming system,
is explicitly designed for continuous playback.

To ensure continuous playback without stalls, a naïve approach
would simply skip viewport tiles that do not arrive by the play-
back deadline. However, this may result in incomplete viewports
with blank areas and unacceptable user experience. To avoid incom-
plete viewports. Dragonfly focuses on a design point that involves
transmission of two streams: (i) a primary stream which encodes
viewport tiles at high quality; and (ii) a lower quality masking
stream to mask the effect of missing tiles.

While using two streams helps, it is challenging to ensure all
viewport tiles are fetched in the primary stream by the rendering
deadline. In fact, the problem is further exacerbated since some
of the bandwidth is consumed by the masking stream. A direct
adaptation of existing techniques [24, 38] would involve fetching
all viewport tiles in the primary stream in as high a quality as
possible before the rendering deadline, and simply skipping those
that do not arrive by deadline (a Passive Skip strategy).

Dragonfly’s central contribution isproactive skipping, inwhich
some viewport tiles in the primary stream can be selected to be
skipped. This is motivated by two observations. First, users may
tolerate occasionally degraded (or even missing) content for some
parts of the viewport (e.g., at the periphery). Second, proactively
skipping tile fetches provides additional degrees of freedom that
can be exploited to enhance user experience. For instance, it may
be desirable to skip a tile with a more immediate deadline that only
benefits a small number of frames and is at the viewport periphery,
and instead fetch with higher quality a tile that is needed later but
lies in the center of the viewport for several frames.

To achieve proactive skipping, Dragonfly computes a utility
function for each tile, taking into account (i) the number of frames
that could benefit if the tile were fetched by a given time; (ii) how
central within the viewport the tile is to each frame; and (iii) the
marginal perceptual gain of fetching that tile in higher quality.
Guided by this utility function, Dragonfly schedules which tiles to
fetch (or skip), in what order, and at what quality. Unlike existing
scheduling algorithms used in systems that fetch all tiles (e.g., [24,
38]), in Dragonfly, tiles may be skipped, or fetched out-of-order.

Dragonfly is different from recent work that transmits streams
in two qualities [26, 43]: (i) its utility driven scheduling allows for

the primary tiles to be skipped or transmitted at different qualities,
unlike [43] which transmits the same quality for all primary tiles
combined with passive skipping (we refer to this scheme as Two-
tier); and (ii) it does not require real-time encoding unlike [26].

Although transmitting a masking stream incurs overhead, this
is small because (i) the masking stream has lower quality; and (ii)
transmitting the masking stream allows Dragonfly to reduce the
overall rate needed for the primary stream. This is because having
themasking stream reduces the penalty incurredwhen the viewport
moves and a portion of the primary stream is not available. Thus, it
is possible to predict what to send closer to the playback deadline
(which is more accurate) and reduce the size of the window to be
fetched in the primary stream around the predicted viewport. Thus,
the increase in masking overhead is compensated by a decrease in
overall primary rate.

Validation with user study and emulations. We have devel-
oped a prototype implementation of Dragonfly1, and three state-
of-the-art approaches: Flare [38], Pano [24], and Two-tier [43]. We
integrated all these systems with an Oculus headset, which enables
users to experience 360° videos under different algorithms. Our key
results are:
• An IRB approved user study with 26 users shows that when

streaming a variety of real 360° videos, users report a rating of 4
or higher (Good/Excellent) for 65% of the sessions, while only 16%
of sessions with Pano, and 13% of sessions with Flare achieve this
rating.
• Experiments on an emulation testbed with real bandwidth

traces show that Dragonfly achieved median PSNR gains of 1.72dB,
2.5dB and 4.5dB over Flare, Pano and Two-tier, respectively despite
proactively skipping primary tiles. Further, 99% (resp. 50%) of Flare
(resp. Pano) sessions experienced rebuffering but no Dragonfly
session experienced incomplete frames owing to its use of amasking
stream.
• An ablation study shows that Dragonfly significantly out-

performs a variant that uses a masking stream combined with
passive skipping, achieving median PSNR gains of 1.6 dB. Drag-
onfly skips more tiles in primary stream (6.74% for Dragonfly vs
2.17% for the variant), but performs better because it fetches more
tiles in the highest quality (83.4% for Dragonfly vs 53.6% for the
variant). Finally, a variant without masking achieves median PSNR
comparable to Dragonfly thanks to its proactive skipping, but may
suffer from incomplete frames.

2 BACKGROUND AND MOTIVATION
Background: tile-based streaming. Many traditional video pub-
lishers (e.g. YouTube, Facebook, and Vimeo) treat 360° video like
conventional video streaming. They split the video into chunks of
short duration (e.g., 1 second) and encode each chunk at multiple
qualities, with each quality capturing the entire 360◦ view. They
then use traditional Adaptive Bit Rate (ABR) algorithms [18, 27, 28,
33, 41, 44, 49] to stream the video to the client. These algorithms
decide the level of quality at which to fetch each chunk so as to
ensure high overall quality, while minimizing client rebuffering.
This approach ensures responsiveness to user motion, but results in

1See https://github.com/Purdue-ISL/Dragonfly for artifacts including source code.
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Figure 1: Tile-based streaming: Video is
split temporally into chunks, which are
partitioned spatially into tiles.
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Figure 2: Accuracy of viewport predic-
tion (i.e, fraction of tiles in viewport that
are predicted) degrades sharply with
larger prediction windows.

Figure 3: Looking ahead multiple
chunks results in sub-optimal quality
enhancement.

Figure 4: Fetching tiles close to a deadline results in poor
quality that persists.

significant wasted bandwidth, and degraded quality in bandwidth
constrained environments.

Much recent research has sought to tackle these challenges [19,
21, 24, 31, 37–39, 42, 51]. Rather than the full 360° view, these ap-
proaches seek to stream the views of relevance to the user. Many
of these approaches rely on tile-based streaming (Figure 1). In this
approach, each video chunk is partitioned into tiles, where a tile
has the same number of frames as the original chunk but covers
only a smaller spatial region of the frames. Tiles may be fixed size
(e.g., forming a 4 × 6 grid [38]) or variable sized (e.g., [24]). Each
tile is encoded at different qualities, and tiles can be independently
downloaded and encoded. Tile-based approaches (i) predict the
viewport of the user in the near future based on a history of the
recent viewports; and (ii) fetch tiles based on their relevance to
the user. These view-centric approaches significantly reduce band-
width requirements for streaming, and can deliver higher quality
in bandwidth-constrained environments.

Challenges for view-centric approaches.View-centric approaches
must confront two main challenges:

Simultaneously dealing with motion and network uncer-
tainty. View-centric approaches must decide how far ahead of
playback time they should predict the viewport (the prediction win-
dow). Figure 2 shows that prediction accuracy degrades sharply
with prediction window – median accuracy is 94.2% for a window
of 0.2 seconds and only 25.4% for a window of 3 seconds. We ob-
tained these results using linear regression (shown to perform well
in [24, 38]) on user traces from [34].

Prediction inaccuracy can trigger motion-induced stalls. To mini-
mize such stalls, these approaches must use small prediction win-
dows (or, equivalently, maintain small client buffers). However,

smaller buffers can make clients vulnerable to dips in network
bandwidth, resulting network-induced stalls.

To avoid this, some systems [21, 24, 37] fetch the full 360° for
every chunk, but fetch tiles for each chunk at different qualities
based on their predicted importance. Since they use a look-ahead
of multiple chunks, and never revisit their decisions, deciding tile
qualities too early can result in enhancing the quality of the wrong
set of tiles. This is illustrated in Figure 3, where a client fetches
chunks 𝑐 and 𝑐 + 1 while playing back 𝑐 − 1. Unfortunately, user
movement after the client makes these decisions may change the
relative importance of different tiles corresponding to chunks 𝑐 and
𝑐 + 1.

Other systems [19, 31, 38, 39, 51] fetch tiles in the predicted
viewport, and additional tiles around it. Erroneous predictions can
result in motion-induced stalls. Flare [38], a notable system in this
class, continually refines predictions and may later fetch additional
tiles discovered to be necessary for playback. Unfortunately, it must
fetch the missing tiles with a more stringent deadline, so that these
are fetched at lower rate leading to lower quality that persists for
several frames. To illustrate, consider Figure 4. Here, Flare misses
a tile at time 𝑡 close to the start of a chunk boundary. To meet
the deadline requirements, it fetches a low quality version of the
tile. Unfortunately, this lower quality version persists for the entire
chunk duration.

Stalling playback hurts interactive experience. Existing sche-
mes treat 360° streaming similar to traditional Video on Demand
(VoD): they pause the playback of video until all tiles in the user’s
current viewport arrive, resulting in stalls (rebuffering events). How-
ever, this approach can impair user interactive experience. For in-
stance, a user may move during the playback pause, leading to a
situation where the newly arriving content is stale. This can result
in further stalling video playback and requiring fetches of new
content, prolonging rebuffering time. A snapshot of a real user
trace of yaw movement (from the user study described in §4.5) in
Figure 5 shows that users can move significantly while a video is
rebuffering.

3 DRAGONFLY DESIGN
Dragonfly is designed to address the limitations of existing view-
centric approaches. Dragonfly leverages two observations: (a) stalling
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Figure 5: Users can significantly move
(changes in yaw) during stall events
(blue regions).

Figure 6: Skip a tile in viewport periph-
ery, and needed for few frames. Instead
fetch tiles in center and needed formore
frames.

Figure 7: Computing location score in
the look-ahead window.

playback waiting for all tiles in the current viewport hurts inter-
active experience; and (b) continuous playback can be enabled by
transmitting a low quality masking stream. However, user experi-
ence critically depends on fetching an appropriate set of viewport
tiles in the primary stream prior to the rendering deadline.

In deciding how to schedule tile fetches in the primary stream,
existing approaches [24, 38] cannot be directly applied, as they
are designed to fetch all tiles while minimizing stalls. A potential
solution is to employ these algorithms and simply skip tiles that do
not arrive by the deadline (a Passive Skip strategy) so as to achieve
continuous playback.

Instead, Dragonfly is motivated by the observation that the free-
dom to proactively skip tiles enables careful prioritization of tile
downloads, taking into consideration factors other than tile dead-
lines. More specifically:
• Dragonfly can skip tiles at the viewport periphery to instead
more quickly retrieve tiles at the center that may be needed in
the near future (Figure 6). In contrast, fetching less critical tiles
may delay more critical tiles, leading to further skips or degraded
quality for these tiles.
• Dragonfly prioritizes tiles that are expected to benefit more
frames over tiles only needed for a few frames. For instance,
in Figure 6, it would skip a tile close to the chunk boundary,
and instead prioritize a tile at the start of the next chunk, which
would be needed for more frames.
• Dragonfly can choose to download a tile at a higher quality even
if it may add delay. For instance, consider Figure 4 again. It may
improve net perceptual quality to fetch a higher quality version
of the tile if doing so can benefit sufficient frames, even if the tile
has to skipped for the first few frames. In contrast, systems that
stall playback fetch low quality versions to minimize rebuffering
(§2).
Like other systems [24], Dragonflymay also prioritize tiles whose

marginal quality difference between higher and lower qualities is
higher (Figure 18 in Appendix §A.).

Since Dragonfly uses two streams, and can proactively skip
frames in the primary stream, it has the flexibility to defer decisions
on which primary tiles to fetch closer to the playback deadline. This
is advantageous since predictions of user motion are more accurate
closer to playback deadline (§2). In contrast, systems that use a
single stream do not have this flexibility and may need to make

fetch decisions further from playback to protect against network
uncertainty.

Dragonfly’s decisions on which tiles to fetch are constrained by
the available network bandwidth (obtained from the throughput
predictor [49]). To obtain the highest possible quality subject to this
constraint, Dragonfly uses a utility formulation (§3.1) and allocates
bandwidth across the primary and masking streams (§3.2).

3.1 Utility-Driven Scheduling algorithm
In this section, we describe the Dragonfly scheduling algorithm,
which decides which tiles to fetch, in what quality, and in what
order. To motivate our approach, we first discuss the factors that
affect the relative importance of tiles to be fetched.

The first factor is location score (𝑙𝑖 𝑓 ), which captures the pre-
dicted importance of displaying tile 𝑖 when the user views frame
𝑓 . Consider Figure 7 which illustrates when the regions associated
with four different tiles are in the user’s viewport. In this example,
the topmost tile is relevant to the user between time 𝑡1 and time 𝑡2.
Even though the tile may lie within the user’s viewport during the
period (𝑡1, 𝑡2), it may be of greater importance during certain time
intervals (e.g., when the associated region is at the center of the
user’s viewport during that interval). The second factor, cumulative
location score (𝐿𝑖𝑡 ), captures the total location score when a tile is
fetched by time 𝑡 . Consider Figure 7 again, the topmost tile offers
maximum value if fetched prior to 𝑡1, and the value progressively
decreases until time 𝑡2 beyond which fetching the tile offers no
value. The third factor, sensitivity to quality (𝑄𝑖𝑞), captures the qual-
ity metric score for tile 𝑖 at encoded quality 𝑞. A higher quality for
the tile produces greater value to the user, but the relative benefit
of fetching a higher quality depends on video content itself.

Utility-based Approach: Overview. Dragonfly captures these
factors through a function that assesses tile utility based on when
the tile is fetched, how central it is to the user’s experience at
different points in time, and the tile quality. It uses these utility
values to determine which tiles to fetch and in what sequence and
quality.

More formally, consider a discrete time model where each unit of
time represents the playback duration of one frame. Time 𝑡 denotes
that the playback of 𝑡 − 1 frames has been completed, and the
playback of the 𝑡𝑡ℎ frame is currently in progress. At time 𝑡0, when
computing utilities, Dragonfly considers predicted viewports during
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the window of time (𝑡0, 𝑡0 +𝑊 ), where𝑊 represents a look-ahead
period. For each tile 𝑖 , Dragonfly computes:

Location score. The location score assesses the importance of
tile based on its location in the viewport. To tolerate errors in the
prediction of the future viewport, and to capture that certain spatial
regions (e.g., the center) may be more important even within the
predicted viewport, Dragonfly predicts multiple concentric regions
of interest (RoI). The innermost RoI is close to the center of the
predicted viewport, while the outermost RoI includes both the
predicted viewport, and a region just outside the viewport. The
location score is 𝑙𝑖 𝑓 =

∑𝐶
𝑟=1 𝑙𝑖𝑟 𝑓 , where 𝑙𝑖𝑟 𝑓 is the degree of overlap

of the region corresponding to tile 𝑖 , and the RoI 𝑟 . We choose
𝑙𝑖𝑟 𝑓 = 1 if the spatial region of tile 𝑖 is completely within the RoI 𝑟 ,
𝑙𝑖𝑟 𝑓 = 0 if there is no overlap and otherwise 𝑙𝑖𝑟 𝑓 is set to a fractional
value.

Cumulative location score. Next, we compute 𝐿𝑖𝑡 , the cumula-
tive location score if tile 𝑖 is fetched by time 𝑡 . Precomputing the
cumulative scores for different tile arrival times reduces the com-
putations to be performed by the scheduling algorithm, as we will
see later. For computations in the time window (𝑡0, 𝑡0 +𝑊 ), the
cumulative location score is 𝐿𝑖𝑡 =

∑𝑡0+𝑊
𝑓 =𝑡

𝑙𝑖 𝑓 . Figure 7 illustrates
the computation.

Sensitivity to quality.When deciding what quality to use for each
tile, Dragonfly accounts for the fact that higher quality encoding
may be more critical for some tiles than others. In Figure 18 in
Appendix §A, we show an example of how one tile may exhibit
more sensitivity to quality than another tile. 𝑄𝑖𝑞 can set based on
any quality metric (e.g., PSNR, SSIM, or PSPNR [24]).

Tile utility.Dragonfly uses both the cumulative location score, and
quality difference to calculate tile utility. Specifically, it computes
𝑈𝑖𝑞𝑡 , the utility of receiving tile 𝑖 by time 𝑡 with quality 𝑞 as:

𝑈𝑖𝑞𝑡 = 𝑓 (𝐿𝑖𝑡 ,𝑄𝑖𝑞 ) = 𝐿𝑖𝑡𝑄𝑖𝑞

The current implementation simply takes the product of the two
scores; future work can explore other choices of 𝑓 .

Formalizing Tile Scheduling. We now describe an optimiza-
tion formulation to capture the scheduling problem that Dragonfly
solves at time 𝑡0, and over a look-ahead window 𝑊 . This opti-
mization decides which tiles to fetch, in what qualities, and when,
given a bandwidth estimate 𝐵 over the look-ahead window, while
optimizing the overall utilities.

max
𝑧

𝐶∑︁
𝑖=1

𝑡0+𝑊∑︁
𝑡=𝑡0+1

𝑄∑︁
𝑞=0

𝑈𝑖𝑞𝑡 · 𝑧𝑖𝑞𝑡

s.t.
𝐶∑︁
𝑖=1

𝑄∑︁
𝑞=0

𝑡∑︁
𝑗=𝑡0

𝑆𝑖𝑞 · 𝑧𝑖𝑞 𝑗 ≤ 𝐵(𝑡 − 𝑡0) ∀𝑡0 ≤ 𝑡 ≤ 𝑡0 +𝑊

𝑡0+𝑊∑︁
𝑡=𝑡0

𝑄∑︁
𝑞=0

𝑧𝑖𝑞𝑡 = 1 ∀𝑖

𝑧𝑖𝑞𝑡 ∈ {0, 1} ∀𝑖 ∀𝑞 𝑡0 ≤ 𝑡 ≤ 𝑡0 +𝑊

Here, 𝑆𝑖𝑞 is the size of tile 𝑖 if fetched in quality 𝑞, and 𝑈𝑖𝑞𝑡 is
precomputed for all tiles, 𝐶 , needed for the predicted viewports

in the window. The binary variable 𝑧𝑖𝑞𝑡 is 1 if tile 𝑖 is fetched at
quality 𝑞, and arrives at time 𝑡 , and 0 otherwise.

The first two constraints in the formulation respectively ensure
that:
• the total data that arrives by each time step 𝑡 in the look-ahead
window cannot exceed bandwidth constraints;
• each tile is associated with exactly one quality and can arrive at
exactly one time.

Quality 𝑞 = 0 indicates the tile is skipped (and the corresponding
𝑆𝑖𝑞 is 0). Utility may be non-zero even if the tile is skipped: when
the algorithm is used for the primary stream, skipping a tile in this
stream implies displaying the masking version of the tile.

A Greedy Heuristic. The formulation above is an Integer Pro-
gram, with the number of decision variables depending on the
number of tiles that must be scheduled, the number of quality
choices, and the length of the look-ahead window. For tractability,
we use a greedy heuristic.

Our algorithm starts by initializing the utility of each tile to the
utility associated with the low quality masking version of the tile (if
it arrived by 𝑡0), or 0 otherwise. It maintains a list (fetch list, initially
empty) of all tiles that should be fetched by the primary stream,
and the associated quality. The algorithm proceeds in a series of
rounds, where in each round a subset of tiles may be promoted to a
higher quality. The process is not monotonic — it is possible that
some tiles have their quality reduced as we will discuss.

In each round, the algorithm first computes the utility gain of
promoting each tile from its current assigned quality to quality
𝑞. It considers tiles in the order of highest utility gain. For each
considered tile 𝑖 , the algorithm considers the impact on total utility
if it upgrades the tile’s quality to 𝑞, and inserts it in each possible
position of the fetch list. This involves for each prospective list
position, computing the arrival time of the tile based on a bandwidth
estimate, adjusting the arrival time of subsequent tiles in the fetch
list, and recomputing utilities for all these tiles.

The algorithm either inserts the tile with quality 𝑞 in the best
position that maximizes total utility, or sticks to the current quality
if no position improves the total utility. Inserting a tile in a list may
imply that subsequent tiles miss their deadlines and have utilities
adjusted to zero, which is acceptable as the insertion increases
the total utility. In such cases, the algorithm demotes the quality
of the tile iteratively until is completely dropped from the fetch
list if it continues to have a zero utility for the lowest quality in
the primary stream. The scheduling algorithm has a complexity of
𝑂 (𝐶2𝑄), where C is the number of tiles relevant to the look-ahead
window, which we find acceptable in practice. The pseudo-code is
summarized in Algorithm 1 in the Appendix.

3.2 Masking stream transmission
To mask skipped tiles in the primary stream, Dragonfly transmits
a low quality version of the tiles as part of the masking stream. It
sends this stream with a longer look-ahead, since this stream helps
decouple network from motion uncertainty. The masking stream
helps tackle missed tiles owing to dips in bandwidth, while the
primary stream more accurately fetches content relevant to the
user as it uses a small look-ahead.
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Figure 8: Dragonfly overview.

A larger look-head associated with the masking stream implies
higher motion uncertainty, so it must include a wider region around
the viewport. We have implemented two strategies for the masking
stream. A first implementation involves simply transmitting the
full 360° for the masking stream (without tiling). A second imple-
mentation uses tiles for the masking stream, where the maximum
displacement around the user’s coordinate that the masking stream
must fetch is a configurable parameter that can be specified on a
per chunk basis.

Our experiments show the two schemes perform comparably,
although the full 360° approach performs slightly better (Figure 19
in Appendix A). In particular the tiling approach sees slightly more
incomplete frames, and interestingly has slightly more overhead.
This is because although a smaller region is transmitted, the en-
coding overheads of a tiling approach especially at low qualities is
higher.

For this reason, our experiments focus on sending the full 360° for
the masking stream. That said, we note that multiple optimizations
may be implemented for the tiling approach in the future. A first
optimization is to use the scheduling algorithm in §3.1 to ensure the
decision of which masking tiles to skip is done carefully based on
the utility function. A second optimization is to mask the effects of
a missing tile in the masking stream by interpolating neighboring
tiles.

3.3 Implementation
Figure 8 presents an overview of Dragonfly. We implemented a
prototype of Dragonfly in C++ with 7500 lines of code on a Linux
platform. The key components are (i) a tile scheduler which decides
the order in which tiles should be fetched, and which tiles may be
dropped even if present in the viewport; (ii) a bandwidth scheduler
that decides how to split traffic between the primary and masking
streams. Other components include (i) decoders which decode both
primary and masking tiles, (ii) viewport constructor which stitches
tiles together for rendering, and (iii) predictors for user motion and
bandwidth.

The client uses linear regression to predict viewports tiles like
prior work [24, 38]. It sends a request with a list of tiles along
with the desired quality per tile to the server. When a tile is re-
ceived, the client calculates the receive time for future bandwidth
estimation, and decodes the tile using the ffmpeg-libavcodec C++
library [5]. For decoding, we allocate an in-memory decoder buffer

using avio_alloc_context [6]. For rendering, the client stitches all
viewport tiles and replaces missing tiles with black pixels. The
server is a modified version of a DASH server. The manifest file is
updated to include tile sizes, the quality metric for that tile (e.g.,
PSNR or PSPNR) for all quality levels, and the yaw and pitch dis-
placements on a per-chunk basis.

Since the client can send multiple requests for the same tile,
the server tracks the quality per tile sent, and only sends a tile
redundantly if it was previously fetched with masking quality. The
client refreshes its list of tiles over time as it periodically refines its
predictions. When a new request is received, the server discards
the previous (older) request, and transmits tiles as per the newer
request. Tiles not yet transmitted in the older request in the send
queue are dropped.

4 EVALUATION
We use both emulation (§4.3) and user studies (§4.5) to compare
Dragonfly with state-of-the-art 360° streaming approaches. We
also dive deeper into Dragonfly design choices by conducting an
ablation study (§4.4).

4.1 Metrics and schemes compared
We evaluate the performance of Dragonfly and other 360° systems
using both subjective and objective metrics. Our user studies report
on the Mean Opinion Score (MOS) provided by the users. Our
objective metrics include (i) Quality metric, primarily PSNR, with
PSPNR used in some experiments; (ii) Rebuffering ratio, i.e., the
ratio of the total time the session experiences rebuffering to the
total video playtime; (iii) Incomplete frames %, the percentage
of viewports per session with at least one skipped tile2; (iv) Blank
area, the fraction of viewport area that is blank; (v) Bandwidth
wastage, defined as the ratio of the unnecessary data received by a
system to the total data that it receives, where unnecessary data
corresponds to tiles that are either outside the actual viewport or
are within the viewport but are not rendered. (e.g., a redundant
masking version is unnecessary data). Since the masking stream
may contain a full 360° chunk rather than a tile, if only a portion of
it is relevant, we consider the useful data to be the minimum of the
bytes needed to encode the relevant area using a tiling approach,
or the bytes to encode the full 360°, whichever is smaller.

We compare Dragonfly with several schemes:
Flare. Flare [38] fetches the viewport tiles, and additional tiles

at the periphery (§2). It continually refines predictions, and may
fetch additional tiles with a quality that depends on the bandwidth
and playback delay constraint.

Pano and Pano-PSPNR. Pano [24] uses a traditional ABR algo-
rithm to first determine a bitrate for each chunk. Next, given the
bitrate, Pano assigns a quality level for each tile within the chunk
so as to maximize a desired quality metric. Further, all tiles in the
360° are sent with non-viewport tiles assigned the lowest quality.
By default, our experiments, and user study focus on a Pano variant
which maximizes PSNR. We have also conducted evaluations with
a version of Pano that optimizes PSPNR, a metric that adjusts the

2Most existing 360° approaches suffer from rebuffering when tiles that are needed are
not received. Dragonfly suffers from skipped tiles instead.
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Scheme # of Refine fetch Skip/stall
streams decision approach

Dragonfly Two Yes (100ms) Utility
Two-tier Two No Stall/Passive
Pano One No Stall
Flare One Yes (100ms) Stall

Table 1: Comparing schemes by their design choices.

PSNR calculation accounting for the fact users are less sensitive to
quality distortion for certain kinds of video content (§4.3).

Pano introduces and uses a new quality metric (PSPNR-360)
that extends traditional PSPNR to also consider factors such as
user viewport speed, luminance and Depth of Field. We do not
consider this new metric for a few reasons. First, the choice of
quality metric is orthogonal to our comparisons since Dragonfly
may also use the same metric by incorporating it into the utility
function. Second, calculating PSPNR-360 is non-trivial, and requires
offline calculation of the metric for a variety of user movement
patterns, and an online estimation of patterns for a given user.
Further, the code for PSPNR-360 is unavailable to us3.

Two-tier [43]. Like Dragonfly, this system has a low quality 360°
stream, and a higher quality primary stream. Unlike Dragonfly’s
proactive skip approach, Two-tier fetches all primary stream tiles
in the same quality and passively skips those that do not arrive in
time. Further, Two-tier stalls if not all viewport tiles of the masking
stream arrive in time.

Table 1 compares systems with respect to their design choices.
Note that Two-tier and Pano decide what quality to fetch tiles once
per chunk, and do not refine these decisions. In contrast, Dragonfly
and Flare make an initial fetch decision, but refine it every 100ms.
This may result in previously requested tiles being canceled if not
already transmitted, and new tiles requested instead.

Scheme implementations: Since the source code is not publicly
available for Flare and Two-tier, and for key parts of Pano as dis-
cussed above, we implemented them by modifying the Dragonfly
codebase. (§3.3). For Pano and Flare which use a single stream,
we used a look-ahead of 3 seconds (but perform sensitivity to this
choice). For Two-tier and Dragonfly, we used a look-ahead of 3
seconds (resp. 1 second) for the masking (resp. primary) stream.

4.2 Datasets
360° videos dataset.Our experiments are conducted using a subset
of the videos from a publicly available dataset [34]. The dataset
has 30 videos (each 1 minute long and associated with a set of user
movement traces) which differed in terms of the levels of camera
motion, and number of moving objects. We spatially divided the
videos into 12x12 tiles (see Appendix §A for a discussion of tiling
schemes).

We encode the videos with Quantization Parameters (QP) of
22 (highest quality), 27, 32, 37,and 42. The bitrates vary with both
the videos and qualities and across chunks. For QP 42, the median

3 [11] provides scripts for grouping tiles using precomputed PSNR-360 models for
videos used by Pano. However, code is unavailable for key parts including calculation
of PSPNR-360 (for the offline lookup table, and for each user online), and for the
assignment of quality to tiles for a given chunk bitrate. We reused the grouping script,
but group tiles by PSNR or PSPNR. We implemented quality assignment using the
paper’s ideas.

bitrate of videos varied from 0.9 Mbps to 4.6 Mbps. For QP22, the
median video bitrates varied from 10.4 Mbps to 49.6 Mbps (and the
median of these medians was 28 Mbps). Table 3 and Figure 24 in the
Appendix provide detailed information for all videos and quality
levels. For Two-tier and Dragonfly which use two streams, the
lowest quality is used for one stream, and the remaining 4 qualities
were used for the other stream. All other systems were given the 5
qualities for their single stream.

We used ffmpeg-crop to segment the video into tiles. Then, we
encode the video tiles with different QPs to generate multiple quali-
ties of the same video tile. We set the I-interval (i.e. chunk length) to
1 second, and used ffmpeg to divide the video into chunks. To gen-
erate the PSNR values per tile, we used video quality management
tool (VQMT) [14] and Pano’s scripts to generate PSPNR [11].

Network traces. We use throughput traces from two datasets:
(i)Belgian dataset [45], which has 40 different bandwidth logs with
a total length of 5 hours collected by downloading large files using
HTTP over a 4G network when the mobile user was using different
means of transportation (train, bus, car, or foot); and (ii) Irish
dataset: [40], from which we selected 5 bandwidth logs which
were collected over 4.3 hours by repeatedly downloading a large
file (>200MB) over a 5G network while users were static.

For both datasets, we crop logs into 1 minute traces. We filter out
traces if (i) their bandwidth was so high that the full 360° could be
streamed in high quality for significant portions of the session or
(ii) if their bandwidth was insufficient to stream just the viewport
in the highest quality most of the time. Specifically, we filtered
out traces if the 10𝑡ℎ%𝑖𝑙𝑒 bandwidth is less than 7 Mbps and the
90𝑡ℎ%𝑖𝑙𝑒 bandwidth is greater than 28 Mbps4. These numbers were
chosen as the median of the median video bitrates is 28 Mbps as
noted above, and streaming only the viewport requires about 25%
of the full 360° bandwidth. Individual bandwidth samples in some
filtered traces (especially in the Irish dataset) could still be high, so
we cap each bandwidth sample to 28 Mbps. We plan to validate with
"in-the-wild" experiments over the Internet in the future [47, 48].

4.3 Comparison of schemes
Figure 9 shows results comparing the systems listed in Table 1 with
770 end-to-end video streaming sessions using all combinations of
7 videos, 10 user traces, and 11 bandwidth traces from the Belgian
dataset. Comparisons are given in terms of PSNR and rebuffering
ratio/incomplete frame %.

From Figure 9(a) we make several observations. First, Dragonfly
performs the best in PSNR. The median PSNR is higher relative
to Flare and Pano by 1.72 dB and 2.5 dB respectively. Note that
even a 1dB PSNR increase is considered significant in the video
coding community (and corresponds to 20% lower mean square
error), while a 3dB increase corresponds to 50% less mean square
error. Second, although Two-tier rarely sees rebuffering (expected
since it fetches the full 360° chunk in lowest quality three seconds
in advance), the PSNR is the lowest. This is because the scheme
picks a uniform quality for all tiles in the enhancement stream,
unlike Dragonfly which uses a utility algorithm to fetch the most
important tiles with higher quality. Third, sessions with Dragonfly

4For the Irish dataset, this filtered out too many traces. Instead, we filtered if 75𝑡ℎ%𝑖𝑙𝑒
exceeded 28 Mbps
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Figure 9: Objective quality metrics. (a) Distribution of PSNR across viewports of all sessions; (b) Rebuf. ratio/ Incomp. frame %
across sessions; (c) Percentage of wasted bytes.

do not see missed tiles since it fetches the full 360° for masking. In
contrast the median rebuffering ratio across sessions with Flare is
1.42%. While Pano has a lower median rebuffering, the spread is
large, with 90%tile rebuffering ratio of 1.71%.

Bandwidth wastage. Figure 9(c) shows the bandwidth over-
head (percentage of wasted bytes) for each system. Surprisingly,
Pano and Flare see higher overheads (61.31% and 55.7% for the
median session, respectively), while Dragonfly and Two-tier see
lower overheads despite fetching a redundant masking stream. This
is because schemes with a single stream (Pano and Flare) fetch
tiles with a larger look-ahead of 3 seconds to provision for network
dips. This results in prediction errors that can affect quality (e.g.,
viewport tiles may be fetched in lower quality while tiles outside
the viewport are in higher quality).

We also evaluated alternate versions of Pano and Flare with a 1
second look-ahead. For Flare, the overheads do drop noticeably to
38.31% for the median session. However, for Pano, the overheads
only drop to 57.45% for the median session. This is because Pano
groups tiles with similar sensitivity to quality variations (our imple-
mentation groups based on PSNR or PSPNR rather than PSPNR-360).
All tiles in a group are fetched with the same quality. Pano does so
because of the potential benefits of more effective compression with
the larger grouped tiles. However, this benefit is outweighed by
the cost of sending a larger region outside the viewport at a higher
quality. Further, we find that the compression efficiency benefits of
larger tile sizes while notable for low qualities degrade significantly
at higher qualities (we discuss this further in the Appendix §A).
Finally, Two-tier has a higher overhead than Dragonfly because it
does not refine its fetch decision which leads to higher inaccuracies,
and hence higher overhead.

Alternate quality metric: PSPNR. While Dragonfly optimizes
for PSNR, it can also work with other quality metrics (§3.1). To
demonstrate, we compare variants of Dragonfly and Pano that opti-
mize for PSPNR using the same set of videos, user trajectories, and
bandwidth traces described above. Figure 10 shows that Dragonfly-
PSPNR performs better than Pano-PSPNR. Further analysis shows
Dragonfly achieves a higher PSPNR across all viewports, and im-
proves PSPNR by over 2 dB for 69% of viewports. We do not show
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Figure 10: Variants of Pano and Dragonfly optimizing for
PSPNR.
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Figure 11: Sensitivity analysis using bandwidth traces from
Irish dataset.

the performance with respect to rebuffering ratio and incomplete
frames as it is similar to our earlier comparisons.

Sensitivity to bandwidth traces. Our experiments so far have
been conducted with the Belgian traces. We next present results
with the Irish dataset. We used 10 traces, along with the same set of
10 user trajectories and 7 videos earlier. We conduct experiments
for all combinations and summarize results in Figure 11. Overall,
the general trends are similar to the Belgian traces, although the
performance is slightly worse in all metrics for all schemes. Interest-
ingly, Pano sees higher rebuffering ratios with these traces. Further
investigation shows that bandwidth in these traces exhibits abrupt
occasional dips where bandwidth is close to zero. While this affects
Pano and Flare, Dragonfly is more resilient to the dips since it uses
a masking stream.

523



Dragonfly ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Sensitivity to user movement. In Appendix A, we present results
exploring the sensitivity of Dragonfly to motion prediction errors.
Results show that Dragonfly achieves higher PSNR relative to other
schemes under various ranges of error, whilemaintaining the lowest
overhead.

Scheme # of Refine fetch Skip/stall
streams decision approach

PassiveSkip two 100ms Passive
PerChunk two chunk Utility
NoMask one 100ms Utility
Table 2: A summary of Dragonfly variants.

4.4 Dragonfly ablation study
The main benefits of Dragonfly arise from three design elements:
(i) use of two streams; (ii) a utility-driven proactive skip approach;
and (iii) refining fetch decisions every 100 ms, rather than making
them once per chunk. We next present an ablation study where
we compare Dragonfly with three variants: PassiveSkip, PerChunk
and NoMask (summarized in Table 2) that each drop one of the
elements to understand the impact on performance. We use the
same set of videos, and user traces and use the Belgian bandwidth
traces.

Figure 12 summarizes the performance of Dragonfly variants.
Figure 12(a) shows that Dragonfly streams the highest viewport
quality as expected. The median PSNR of Dragonfly is 4.8dB and
1.6dB higher than PerChunk and PassiveSkip, respectively. Per-
Chunk has the lowest PSNR among the variants indicating the
importance of refining fetch decisions. Next, PassiveSkip achieves
significantly less PSNR than Dragonfly. This shows that masking
alone is insufficient, and the proactive skipping strategy that Drag-
onfly adopts to decide which primary tiles to fetch is essential.
Interestingly, NoMask performs comparably to Dragonfly on the
median PSNR. However, it exhibits a significant tail shown in the
zoomed portion of Figure 12(a). This is because NoMask has a small
% of incomplete viewports which impacts the PSNR tail. Note that
for skipped masking tiles, we calculate and use the PSNR of black
tile.

Figure 12(b) shows the fraction of blank area per viewport across
schemes. NoMask is the only variant with incomplete viewports,
and about 10% of the viewports are incomplete with this scheme.
This is expected because NoMask is the only scheme that does
not transmit a masking stream. Note that even when a viewport
is incomplete, Dragonfly’s proactive skip algorithm ensures more
critical regions of the viewport are fetched, which limits the impact
on PSNR for the vast majority of frames. Finally, Figure 12(c) shows
that NoMask sees the lowest overheads in terms of wasted bytes.
This is expected because it does not fetch the masking stream.

Proactive vs Passive Skip.We further analyze the benefits of
Dragonfly’s proactive skip algorithm. Figure 13(a) shows the % of
skipped tiles in the primary stream with various schemes. Interest-
ingly, Dragonfly skips noticeably more tiles than PassiveSkip when
the primary stream is considered – 39% of Dragonfly viewports have
skipped primary tiles in comparison to 7% of PassiveSkip viewports.
Yet, as Figure 12(a) has shown, Dragonfly performs better in PSNR.

This is because Dragonfly fetches more critical tiles in higher qual-
ity (e.g., central tiles that benefit more frames), while proactively
skipping less critical tiles (e.g., tiles in the periphery and which
may only benefit a small number of frames). Figure 13(b) explores
this further by showing the fraction of viewport tiles received in
each quality. The figure confirms that (i) Dragonfly fetches more
tiles in masking quality (6.74%) relative to PassiveSkip ( 2.17%); but
(ii) Dragonfly fetches significantly more tiles in the highest quality
(83.4%) compared to PassiveSkip (53.6%). This indicates the impor-
tance of Dragonfly’s proactive skip algorithm. Finally, PerChunk
skips a noticeably more primary tiles (45.72%) because it does not
refine its fetch decision.

4.5 User Study
In this section, we report on an Institutional Review Board approved
user study that we used to compare Dragonfly with other systems.

Ethical considerations and study protocol. Our user study was
conducted using a protocol approved by Purdue University’s IRB.
Each participant was asked to view a series of five 360° videos
using an Oculus headset. Video was streamed emulating different
bandwidth conditions using Mahimahi [35]. Five bandwidth traces
were selected from the Belgian dataset, and for any given participant
and video, one of the traces was randomly assigned. Each video
was streamed with the selected bandwidth trace using each of three
approaches: Pano, Flare, and Dragonfly. The order of the videos
was randomized for each participant, and the order in which the
three systems were used to stream each video was also randomized.
This avoided systematic biases that may arise owing to a user
always viewing a video for the first time with a particular system.
In total, each participant viewed and evaluated 15 videos of 1 minute
length with estimated experiment duration of 45-60 minutes. The
participants rated their experience with each video streamed with
each approach on a numeric scale from 1 (bad) to 5 (excellent) [13],
and optionally provided subjective comments.

Participantswere encouraged tomove freely so the video streamed
reflected their own motion. This is in contrast to many prior stud-
ies. For instance, Flare [38] obtains user head movement traces
using a commercial 360° system, but all comparisons use emula-
tions. Pano [24] compares schemes using user trajectories on an
emulation testbed, and the actual user study involves participants
passively watching videos obtained from emulation runs with the
different schemes. We conducted the study while allowing par-
ticipant movement to ensure that the evaluation better reflects
end-to-end user experience.

Prior to viewing the first video for which we record the rating,
users were instructed on how to use the HMD, and requested to
view a trial video recorded with poor and good quality, so they
could get familiar with the HMD device and be properly calibrated
on the range of qualities they may experience. We recorded how the
participant interacts with the videos by logging the participant’s
head movements when using the HMD device. All data regarding
participants were recorded with an anonymous participant ID. Al-
though the risk of motion sickness is minimal, participants were
advised through an informed consent form to not participate if they
had a history of motion sickness. Further, they were encouraged to
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Figure 12: Results of Dragonfly variants. (a) Distribution of PSNR across viewports of all sessions; (b) Fraction of blank area per
viewport; (c) Percentage of wasted bytes.
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Figure 13: The fraction of tiles skipped in primary stream,
and its impact on the quality of viewport tiles.

take periodic breaks, and not required to watch all videos. Addition-
ally, we first viewed the videos in our dataset prior to the study, and
conservatively avoided two videos used in our emulation experi-
ments that we felt had the potential to cause mild motion sickness
including our highest bitrate video. Conducting user studies with
high motion videos ethically is an important future direction.

Setup: The video server is hosted on a Linux machine (Ubuntu
16.04 OS, Intel i7-9700, 16 GB RAM, Radeon RX 550/550X GPU), and
the video client runs on a Windows 10 machine (Intel i7-12700, 32
GB RAM, NVIDIA GeForce RTX 3070 GPU) as Oculus is only com-
patible with Windows. The network bandwidth between the server
and client was emulated using Mahimahi [35]. The user watches the

videos on an Oculus Quest 2 head mounted device (HMD) [9]. The
HMD sends the user coordinates to the client machine every 40 ms,
which in turn (i) sends the viewport back to a Unity App to render
the frame on Oculus wirelessly using Air Link, and (ii) updates
the future request of tiles to fetch it sends to the server. The client
machine has enough computation resources to mask the rendering
overhead induced by Unity app [12] and Oculus Airlink [8].

As discussed in §3.2, we have implemented two variants of Drag-
onfly with respect to transmission of the masking stream (an ap-
proach that transmitted the full 360°, and a tiling approach). Our
user study uses the tiling approach. Specifically, it tracks the maxi-
mum displacement seen by past users (i.e., users in [34] dataset) on
a per chunk basis for each video, and fetches masking tiles using
this displacement value which varies across chunks. As shown by
Figure 19 in the Appendix A, this scheme experiences slightly more
incomplete frames, and slightly higher overhead than 360°masking.
Thus, our user study understates the performance of Dragonfly.

Results. Figure 14(a) shows the distribution of the opinion score
of all 26 participants across all their sessions (390 sessions in total,
130 for each system). Dragonfly is favored by the users with 65% of
sessions having a rating of 4 and above. In comparison, only 16% of
Pano and 13% of Flare sessions have this rating. Figure 14(b) shows
the mean opinion score (MOS) of the users per video. Dragonfly
has a higher MOS for all videos. Figure 14(c) shows the average
PSNR for viewport tiles across all sessions of all users Dragonfly
achieves a higher PSNR, with the median PSNR across viewports
being 1.7dB higher than Pano, and 2.7dB more than Flare.

While Dragonfly may skip some tiles in the viewport, we found
this was acceptable for two reasons. First, across sessions, the aver-
age percentage of incomplete viewports (viewports included one or
more tiles that had at least one skipped frame) was small (1.13%). In
contrast, the average rebuffering ratios across sessions with Pano
and Flare were 3.35% and 2.77%, respectively. Further, skipped tiles
were typically in the viewport periphery, where they have a lesser
impact on perceived video quality. Figure 15 illustrates this by pre-
senting a heat map that shows the fraction (across viewports of all
sessions) that a tile was unavailable at a given location. The fraction
was never higher than 0.8%, and the larger fractions were on the
periphery.

Is user movement across systems comparable? In our study,
participants are free to move as per their choice in each session.
To verify that the better results were not owing to participants
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Figure 14: Results from user study. (a) Distribution of opinion scores across all users and sessions; (b) MOS per video along with
95% confidence intervals. Video IDs correspond to naming in [34]; and (c) Distribution of PSNR across users and sessions.

Figure 15: Dragonfly rarely experiences skipping; Skips
mainly occur on the viewport edge where the impact is low.

moving less with Dragonfly, Figure 16 shows the distribution of
the yaw displacement estimated each second during all sessions.
All systems experience similar yaw displacement across all videos
indicating this was not a factor in the results. Interestingly, Flare saw
slightly less displacement for video v8, and also had a lower MOS
for the video. A potential explanation is that worse performance
may reduce the user’s interest in engaging with the video and
consequently limits their movements – however, we defer an in-
depth investigation to future work.

Qualitative feedback. Users were given the option to provide
qualitative comments after they viewed each video with every sys-
tem. Overall, we received 381 comments in our study. Since this
is too numerous to enumerate, we summarize key observations
from the qualitative feedback. We categorize each comment into:
(i) blankness: the frequency of experiencing black tiles with a sys-
tem; (ii) reactivity: the recovery time from low quality upon user
movement; and (iii) quality: the perceptual video measurement. For
instance, feedback such as "If quick flip, pixelated but improves.
Response was fast” was indicative of a more reactive system, while
feedback such as "It was taking forever to update”, indicated a less
reactive one. Likewise, "Extremely clear.” would map to high quality,
while comments such as "Details are not clear" or "Mostly pixelated,
very bad" mapped to low quality.

Figure 17 summarizes participant feedback across all metrics.
Figure 17(a) shows the degree to which different systems experi-
enced blank screens according to the users. 90.15% (resp. 89.8%)
of Pano (resp. Flare) feedback indicated the system experienced at
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Figure 16: The distribution of users displacements during
one second period across all sessions.

least some or many blanks. In contrast, the corresponding num-
ber for Dragonfly was 47.1% – further, only 2.7% of the comments
indicated Dragonfly experienced many blanks. Note that while
Dragonfly experiences blanks when it skips tiles, Flare and Pano
experience blanks when a rebuffering event occurs which may
result in incomplete viewports rendered during the rebuffering
event. Figure 17(b) shows the responsiveness of different systems
to user motion. While the majority of feedback (73.7%) indicates
Dragonfly is highly reactive, the majority of feedback related to
Pano (57.2%) and Flare (78%) indicates the systems are slow to react.
Finally, Figure 17(c) shows that 60.2% of user feedback indicates
high perceptual quality with Dragonfly. In contrast, only 10% (resp.
6.74%) of feedback indicates high quality for Pano (resp. Flare).

5 RELATEDWORK
§2 has discussed many tile-based streaming approaches [19, 21,
24, 31, 37–39, 42, 51] A recent approach [26] uses eye tracking to
collect a user’s gaze information, and uses live encoding to send
uncompressed video frames for the foveal region and a compressed
video frame stream for the rest. The paper focuses on the impact
of latency on bandwidth savings of the approach, and shows that
reducing end-to-end latency to 15 ms can save about 80% of band-
width. In contrast, Dragonfly uses pre-encoded video chunks to
reduce the latency like most other tile-based approaches. Recent
work [46] uses dual queues and Deep Reinforcement Learning to
guide fetch decisions DRL requires hours of training. Further, [46]
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Figure 17: Participants feedback summary.

does not target continuous playback and reports noticeable stalls
and modest bitrate improvements.

Like [24], some schemes stream the full 360° frame but use higher
quality for the viewport. Rubiks uses more layers for the view-
port [25], Core [36] encodes the viewport in higher resolution,
and gradually reduces resolution at the periphery, while Meta re-
searchers proposed encoding various viewport regions in the video
at high quality (i.e., 150 different streams per video = 30 viewports
x 5 quality levels), and only fetch the video stream with relevant
viewport [29]. These approaches suffer from issues similar to Pano
discussed in §2. Some works adapt the tiling scheme across a video
session [50] or across the viewport in the frame [23] to reduce the
bandwidth overhead and improve the QoE for the session. [23] as-
signs variable playback latencies for multiple users in a 360° video
live streaming session. The viewport information from earlier users
is used to predict the viewport for later users.

Some schemes [20, 22, 30] trade-off bandwidth requirements and
client computation. [22] reduces bandwidth requirement for 360°
video streaming using super resolution, while increasing compu-
tation at the client to infer high quality tiles from low resolution
tiles. Other works [20, 30] are optimized for AR/VR workloads.
Furion [30] fetches pre-rendered frames from the server for the
less frequently changing background environment and uses local
device rendering for foreground interactions. Alg-Vis [20] uses vi-
sual similarity of pixels across different VR frames to adaptively
divide the frame into background and foreground. It renders the
foreground and reuses the pixels to get the background.

6 CONCLUSION
In this paper, we have made three contributions. First, we have
argued that in streaming 360° videos, it is preferable to skip tiles to
preserve interactive experience rather than stall playback. Second,
we have presented Dragonfly, a new 360° system that leverages
the additional degrees of freedom provided by this design point.
Dragonfly decides which tiles to fetch, and in what qualities, using a
utility model that captures factors relevant to user experience. Fur-
ther, Dragonfly tackles the degradation of prediction accuracy with
look-ahead by fetching high quality tiles with a small look-ahead,
and low quality versions with a longer look-ahead. Third, we have
shown that Dragonfly outperforms state-of-the-art 360° streaming
approaches. In our user study with 26 users, 65% of sessions have a
rating of 4 or higher (Good/Excellent) with Dragonfly, while this
is the case for only 16% and 13% of sessions with Pano and Flare,

respectively. In our emulation experiments, Dragonfly achieved a
median PSNR gain 1.72dB-4.5dB over existing approaches. None
of Dragonfly sessions experienced incomplete viewports owning
to its use of a masking stream. In contrast, at least one rebuffering
event is observed for 99% of Flare sessions and 50% of Pano sessions.
This work does not raise any ethical issues.
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A APPENDIX

Appendices are supporting material that has not been peer
reviewed.

Algorithm 1 Utility Algorithm (§3.1)
1: 𝑟𝑒𝑞 = list(); // tiles request
2: 𝑈𝑠𝑢𝑚 = 0; // This is the overall utility
3: 𝜁 ← 𝐶 // 𝜁 contains the set of all tiles in 𝐶
4: for 𝑞 : 1→ 𝑄 do
5: 𝛿 ← sort 𝑖 by𝑈𝑖𝑞0𝑡0 ;∀𝑖 ∈ 𝜁 // 𝑞0 is the current quality
6: for 𝑖 ∈ 𝛿 do
7: 𝑖𝑑𝑥 ← tentative position of 𝑖 in 𝑅𝑒𝑞 s.t.𝑚𝑎𝑥 𝑈𝑠𝑢𝑚

8: if 𝑖𝑑𝑥 == null then
9: continue to next tile;
10: 𝑟𝑒𝑞 [𝑖𝑑𝑥] ← 𝑖 // add 𝑖 to request at position 𝑖𝑑𝑥

11: 𝑞0 [𝑖] ← 𝑞 // upgrade quality of 𝑖 to 𝑞
12: for tile 𝑘 ∈ subsequent(𝑖) do // 𝑘𝑖𝑑𝑥 > 𝑖𝑑𝑥

13: while𝑈𝑘,𝑞0,𝑡 == 0 do // if 𝑘 utility is zero
14: 𝑞0 [𝑘] ← 𝑞0 [𝑘] − 1 // downgrade 𝑘 quality.
15: // reduce 𝑘 size, thus the arrival time
16: Update 𝑡 [𝑘] // update 𝑘 arrival time.
17: // This can increase 𝑘 utility > 0
18: // if 𝑘 size reduction did not help
19: if 𝑈𝑘,𝑞0,𝑡 = 0 then
20: Drop k from 𝑟𝑒𝑞

21: // update the set tiles 𝜁 to only tiles in the 𝑟𝑒𝑞.
22: 𝜁 ← 𝑟𝑒𝑞

Sensitivity to quality (§3.1). Figure 18 shows an example of two
tiles from the same video encoded at the highest and lowest quality
levels. For the bottom tile, a higher quality (right) is perceptually
much better than a lower quality (left). For the top tile, the difference
is not as sharp.

(a) low perceptual difference

(b) high perceptual difference

Figure 18: Example of two tiles at the lowest and highest
quality levels.

Comparing masking strategies (§3.2,§4.5). We compare two
different masking strategies that we have implemented for Dragon-
fly: masking using the full 360°, and a tile masking scheme. For tile
masking, the maximum displacement around the user’s coordinate
that the masking stream must fetch is a configurable parameter
that can be specified on a per chunk basis. We set this based on the
maximum displacement seen over a subset (20) user trajectories
in [34] dataset on a per chunk per video basis, and evaluate the
scheme on the remaining (10) user trajectories. Figure 19 shows
the two variants perform comparably, although tile masking expe-
riences slightly more incomplete frames and overhead. The higher
overhead is because for low qualities (that the masking stream is
transmitted in), encoding is more efficient when the full 360° is
transmitted compared to a tiling approach even though this corre-
sponds to a larger region.

Why 12x12 tiling? (§4.2) Our evaluations use a 12x12 tiling. Using
larger tiles (i.e., partitioning into less than 144 tiles) potentially leads
to better compression (see discussion related to 4.4.1 below), while
having smaller tiles helps in minimizing the data to be transmitted
if the user moves frequently (over a chunk duration of 1 second,
any tile that overlaps with any viewport frame in that 1 second
period must be transmitted). We did trace-driven simulations to
derive the video bit rate needed if the viewports were perfectly
predicted and only these viewports were streamed. Our simulations
varied tile size, and used user trajectories from our data-set. For a
higher quality encoding, our results show that a user with a 12x12
tiling scheme would need 5.45% less bandwidth compared with a
finer 24x18 tiling scheme and 20% less bandwidth than a coarser
6x6 tiling scheme.

Compression benefits of using Pano’s variable tiling (§4.3)
Pano splits a chunk into 30 variably sized groups of tiles (so that
a given tile contains pixels with a similar quality sensitivity to
changes in encoding parameters), while Dragonfly (and other sys-
tems) use fixed tiling. In our implementation, this involves dividing
each chunk into 144 (12x12) equally sized tiles. In Figure 20, we
compare the sizes of videos used in our evaluations (across different
qualities) for the two tiling schemes. The X-Axis shows the size of
videos encoded using Pano’s tiling scheme, and the Y-Axis shows
the ratio of the overheads due to fixed tiling (i.e., 𝐹

𝑉
, where 𝐹 is the

size with fixed tiling, and 𝑉 the size with variable tiling). Although
there is noticeable overhead for lower quality videos (consistent
with [24]), the overheads degrade significantly at larger quality
levels and higher bit rate videos. The main reason why variable
tile sizes helps is because of better opportunities for intra-frame
prediction. However, intra prediction helps primarily at low rates.
At high rates the difference between intra prediction and blocks
encoded directly without prediction becomes negligible. For 360°
streaming with HMDs, the bitrates tend to be high with 4K and
higher resolution, hence we believe the benefits of variable tiling
will in general be lower. However, the additional costs must still
be incurred (as regions outside the viewport may be part of the
viewport tile).

Sensitivity to motion prediction errors (§4.3). To verify the ro-
bustness of Dragonfly to errors in motion predictions, we evaluate
Dragonfly and other schemes, over 7 videos, 5 users traces, and
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Figure 19: Objective quality metrics comparison of Dragonfly variants which use either full 360° for masking (emulation) or
tile based strategy (user study).
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Figure 20: Comparing the encoding overhead using 12x12
tiling scheme and Pano grouped tiling scheme.

Video ID median QP42 (Mbps) median QP22 (Mbps)
v1 0.9 10.4
v2 1.2 10.5
v7 1.7 24.4
v8 3.1 28.4
v14 3.3 27.8
v28 3.6 30.9
v27 4.6 49.6

Table 3: Summarizing median videos bitrates for the lowest
(QP42) and highest (QP22) qualities (sorted by QP42).

5 bandwidth traces from Belgian dataset, by shifting the history
of viewport coordinates by random degrees 𝐷 which is uniformly
distributed, following previous work [24]. Results (Figures 21-23
in Appendix §A) shows that Dragonfly achieves higher PSNR for
different 𝐷 relative to other schemes, while maintaining high inter-
active experience with only 1% of sessions encounter incomplete
viewports. Looking at the overheads, the trend persists with Drag-
onfly having the lowest median overhead.
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Figure 21: Objective quality metrics. Viewport coordinates shifted by 𝐷 = 5 degrees.
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Figure 22: Objective quality metrics. Viewport coordinates shifted by 𝐷 = 20 degrees.
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Figure 23: Objective quality metrics. Viewport coordinates shifted by 𝐷 = 40 degrees.
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Figure 24: The bitrate of full 360° chunk: The videos bitrate for all qualities, 2 videos [a-b] are low bitrate, 4 videos [c-f] are
medium bitrate videos, and one high bitrate video[g].

532


	Abstract
	1 Introduction
	2 Background and Motivation
	3 Dragonfly Design
	3.1 Utility-Driven Scheduling algorithm
	3.2 Masking stream transmission
	3.3 Implementation

	4 Evaluation
	4.1 Metrics and schemes compared
	4.2 Datasets
	4.3 Comparison of schemes
	4.4 Dragonfly ablation study
	4.5 User Study

	5 Related Work
	6 Conclusion
	References
	A Appendix

