
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Contracting Wide-area Network Topologies to Solve
Flow Problems Quickly

Firas Abuzaid, Microsoft Research and Stanford University; Srikanth Kandula,
Behnaz Arzani, and Ishai Menache, Microsoft Research; Matei Zaharia

and Peter Bailis, Stanford University
https://www.usenix.org/conference/nsdi21/presentation/abuzaid

Contracting Wide-area Network Topologies to Solve Flow Problems Quickly

Firas Abuzaid†∗, Srikanth Kandula†, Behnaz Arzani†, Ishai Menache†, Matei Zaharia∗, Peter Bailis∗

Microsoft Research† and Stanford University∗

Abstract– Many enterprises today manage traffic on their
wide-area networks using software-defined traffic engineer-
ing schemes, which scale poorly with network size; the solver
runtimes and number of forwarding entries needed at switches
increase to untenable levels. We describe a novel method,
which, instead of solving a multi-commodity flow problem
on the network, solves (1) a simpler problem on a contrac-
tion of the network, and (2) a set of sub-problems in parallel
on disjoint clusters within the network. Our results on the
topology and demands from a large enterprise, as well as on
publicly available topologies, show that, in the median case,
our method nearly matches the solution quality of currently
deployed solutions, but is 8× faster and requires 6× fewer
FIB entries. We also show the value-add from using a faster
solver to track changing demands and to react to faults.

1 Introduction

Wide-area networks (WANs), which connect locations across
the globe with high-capacity optical fiber, are an expensive
resource [7, 35, 36, 38]. Hence, enterprises seek to carefully
manage the traffic on their WANs to offer low latency and
jitter for customer-facing applications [28, 62, 69] and fast
response times for bulk data transfers [46, 56].

The state-of-the-art approach used in several enterprises
today [35, 36, 38] is to compute optimal routing schemes for
the current demand by solving global multi-commodity flow
problems [7,35,36,38]; the global flow problems are re-solved
periodically, since demands may change or links may fail,
and the computed routes are encoded into switch forwarding
tables using software-defined networking techniques [7].

As network sizes grow, solving multi-commodity flow prob-
lems on the entire network becomes practically intractable.
As noted in [36], the “algorithm run time increased super-
linearly with the site count,” which led to “extended periods
of traffic blackholing during data plane failures, ultimately
violating our availability targets,” as well as “scaling pressure
on limited space in switch forwarding tables.” This problem
is unlikely to go away: anecdotal reports indicate that WAN

Contract
network

Allocate flow on
contracted

network
occasionally

Network Clusters

Demands

Flow
AllocationDemand

History
Paths

(periodically; e.g.,
every few min)

Figure 1: NCFlow’s workflow.

Cluster

Figure 2: The original network on the left is divided into clusters, shown
with different background colors. The contracted network is on the right.

footprints today are already over 10× larger than the few tens
of sites that were considered in prior work [35, 36], since
enterprises have built more sites to move closer to users.

In this paper, we seek to retain the benefits of global traffic
management for large WAN networks without requiring ex-
cessively many forwarding entries at switches or prohibitively
long solver runtimes. Also, by using a faster solver, WAN
operators can reduce loss when faults occur and carry more
traffic on the network by tracking demand changes.

Our solution is motivated by the observation that WAN
topologies and demands are concentrated: the topology typi-
cally has well-connected portions separated by a few, lower-
capacity edges, and more demand is between nearby datacen-
ters. This is likely due to multiple operational considerations:
(1) submarine cables have become shared choke points for
connectivity between continents (see Figure 3), (2) the con-
nectivity over land follows the road or rail networks along
which fiber is typically laid out, and (3) enterprises build
datacenters close to users, then steer traffic to nearby datacen-
ters [12, 62, 69]. Therefore, more capacity and demand are
available between nearby nodes; an analysis of data from a
large enterprise WAN in §2 supports this observation.

We leverage this concentration of capacity and demand
to decompose the global flow problem into several smaller
problems, many of which can be solved in parallel. As shown

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 175

Figure 3: Submarine cables serve as choke points in WAN topologies; figure
is excerpted from [63].

in Figure 2, we divide the network into multiple connected
components, which we refer to as clusters. We then solve
modified flow problems on each cluster, as well as on the con-
tracted network, where nodes are clusters and edges connect
clusters that have connected nodes. Prior work [4,9,15] notes
that Google and other map providers use different contractions
to compute shortest paths on road network graphs. Our goal
is to closely match the multi-commodity max flow solution in
quality (i.e., carry nearly as much total flow), while reducing
the solver runtime and number of required forwarding entries.
We discuss related work in §7; to our knowledge, we are the
first to demonstrate a practical technique for multi-commodity
flow problems on large WAN topologies.

Solving flow problems on the contracted network poses
two key challenges:

1. How to partition the network into clusters? More clusters
leads to greater parallelism, but maximizing the inter-
cluster flow requires careful coordination between the
sub-problems at multiple clusters.

2. How to design the sub-problems for each cluster to im-
prove speed while reducing inconsistencies in alloca-
tion? The sub-problem for a cluster has fewer nodes and
edges to consider, but it will not be be faster if it must
consider all node pairs whose traffic can pass through
the cluster.

Our solution NCFlow1 achieves a high-quality flow alloca-
tion with a low runtime and space complexity by addressing
each of these challenges in turn. First, we contract the network
using well-studied algorithms such as modularity-based clus-
tering [25] and spectral clustering [53], which are designed
to identify the choke-point edges in a network. Second, we
bundle demands whose sources and/or targets are in the same
cluster, treating them as a single demand. In Figure 2 for ex-
ample, the yellow cluster considers as one bundled demand
all traffic from source nodes in the red cluster to target nodes
in the green cluster. Doing so can lead to inconsistent flow
allocations between clusters (which we explain in §3.1.1) and
we devise careful heuristics to provably avoid them (§3.2).
Finally, we reduce the forwarding entries needed at switches

1short for Network Contractions for Flow problems

 0.1

 1

 10

 0 500 1000 1500 2000

N
o
rm

a
liz

e
d

 C
h
a
n
g
e

Time (mins)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.3 0.6

C
D

F

Metric

Norm. Change
Fract. demand unmet

Figure 4: On the left, we plot the L2 norm of the change in the demands
between successive 5-minute periods divided by the L2 norm of the traffic
matrix at a time. On the right, we show the CDF of this change ratio. We
also show a CDF of the fraction of demand that is unsatisfied if using the
allocation computed for the previous period.

by reusing pathlets within clusters and traffic splitting rules
across multiple demands (§3.5).

Figure 1 shows the workflow for NCFlow. First, we choose
appropriate clusters and paths using an offline procedure over
historical traffic—these choices are pushed into the switch
forwarding entries. This step happens infrequently, such as
when the topology and/or traffic changes substantially. Then,
online (e.g., once every few minutes), NCFlow computes how
best to route the traffic over the clusters and paths, similar to
deployed solutions [35, 36, 38].

Overall, our key contributions are:
• We propose NCFlow, a decomposition of the multi-

commodity max flow problem into an offline cluster-
ing step and an online, provably feasible, algorithm that
solves a set of smaller sub-problems in parallel.

• We evaluate NCFlow using real traffic on a large enter-
prise WAN, as well as synthetic traffic on eleven topolo-
gies from the Internet Topology Zoo [6]. Our results
show that, for multi-commodity max flow, NCFlow is
within 2% of the total flow allocated by state-of-the-
art path-based LP solvers [35, 36, 38] in 50% of cases;
NCFlow is within 20% in 97% of cases. Furthermore,
NCFlow is at least 8× faster than path-based LP solvers
in the median case; in 20% of cases, NCFlow is over
30× faster. Lastly, NCFlow requires 2.7–16.7× fewer
forwarding entries in the evaluated topologies. NCFlow
also compares favorably to state-of-the-art approxima-
tion algorithms [27,41] and oblivious techniques [44,57].

• We show that, as a fast approximate solver, NCFlow can
be used to react quickly to demand changes and link
failures. Specifically, in comparison to TEAVAR [19],
NCFlow carries more flow when no faults occur and suf-
fers about the same amount of total loss during failures.

We have open-sourced an anonymous version of NCFlow [2],
and are in the early stages of integrating NCFlow into produc-
tion use at a large enterprise.

2 Background and Motivation

We analyze the changes in topology and traffic on a large
enterprise WAN over a several-month period. As Figure 4

176 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

112 202 294 372 486 1790
of Edges (log scale)

10 2
10 1
100
101101
102
103

Ru
nt

im
e

(s
),

lo
g

sc
al

e

5-minute time window

Figure 5: Runtimes of a state-of-the-art solver on topologies from Internet
Topology Zoo [6]. Both axes are in log scale and the band represents stan-
dard deviation. In production WANs, new traffic demands arrive every few
minutes [35, 38].

shows, the change in traffic demand from one 5-minute win-
dow to the next is substantial; the average change is 35%;
in 20% of the cases, the traffic change is over 45%. The en-
terprise solves a global flow allocation problem every few
minutes. The figure on the right shows the fraction of traffic
that will remain unsatisfied if the flow allocation from the
previous window were to be used instead of computing a new
allocation. We see that the median loss is 13%; in 20% of the
cases, over 20% of the demand remains unsatisfied. We verify
that computing a new allocation will satisfy all of the demand;
using the previous window’s allocation causes loss because
some datacenter pairs may receive more flow in the previous
allocation than their current demand while other datacenter
pairs go unsatisfied.

Given the above data, computing a new allocation in each
time window is needed to carry more traffic on the WAN.
However, solver runtime increases super-linearly with the
size of the topology, as shown in Figure 5. For several public
topologies and on a variety of traffic matrices, we benchmark
the multi-commodity max-flow problem (specifically PF4, as
will be described in §5.1). The runtimes were measured on a
server-grade machine using a production-grade optimization
library [33]. As the figure shows, when the topology size ex-
ceeds a thousand edges, the time to compute a flow allocation
can exceed the allotted time window.

A fast solver would not only ensure that new allocations
complete in time—it could also enable more frequent alloca-
tions, e.g., every minute. Doing so would enable allocations
to track changing demands at a finer granularity. Moreover,
as we show in §5, a fast solver can help when reacting to link
and switch failures.

Our observation that demand and capacity are concentrated
among nearby nodes is grounded on the following measure-
ments from a production WAN:
Demand properties:

• On average, 7% (or 16%) of the node pairs account for
half (or 75%) of the total demand.

• When nodes are divided into a few tens of clusters, 47%
of the total traffic stays within clusters. If the demands
were distributed uniformly across node pairs, only 8%
of the traffic would stay within clusters; thus the demand
within clusters is about 6× larger than would be expected

from a uniform distribution.

WAN topology properties:
• When nodes are divided into tens of clusters, 76% of all

edges and 87% of total capacity is within clusters.
• The skew in capacity is small: the ratio between the

largest edge capacity and the mean is 10.4.
• The skew in node degree is also small: the average node

degree is 3.9, with σ = 2.6; the max is 16.
• Relative to the network size (hundreds of nodes), the

average network diameter (=11) and the average shortest-
path length (= 5.3) are very small.

Motivated by the above analyses, NCFlow seeks to be a fast
solver for large WAN topologies by leveraging the concentra-
tion of traffic demands and capacity.

Background: Before we describe NCFlow’s design, we give
some background on multi-commodity flow problems. Given
a set of nodes, capacitated edges, and demands between nodes,
a flow allocation is feasible if it satisfies demand and capacity
constraints. The goal of a multi-commodity flow problem is to
find a feasible flow which optimizes a given objective; Table 1
lists some common flavors.

The fastest algorithms [27, 41] are approximate; i.e., given
a parameter ε, they achieve at least (1−ε)× the optimal value.
And, their runtime complexity is at least quadratic (Table 1).

Moreover, these solutions allow demands to travel on any
edge, thus requiring millions of forwarding table entries at
each switch for thousand-node topologies. Instead, produc-
tion systems [35, 38] restrict flow to a small number of pre-
configured paths per demand, which reduces the required
forwarding table entries by 10–100×.

Using notation from Table 2, the feasible flow over a pre-
configured set of paths can be defined as:

FeasibleFlow(V ,E ,D,P),
{

fk | ∀k ∈D and (1)

fk = ∑
p∈Pk

f p
k , ∀k ∈D (flow for demand k)

fk ≤ dk, ∀k ∈D (flow below volume)

∑
∀k,p∈Pk ,e∈p

f p
k ≤ ce, ∀e ∈ E (flow below capacity)

f p
k ≥ 0 ∀p ∈ P ,k ∈D (non-negative flow)

}
Production systems use linear optimization-based

solvers [35, 36, 38]. On WANs with thousands of nodes, the
optimization problem could have millions of variables and
equations just to verify that a flow allocation is feasible.

In this paper, we consider the problem of maximizing the
total flow across all demands:

MaxFlow(V ,E ,D,P),argmax
f ∑

k∈D
fk (2)

s.t. f ∈ FeasibleFlow(V ,E ,D,P)

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 177

Maximization term Additional Constraints Used in Known best complexity
MaxFlow ∑k∈D fk none [35, 38] O(M2ε−2 logO(1) M) [27]

MaxFlow with Cost Budget ∑k∈D fk ∑k ∑p∈Pk ∑e∈p f p
k Coste ≤ Budget O(ε−2M logM(M+N logN) logO(1) M) [27]

Max Concurrent Flow α dkα≤ fk,∀k ∈D [19, 39, 40] O(ε−2(M2 +KN) logO(1) M) [41]

Table 1: We illustrate a few different multi-commodity flow problems all of which find feasible flows but optimize for different objectives and can have additional
constraints; see notation in Table 2. Equation 6 fleshes out the problem completely for the case of maximizing flow. More problems are discussed in [11].

Term Meaning
V ,E ,D,P Sets of nodes, edges, demands, and paths
N,M,K The numbers of nodes, edges, and demands, i.e., N =

|V |,M = |E |,K = |D|
e,ce, p Edge e has capacity ce; path p is a set of connected edges
(sk, tk,dk) Each demand k in D has source and target nodes (sk, tk ∈

V) and a non-negative volume (dk).
f, f p

k Flow assignment vector for a set of demands and the flow
for demand k on path p.

Table 2: Notation for framing multi-commodity flow problems.

Vagg, Eagg,
Dagg, Pagg

Nodes, edges, demands, and paths in the aggregated
graph

Vx,Ex,Dx,Px Subscript denotes entities in the restricted graph for
cluster x

x,η Each cluster x is a strongly connected set of nodes and
η is the number of clusters

k,Kxy,Ksy,Kxt An actual demand (k); the rest are bundled demands
from one source (s) or all nodes in a cluster (x) to a
target (t) or to all nodes in a cluster (y)

Table 3: Additional notation specific to NCFlow.

SDN-based traffic engineering schemes [35, 38], in addi-
tion to repeatedly solving global optimizations, must maintain
an up-to-date view of the topology, gather desired volumes
for demands and update traffic splits at switches based on the
result of the optimization. Our production experience is that
most of these repetitive steps have a latency of a few RTTs
(round trip times) and so solving the optimization dominates,
especially on large topologies. Moreover, demands are lim-
ited to their allocated rates in software at the source servers
and thus allocating less than the full desired rate need not
result in packet loss [35]. Finally, applications that contribute
a large fraction of the bytes moving between datacenters are
elastic in short timescales; e.g., large dataset transfers for data
analytics. That is, these apps seek a fast completion time but
do not need a large rate in every optimization epoch. Some
other applications have a decreasing marginal utility as their
rate allocation increases such as video streams of varying
quality [43]. Today’s SDN-based TE solutions [35, 38] use
multiple priority classes to maximize allocations for elastic
traffic without affecting the latency-sensitive traffic.

3 NCFlow

In this section, we describe NCFlow. Our steps are as shown
in Figure 1. Offline, based on historical demands, we divide
the network into clusters and determine paths. Further details
are in §3.4. Online, we allocate flow to the current demands by
solving a carefully constructed set of simpler sub-problems,

MaxAggFlow

MaxClusterFlow

MinPathE2E

SrcTargetMax

f1 ,MaxFlow(Vagg,Eagg,Dagg,Pagg)

∀clusters x, fx
2 ,MaxFlow(Vx,Ex,Dx,Px)

s.t. NoMoreFlowThruCluster(f, f1,x) (see §D)

f3 ,
{

fk,∀k ∈Dagg
}

s.t.

s.t. NoMoreAlongPaths(f, f2) (see §D)

∀clusters x,y,x 6= y, fxy
4 ,argmax ∑

k∈Kxy

fk

s.t. ∑
k∈Ksy

fk ≤ f x
2,Ksy , ∀s ∈ x; ∑

k∈Kxt

fk ≤ f y
2,Kxt

, ∀t ∈ y;

∑
k∈Kxy

fk ≤ f3,Kxy ; fk ≤ dk, ∀k ∈ Kxy

Figure 6: The basic flow allocation algorithm used by NCFlow; notation
used here is defined in Table 3.

some of which can be solved independently and in parallel.
We describe these sub-problems in §3.1. Although they can be
solved quickly, disagreements between independent solutions
can lead to infeasible allocations; we present a simple heuris-
tic in §3.2 that provably leads to feasible flow allocations.
In §3.3, we discuss extensions that increase the total flow al-
located by NCFlow. We also show sufficient conditions under
which NCFlow is optimal and matches the flow allocated by
MaxFlow. Finally, in §3.5, we discuss how NCFlow uses fewer
forwarding entries by reusing pathlets within clusters and
splitting rules for different demands.

3.1 Basic Flow Allocation

We begin by describing a simple (but incomplete) version
of NCFlow’s flow allocation algorithm; the pseudocode is
in Figure 6. We continue using Figure 2 as a running example.
The basic algorithm proceeds in four steps.

In the first step, we allocate flow on the aggregated graph;
as shown in MaxAggFlow in Figure 6. In the aggregated graph,
an example of which is in Figure 2 (right), nodes are clusters
and the edges are bundled edges from the original graph—
the edge between the red and yellow clusters corresponds
to the five edges between these clusters on the actual graph.
Similarly, we bundle demands on the aggregated graph: the
demand Kxy between the clusters x and y corresponds to all
of the demands whose sources are in cluster x and targets are

178 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

! "#,%&'
(,)

)
≤ "+,%&'

, + "+,%&'
.! "#,%/'

0,)
1,)

≤ "+,%&'
, + "+,%&'

.

!
"+,%&'
,

2
"

#
"+,%&'
.

Figure 7: An example illustrating how the flow allocated in MaxAggFlow
translates to constraints on the flow to be allocated in MaxClusterFlow.

in cluster y. The resulting flow allocation (f1) accounts for
bottlenecks on the edges between clusters. However, this flow
may not be feasible, since there may be bottlenecks within
the clusters.

In the second step, we refine the allocation from step 1 to
account for intra-cluster demands and constraints. Specifically,
we allocate flow for the demands whose sources and targets
are within the cluster. We also allocate no more flow than
was allocated in f1 for the inter-cluster flows. MaxClusterFlow
in Figure 6 shows code for this step. We note a few details:

• We use virtual nodes to act as the sources and targets for
the inter-cluster flows; the flow allocated in f1 determines
which virtual node (i.e., which neighboring cluster) is
the sender or the receiver for an inter-cluster demand.

• Figure 7 shows two examples on the right where the
virtual nodes are drawn using squares.

• Figure 7 also shows the NoMoreFlowThruCluster con-
straints for demands from sources in the red cluster to
targets in the black cluster (depicted as x and z respec-
tively). On the aggregated graph, the flow for this de-
mand takes the two paths shown. In the red cluster, as
shown in the equation, the traffic from all sources (s),
along multiple paths (r) to the virtual node, is restricted
to be no more than what was allocated in f1.

• Figure 7 on the right also shows a more complex case
that happens in the yellow cluster. Here, the traffic arrives
at one virtual node but can leave to multiple virtual nodes.
In MaxClusterFlow, we set up paths between all pairs
of virtual nodes. As shown in the equation, the traffic
leaving the red virtual node on paths (r) to either of the
other virtual nodes must be no more than the total flow
on paths p and q from f1.

• Observe that bundling demands ensures fewer variables
and constraints for MaxClusterFlow. The demand from
red to black clusters comprises twenty node pairs in the
actual graph in Figure 2 (left); four sources in the red
cluster and five targets in the black cluster. However, the
MaxClusterFlow for the red cluster only has four bundled
demands, from each source to the virtual node, and the
yellow cluster has just one bundled demand from and to
virtual nodes.

In the third step, we reconcile end-to-end; that is, we find
the largest flow that can be carried along each path on the
aggregate graph. As shown by MinPathE2E in Figure 6, for
each bundle of demands and each path, we take the minimum
flow allocated (fx

2) at each cluster on the path.
The flow allocation for the demands in a cluster x can be

Problem # of Nodes # of Edges # of Demands
MaxFlow N M K

MaxAggFlow η ≤min(M,η2) ≤min(K,η2)
MaxClusterFlow ∼ N

η
+η ∼ M

η
+2η ∼ K

η2 +2 N
η
+η2

Table 4: Sizes of the problems in Figure 6 using notation from Tables 2
and 3. Just verifying that flow is feasible (i.e., FeasibleFlow in Eq. 1) uses
O(# nodes ∗ # edges) number of equations and variables. NCFlow has one
instance of MaxAggFlow and executes the η instances of MaxClusterFlow in
parallel. MinPathE2E and SrcTargetMax, are relatively insignificant.

!"
!#

$"
$#

2

!"
!#

%"
1

1

$"
$#

%#
1

1

& & & &
&

&
(a) Disagreement arising from bundling edges: As shown on the right, the algo-
rithm in Figure 6 will allocate 2 units of flow but only 5ε units can be carried.

!"
!#

$"
$# !"

!#

!"
$"
$#

!#
1

%

%
%%

`

1

1

1

1
1

1
1

(b) Disagreement arising from bundling demands: As shown on the right, the
algorithm in Figure 6 will allocate 2 units of flow, but only 2ε units can be carried.

Figure 8: Illustrating how disagreements in flow allocation can occur in the
basic flow allocation algorithm; see §3.1.1.

read directly from the fx
2 solution of MaxClusterFlow. For

demands that span clusters, however, more work remains be-
cause the steps thus far do not directly compute their flow. In
particular, f3 allocates flow for cluster bundles; such as say for
all the demands whose sources are in cluster x and targets are
in cluster y. The corresponding per-cluster flow allocations, fx

2
and fy

2, allocate flow from a source node and to a given target
respectively. Thus, in the final step, SrcTargetMax, we assign
the maximal flow to each inter-cluster demand that respects
all previous allocations.

3.1.1 Properties of Basic Flow Allocation

Solver runtime: The numbers of equations and variables in
the sub-problems are shown in Table 4. If the number of clus-
ters η is 1, note that there is exactly one per-cluster problem,
MaxClusterFlow, which matches the original problem from
Eqn. 2. When using a few tens of clusters, we will show in §5
that all of the sub-problems are substantially smaller than the
original problem (MaxFlow).

Feasibility: The flow allocated by Figure 6 satisfies demand
and capacity constraints; we will prove this formally in §B.1.
For demands whose source and target are in different clusters,
however, disagreements may ensue since the different prob-
lem instances assign flow to different bundles of edges and
demands. We illustrate two such examples in Figure 8; both
have 1 unit of demand from s1 to t1 and from s2 to t2. The
dashed edges have a capacity of ε� 1 and all of the other
edges have a very large capacity.

• The example in Figure 8a illustrates an issue with
bundling edges. The actual graph on the left can only

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 179

s
t

Figure 9: To guarantee feasibility, each cluster bundle is allocated flow on
only one path on the aggregated graph (left) and on only one edge between
each pair of clusters (right); the usable path and edges are shown in dark red.
Note that multiple paths can still be used within clusters.

carry 5ε units of flow for each demand. However, as the
figures on the right show, MaxAggFlow allocates two
units of flow since the four edges between these two
clusters can together carry all of the two units of demand.
The MaxClusterFlow instances also allocate two units
of flow as shown. The discrepancy arises because the
problems in Figure 6 do not know that the top egress of
the left cluster can take in all of the demand of s1 but has
only a low capacity to t1.

• The example in Figure 8b illustrates an issue with
bundling demands. Here too, observing the actual net-
work on the left will show that 2ε units can be carried for
each demand split evenly between the top and the bottom
path. Again, as the figures on the right show, the basic
flow allocation algorithm will conclude that both units
of demand can be carried. Here, the discrepancy arises
from the bundling of demands, the problems in Figure 6
cannot discern that the MaxClusterFlow instance of the
left cluster sends the first demand to the brown cluster
while the MaxClusterFlow of the right cluster wants to
receive the second demand from the brown cluster.

3.2 A feasible heuristic
To avoid end-to-end disagreements, we make two simple
changes to the basic flow allocation in §3.1.

First, when solving MaxAggFlow, only one path on the
aggregated graph can be used for all of the demands between
a given pair of clusters; we call such groups of demands to be
cluster bundles. Next, between a pair of connected clusters,
only one edge can carry the flow for a cluster bundle. Figure 9
shows in dark red an example path for a cluster bundle and the
allowed edges between clusters; we also show the intra-cluster
paths that can carry flow for this bundle.

There are multiple ways to avoid disagreements while keep-
ing the problem sizes small via bundling. We discuss the
above changes here because they are simple and sufficient.
Specifically, we show that:

Theorem 1. The algorithm in Figure 6, when constrained as
discussed above, will always output a feasible flow.

Proof. The proof is in §B.2. Intuitively, these changes suffice
because the independent decisions made by different prob-
lems in Figure 6 cannot disagree; per cluster bundle, all prob-
lem instances allocate flow to the same edge and path.

s
t

Figure 10: Contrasting with Figure 9, for the same cluster bundle, in a sub-
sequent iteration, NCFlow allocates flow on a different path on the aggregate
graph and on different inter-cluster edges. The chosen paths and edges are
again shown in red.

3.3 Stepping towards optimality

The flow allocation algorithm described thus far is fast but
not optimal; that is, it may allocate less total flow over all
demands than the flow allocated by solving the larger global
problem (MaxFlow from Eqn. 2). There are a few reasons
why this happens. The MaxAggFlow in Figure 6 allocates
flow on paths through clusters without knowing how much
flow the clusters can carry. Switching the order, i.e., solving
MaxClusterFlow before MaxAggFlow, could be worse because
each cluster must allocate flow without knowing how much
flow can be carried end-to-end. Furthermore, the heuristic
in §3.2 constrains each cluster bundle to use only one edge
between clusters and one path on the aggregated graph. We
now discuss a few extensions to increase the flow allocation.

First, we re-solve the problems in Figure 6 multiple times.
A simple way to do this would be to deduct the allocated flow
and use the residual capacity on edges in the next iteration.
Also, we pick different edges between clusters and/or different
paths on the aggregated graph in different iterations (see Fig-
ure 10 for an example). The number of iterations is config-
urable; we continue as long as the total flow increases in each
iteration by at least a pre-specified amount (say 5%). One
could apply other policies such as a timeout. We show in §5
that a small number of iterations suffice for a sizable increase
in the total flow. We will also show that later iterations finish
faster than the first iteration perhaps because fewer demands
remain to satisfy.

Next, we empirically observe that the choice of clusters
and edges/paths to use in different iterations has an effect on
flow allocation. For instance, the disagreements in Figure 8
go away by using a different choice of clusters—specifically,
see Figure 31d and Figure 31e. We discuss how NCFlow
precomputes cluster and edge/path choice in §3.4.

To sum up, we prove that flow allocation will be optimal
when a few sufficient conditions hold:

Theorem 2. The method in Figure 6 leads to the optimal flow
allocation when any path can be used within each optimiza-
tion and the number of clusters is 1 or equal to the number of
nodes or all of the following conditions hold:

• the aggregated graph Gagg is a tree,
• only one edge connects any pair of clusters,
• all demands are satisfiable.

180 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Proof. By optimal, we mean that the total allocated flow must
be as large as an instance of Equation 6 wherein any path can
be used. The proof is in §B.3. Intuitively, when the number
of clusters is 1 and any paths can be used, a single instance of
MaxClusterFlow is identical to the optimal problem in Equa-
tion 6. Similarly, when the number of clusters equals the
number of nodes, MaxAggFlow is identical to the optimal
problem. Furthermore, the conditions listed lead to optimality
because the optimal flow allocation can be transformed into
an allocation that can be outputted by Figure 6.

Even though the listed conditions appear restrictive, note
that the topology within clusters can be arbitrary. We will
show in §5 that NCFlow offers nearly optimal flow allocations
even when the above conditions do not hold.

3.4 Choosing clusters and paths
The choice of clusters and paths affects both the solution
quality and runtime of NCFlow. We cast cluster choice as a
graph partitioning problem [5, 21, 65] with these objectives:

• Concentrated with a low cut: NCFlow can output better
flow allocations when much of the total demand and the
total edge capacity is between nodes in the same cluster.

• Balanced cut: Intuitively, NCFlow will have a smaller
runtime when the complexity of MaxAggFlow balances
with that of MaxClusterFlow. Recall from Table 4 that
the former depends on the number of clusters whereas
the latter depends on the size of the largest cluster.

We empirically observe, based on experiments with many
WANs and different types of demands, that:

• On a graph with N nodes, about
√

N clusters, irrespective
of the clustering technique, leads to the best result, i.e.,
smallest runtime and fewest forwarding entries while
allocating nearly the largest amount of flow possible;
see Figure 13.

• When choosing the same number of clusters, one of the
three considered clustering techniques (described below)
generally performs better than the others but not in all
cases; see Figure 21.

Thus, the optimal clustering choice for a WAN is unclear;
it is possible that hand-tuning or using a learning technique
may lead to better-performing clusters. Nevertheless, any of
the three simple clustering schemes discussed below already
suffice for NCFlow to improve substantially over baselines.

We consider the following clustering choices because they
are simple and fast; unless otherwise noted, results in this
paper use FMPartitioning.

• FMPartitioning [18, 25] divides nodes into clusters so as
to maximize a “modularity” score which prefers more
edges to lie within than between clusters. In NCFlow, we

apply modularity-based clustering with edge weights set
to their capacity.

• Spectral clustering [53] computes eigenvectors of the
weighted adjacency matrix and chooses a desired number
of the top eigenvectors as cluster heads; each node is
assigned to the cluster of their closest eigenvector (e.g.,
using k-means).

• Leader Election picks a desired number of nodes at ran-
dom as leaders and assigns each other node to the closest
leader; wherein, distance is measured as the path length
using invcap edge weights.

Some other clustering techniques [5, 42, 65] can balance clus-
ter sizes or trade-off between concentration and balance but
are more complex computationally; it is possible that using
such schemes can further improve NCFlow.

Path choice in NCFlow: On the aggregated graph and on
each cluster graph, we pre-compute offline a small number of
paths between every pair of nodes. We consider the following
different path choices and pick paths that lead to the largest
flow allocation on historical demands:

• k-shortest paths [70] with edge weight of 1 or 1
ce

where
ce is the capacity of edge e and k = 4,8 or 16.

• As above, but with the additional requirement that the
paths for a node pair are edge-disjoint [52].

NCFlow also pre-computes offline (1) a pseudo-random
choice of which edges to use between a pair of connected
clusters in each iteration and (2) which path on the aggregated
graph to use for each cluster bundled demand in each iteration.

3.5 Setting up switch forwarding entries

NCFlow uses many fewer switch forwarding entries than prior
works due to the following reasons.

First, the paths along which NCFlow allocates flow can be
thought of as a sequence of pathlets [32, 47, 68] in each clus-
ter connected by crossing edges between clusters. Figures 9
and 10 illustrate such paths on the right. This observation is
crucial because a pathlet can be reused by multiple demands.
For example, in Figure 9, the flow from any source in the red
cluster to any target in the grey cluster would use the same
pathlets shown in the yellow, green, and blue clusters. Prior
work [35, 36], on the other hand, establishes paths for each
demand. Using pathlets has two advantages. The number of
pathlets used by NCFlow is about η times less than the number
of paths used by prior works2. Furthermore, a typical pathlet
has fewer hops than a typical end-to-end path. Thus, NCFlow
uses many fewer rules to encode paths in switches.

2More precisely, the number reduces from PN(N−1) to ∑x P(Nx)(Nx−1)
where P is the number of paths per node pair, the N nodes are divided into η

clusters, and cluster x has Nx nodes. If clusters are evenly sized, Nx = N/η,
and the ratio of these terms is ∼ η.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 181

Next, whenever NCFlow allocates flow at the granularity
of cluster bundles, all of the demands in a bundle take the
same paths and are split in the same way across paths. Hence,
NCFlow uses one traffic splitting rule for all demands in such
bundles. For instance, the demands from source s in the red
cluster in Figure 9 to any target in the grey cluster are split
with the same ratio across the same pathlets in all clusters
(except the grey cluster where they take different pathlets to
reach their different targets). Thus, with NCFlow, the number
of splitting rules at a source decreases by a factor of

√
N/23.

The paths and splitting rules to push into switch forwarding
tables are determined by the offline component of NCFlow
and only change occasionally. After each allocation, only the
splitting ratios change. More details on the data-plane of
NCFlow such as how to compute the total flow that can be
sent by each demand and the splitting ratios as well as how to
move packets from one pathlet to the next are in Appendix C.
In §5, we measure the numbers of rules used by NCFlow.

4 Implementing NCFlow

Our current prototype of NCFlow is about 5K lines of Python
code, which invokes Gurobi [33] v8.1.1 to solve all of the
optimization problems. For clustering WAN topologies, we
adapt [26] to find clusters that maximize modularity; we also
use our own implementation of NJW spectral clustering [53].
We use a grid search over the number of clusters (η) and
the above clustering techniques to identify the best perform-
ing choice for each topology on a set of historical traffic
matrices. To compare with state-of-the-art techniques, we
customize the public implementations of SMORE [44, 45]
and TEAVAR [19]. We have also implemented Fleischer’s
algorithm [27]; our implementation is about 10× faster than
public implementations [8, 37] since we carefully optimize
a key bottleneck in Fleischer’s algorithm. All of these code
artefacts are available on GitHub [2].

5 Evaluation

We evaluate NCFlow on several WAN topologies, traffic matri-
ces, and failure scenarios to answer the following questions:

• Compared to state-of-the-art LP solvers and approxi-
mate combinatorial algorithms, does NCFlow offer a
good trade-off between runtime and total flow alloca-
tion? Is it substantially faster, with only a small decrease
in total flow?

• For real-world TE scenarios, in which flow solvers must
adapt to changing demands and faults, how much benefit
does NCFlow offer relative to the state-of-art?

3A source uses N−1 splitting rules in prior works but with NCFlow only
requires Nx +η−2 rules when the source’s cluster has Nx nodes; if clusters
are evenly sized and η∼

√
N, the ratio of these terms is

√
N/2.

Topology # Nodes # Edges # Clusters

PrivateLarge ∼ 1000s ∼ 1000s 31
Kdl 754 1790 81
PrivateSmall ∼ 100s ∼ 1000s 42
Cogentco 197 486 42
UsCarrier 158 378 36
Colt 153 354 36
GtsCe 149 386 36
TataNld 145 372 36
DialtelecomCz 138 302 33
Ion 125 292 33
Deltacom 113 322 30
Interoute 110 294 20
Uninett2010 74 202 24

Table 5: Some of the WAN topologies used in our evaluation; see §5.1.

• How do our various design choices in NCFlow impact
its performance?

5.1 Methodology
Here, we describe our methodology—the topologies, traffic,
baselines, and metrics used in our evaluation.

Topologies: We use two real topologies from a large
enterprise—PrivateSmall is a production internet-facing WAN
with hundreds of sites, and PrivateLarge is a larger WAN
that contains many more sites. We also use several topolo-
gies from the Internet Topology Zoo [6] and reuse topolo-
gies used by prior works [19, 38]. Table 5 shows details
for some of the used topologies; note that the topologies
shown are 10× to 100× larger than those considered by prior
work [19, 35, 38, 44, 49].

Traffic Matrices (TMs): We benchmark NCFlow on traffic
traces from PrivateSmall, which contain the total traffic be-
tween node pairs at 5-minute intervals. We also generate the
following kinds of synthetic traffic matrices for all topologies:

• Poisson
(
λ,δ
)

models demands with varying concentra-
tion; the demand between nodes s and t is a Poisson
random variable with mean λδdst , where dst is the hop
length of the shortest path between s and t and δ ∈ [0,1)
is a decay factor. We choose δ close to 0 or to 1 to model
strongly and weakly concentrated demands, respectively.

• Gravity
(
v
)

[14, 60]: The total traffic leaving a node is
proportional to the total capacity on the node’s outgoing
links (parameterized by v); this traffic is divided among
other nodes proportional to the total capacity on their
incoming links.

• Uniform
(
[0,a)

)
: The traffic between any pair of nodes

is chosen uniformly at random, between 0 and a.
• Bimodal

(
[0,a), [b,c), p

)
[14]: A p fraction of the node

pairs, chosen uniformly at random, receive demands
from Uniform

(
[b,c)

)
while the rest receive demands

from Uniform
(
[0,a)

)
. We use p = 0.2.

For each above model, we select parameters such that fully
satisfying the traffic matrix leads to a maximum link utiliza-

182 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.topology-zoo.org/maps/Kdl.jpg
http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/Colt.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg
http://www.topology-zoo.org/maps/DialtelecomCz.jpg
http://www.topology-zoo.org/maps/Ion.jpg
http://www.topology-zoo.org/maps/Deltacom.jpg
http://www.topology-zoo.org/maps/Interoute.jpg
http://www.topology-zoo.org/maps/Uninett2010.jpg

tion of about 10% in each topology. Then, we scale all entries
in the TM by a constant α∈ {1,2,4,8,16,32,64,128}. Doing
so creates demands that range from easily satisfiable to only
partially satisfiable; with α = 128, the satisfiable portion of
the demand varies between 25-70%. We generate five samples
for each traffic model and scale factor for each topology.

Baselines: We compare NCFlow with these techniques:

Path Formulation (PF4) solves the multi-commodity max-
flow problem shown in Equation 2 using k-shortest paths be-
tween node pairs where k = 4. Results for other path choices
are in §G.4.

PF Warm Start (PF4w) matches PF4 except that it allows the
LP solver to “warm start”; that is, over a sequence of traffic
matrices, the flow allocated to the previous TM is used as a
starting point to compute allocation for the next TM. When
traffic changes are small, warm start leads to faster solutions.

Approximate Combinatorial Algorithms: Fleischer’s algo-
rithm [27] is the best-known approximation for MaxFlow. We
use two variants: Fleischer-Path where flow is restricted to
a path set and Fleischer-Edge without any path restrictions.
We show results here for an approximation guarantee of 0.5;
that is, the techniques must achieve at least half of the optimal
flow allocation. Results for other approximation guarantee
values are in [10].

SMORE [44] allocates flow dynamically on paths that are pre-
computed using Räcke’s Randomized Routing Trees (RRTs).
We use the code from [45] to compute paths. Since the LP
in [45] requires demands to be fully satisfiable, we imple-
ment a variant, SMORE*, that maximizes the total flow on the
computed paths, regardless of demand satisfiability.

TEAVAR [3,19] models link failure probabilities and computes
flow allocations given an availability target. We implement
a variant, TEAVAR*, that maximizes the total flow4; further
details are in Appendix F.

Clusters, Paths, and # of Iterations: Table 5 shows the num-
ber of clusters used by NCFlow per topology. Here, we report
results on edge-disjoint paths, chosen using inverse capacity
as the edge length; results for other path choices are quali-
tatively similar (see §G.4). All schemes that use paths (i.e.,
PF4, Fleischer-Path, TEAVAR*, and NCFlow) use the same
method to compute paths. For each iteration up to I = 6, we
also pre-compute offline the path to use on the aggregated
graph, and the edge to use between connected clusters for
each cluster bundle.

Metrics: We compare the schemes on the following metrics:

• Relative total flow is the total flow achieved by a
scheme relative to PF4.

• Speedup ratio is the runtime of each scheme relative
to PF4. For LP-based methods, we report the Gurobi

4TEAVAR [3, 19] maximizes the concurrent flow; see Table 1

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Total Flow, relative to PF4

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

NCFlow
SMORE*

Fleischer-Path, = 0.5
Fleischer-Edge, = 0.5

(a) CDF of total flow relative to PF4

10 2 10 1 100 101 102 103

Speedup, relative to PF4 (log scale)

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

(b) CDF of speedup relative to PF4

Figure 11: CDFs comparing NCFlow with state-of-the-art methods. With
only a modest decrease in total flow, NCFlow offers a substantial runtime
speedup.

103

104

105

106
M

ax

202 294 372 486 1790
of Edges (log scale)

105
106
107
108

To
ta

l

of
 F

IB
 e

nt
rie

s (
lo

g
sc

al
e)

NCFlow Räcke KSP Edge-Based

Figure 12: Comparing the number of forwarding entries used by various
methods for the experiments from Figure 11.

solver runtimes, since models can be constructed once
offline in practice. For combinatorial methods, we report
algorithm execution time. All runtimes are measured on
an Intel Xeon 2.3GHz CPU (E52673v4) with 16 cores
and 112 GB of RAM.

• FIB Entries: We measure the number of switch forward-
ing entries used.

5.2 Comparing NCFlow to the State of the Art
Figures 11a and 11b show cumulative density functions
(CDFs) of the relative total flow and speedup ratio for NCFlow
and several baselines. These results consist of 2,600 traffic
matrices and 13 topologies. If a scheme matches the baseline
PF4, its CDF will be a pulse at x = 1 in both figures; the
fraction of cases to the left (or right) of x = 1 indicate how
often a scheme is worse (or better) than PF4. Note that the
x-axis for the speedup ratio is in log scale.

We see that SMORE*, shown using green dashed lines in
the figures, modestly improves the flow allocation (in 25% of
the cases) while almost always taking longer to run than PF4.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 183

0 50 100 150 200
of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
, r

el
. t

o
PF

4

Total Flow
of FIB Entries

Relative
Speedup

100

101

102

103

Sp
ee

du
p,

 re
l.

to
 P

F 4
(lo

g
sc

al
e)

Figure 13: NCFlow’s performance when using different numbers of clusters
on PrivateLarge. The speedup ratio is plotted on the right y-axis in log scale;
the other metrics use the left y-axis.

Both effects are because SMORE* allocates flow on Räcke’s
RRTs instead of k-shortest paths.

The edge and path variants of Fleischer’s, shown using
purple and red lines in the figures, perform similarly; since
they are approximate algorithms, they allocate less flow than
PF4 in roughly 50% of cases, but are also faster than PF4
in slightly less than 50% of cases. We conclude that these
approximate algorithms are not practically better than PF4.

In contrast, NCFlow, shown with dark blue lines in the fig-
ures, almost always allocates at least 80% of PF4’s total flow,
while achieving large speedups. In the median case, NCFlow
achieves 98% of the flow and is over 8× faster. These im-
provements accrue from NCFlow solving smaller optimization
problems than PF4.

Figures 18 and 19 tease apart the above results by load,
traffic type and topology. Figures 23–27 show results for alter-
nate path choices. Taken together, these results indicate that
NCFlow’s improvements hold across a variety of scenarios.

For the same experiments considered above, Figure 12
shows the number of switch forwarding entries used in dif-
ferent topologies. (A full set of results is in Table 6.) The
bottom plot is the total number of forwarding entries across
all switches, while the top shows the maximum for any switch.
Note that both the x and y axes are in log scale. NCFlow con-
sistently uses fewer forwarding entries; using NCFlow offers
a greater amount of relative savings than switching from all
edges to just a handful of paths per demand. The savings
from NCFlow also increase with topology size. The reason,
as noted in §3.5, is that NCFlow reuses pathlets and traffic
splitting rules for many different demands.

5.3 Effect of Design Choices

Figure 13 shows how NCFlow’s performance varies with the
numbers of clusters used on PrivateLarge. While NCFlow al-
locates roughly the same amount of total flow, using about
30 clusters improves runtime and reduces forwarding entries.
Figure 21 compares NCFlow’s performance when using dif-
ferent clustering techniques; more details are in §G.2.

Recall from §3.3 that NCFlow uses multiple iterations
of Figure 6. In the above experiments, the first iteration alone
accounts for 75% of the runtime and for roughly 90% of the

0.975
1.000

To
ta

l F
lo

w,
re

l.
to

 P
F 4

0 5 10 15 20 25
Time (days)

2.5

5.0

7.5

10.0

Sp
ee

du
p,

 re
l.

to
 P

F 4

NCFlow PF4w

Figure 14: Allocated flow and speedup relative to PF4 on a sequence of
production TMs from PrivateSmall. In half of the cases, NCFlow allocates at
least 98.5% of the flow and is at least 8.5× faster.

flow that is allocated by NCFlow. Later iterations are faster
perhaps because they have less traffic to consider.

Breaking down the runtime by the steps in Figure 6, we
see cases where MaxClusterFlow accounts for over 70% of
NCFlow’s runtime perhaps because the largest cluster contains
a large fraction of the nodes. Better cluster choice or recur-
sively dividing the largest clusters can further lower runtime.

5.4 NCFlow on Real-World Traffic
Here, we experiment with a sequence of traffic traces collected
on the PrivateSmall WAN. Figure 14 plots the moving average
(over 5 windows) of the total flow and speedup relative to PF4
for two schemes—NCFlow in blue and PF4w in light blue. The
figure shows that PF4w’s warm start yields a median speedup
of 1.66×. NCFlow achieves a consistently higher speedup
(8.5× in the median case), and the flow allocation is nearly
optimal: the median total relative flow is 98.5%, and NCFlow
always allocates more than 93%.

5.5 Tracking Changing Demands
Here, we evaluate the impact of a technique’s runtime on its
ability to stay on track with changing demands. Specifically,
on the PrivateLarge topology, we use a time-series of traffic
matrices, wherein a new TM arrives every five minutes and
the change from one TM to the next is consistent with the
findings in Figure 4 (more details are in Figure 20). At each
time-step, all techniques have the opportunity to compute a
new allocation for the current TM or to continue computing
the allocation for an earlier TM if they have not yet finished;
in the latter case, their most recently computed allocation will
be used for the current TM. For example, a technique that
requires five minutes to compute a new allocation will be
always one window behind, i.e., each TM will receive the
allocation that was computed for the previous TM.

Figure 15 shows the fraction of demand that is satisfied
by three different schemes; we also show the value for an
instantaneous scheme which is not penalized for its runtime.

184 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100 120
Time (mins)

0%

20%

40%

60%

80%

100%

Sa
tis

fie
d

De
m

an
d

Instant PF4 NCFlow PF4 PF4w

Reuse Prev. Allocation

Figure 15: When demands change, how solver runtimes affect flow allocation
on PrivateLarge: Due to the slow runtime, PF4 and PF4w carry only 62%
of the traffic that can be satisfied by Instant PF4, a (hypothetical) scheme
which has zero runtime. NCFlow carries 87% of the traffic since its faster
runtime compensates for its sub-optimality.

PF4’s average runtime here is over 15 minutes; hence, as
the orange dashed line shows, PF4 is able to compute a new
allocation only for every third or fourth TM. This leads to
substantial demand being unsatisfied: for node pairs whose
current demand is larger than before, PF4 will not allocate
enough flow. On the other hand, node pairs whose current
demand is less than their earlier demand will be unable to
fully use PF4’s allocation. As the figure shows, PF4 only
satisfies 53% of the changing demand on average, whereas
Instant PF4 satisfies 87% of the demand.

PF4w (the dash-dot light blue line), where the solver warm
starts using the previous allocation, is modestly faster than
PF4 on average. As the figure shows, the average demand
satisfied by PF4w is only slightly larger than PF4 (about 54%).

In contrast, NCFlow (the solid dark blue line) finishes well
within five minutes which allows allocations to change along
with the changing demands. We find that on average NCFlow
satisfies 75% of the demands; its smaller runtime more than
makes up for sub-optimality, allowing NCFlow to carry more
flow than PF4 when demands change.

5.6 Handling Failures with NCFlow

Here, we evaluate the effect of link failures. As we note in §F,
TEAVAR* did not finish within several days on any of the
topologies listed in Table 5 because when all possible 2-link
failure scenarios are considered, the number of equations and
variables in the optimization problem increase from O(N2)
for MaxFlow to O(M2N2) for TEAVAR [19], where N and
M are the numbers of nodes and edges, respectively. Hence,
we report results on the 12-node, 38-edge WAN topology
from B4 [38]. We generate synthetic traffic matrices as noted
in §5.1. Using link failure probabilities from TEAVAR [3], we
generate several hundred failure scenarios and, for each TM,
we measure the flow carried by NCFlow and TEAVAR* before
the fault, immediately after the fault, and after recovery.

A key difference in fault recovery between NCFlow and
TEAVAR* is that TEAVAR* requires sources to rebalance the

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F
(o

v
e
r

fa
u
lt

s)

Loss = 1 - (Flow carried by scheme/ Flow carried by PF4 when no fault)

NCFlow before fault
NCFlow after recompute

NCFlow after fault
TEAVAR* before fault

TEAVAR* after re-balance
TEAVAR* after fault

(a) CDFs of the flow loss before faults, immediately after faults and after recovery (B4
topology, many traffic matrices and faults; see §5.6).

 0

 0.2

 0.4

 0.6

 0.8

 1

Fault happensFault happens
Tunnels rebalanceTunnels rebalance

NCFlow recomputesNCFlow recomputes

To
ta

l
Fl

o
w

,
re

la
ti

v
e
 t

o
 P

F
4

Time

NCFlow TEAVAR* TEAVAR

(b) Timelapse of when a fault occurs (B4 topology, Uni-
form traffic matrix, β = 0.99)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F
(o

v
e
r

fa
u
lt

s)

Recompute Time (ms)

(c) NCFlow’s time to re-
compute after fault.

Figure 16: Comparing failure response of NCFlow with prior work.

traffic splits when a failure happens; doing so takes about one
RTT on the WAN. Given a parameter β, TEAVAR* guarantees
that there will be no flow loss after the tunnels re-balance
with a probability of 1−β. See §F for more details. We use
β= 0.99, as recommended in [19]. NCFlow, on the other hand,
recomputes flow allocations taking into account the links that
have failed; doing so takes one execution of NCFlow and some
RTTs to change the traffic splits at switches; more details are
in §E. Figure 16c shows that the recomputation time is well
within one RTT on the WAN.

Figure 16b shows a timelapse of the flow carried on the
network before the fault, immediately after the fault, and after
recovery. As the figure shows, TEAVAR* can have a smaller
loss and for a shorter duration; i.e., until sources rebalance
traffic while NCFlow can carry more flow before fault and
after recovery; moreover, the fast solver time can reduce the
duration of loss.

Figure 16a shows CDFs over many faults and traffic ma-
trices for NCFlow and TEAVAR*. We record the flow loss at
three stages: before the fault, immediately after the fault, and
after recovery. As the figure shows, NCFlow’s ability to carry
more flow before the fault and after recovery more than com-
pensates for the slightly larger loss it may accrue in between.

6 Discussion

Extending beyond MaxFlow: FeasibleFlow is a common con-
straint for many objectives beyond MaxFlow (see Table 1).
Since the algorithm in §3.1 and the heuristic in §3.2 guarantee
feasibility, NCFlow can apply to objectives beyond MaxFlow;

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 185

however, we believe that more work is needed to improve the
solution quality for different objectives.

Optimality guarantee: In §I, we show that constraining by
clusters and paths, as done by NCFlow, does not necessar-
ily reduce the flow allocation; that is, nearly the maximum
amount of flow can be carried while respecting clustering and
path constraints. This is promising because a better heuristic
(than Figure 6) may allocate more flow without losing the
benefits of solving smaller per-cluster problems. Furthermore,
although NCFlow achieves sizable speedups by using simple
clustering methods, the optimal cluster choice is uncertain;
we show examples in §H to illustrate the challenges.

Recursive (or multiple levels of) clusters: For large topolo-
gies or when the largest cluster has a disproportionate number
of nodes, we can further divide a cluster into sub-clusters.
Doing so is an extension of the algorithm in Figure 6 where,
in the iterative step, the MaxClusterFlow problem at a cluster
is replaced with a new instance of all of the steps in Fig-
ure 6 along with the additional constraints that arise from the
current level (e.g., NoMoreFlowThruCluster constraints). We
leave further details to future work.

7 Related Work

NCFlow builds upon a few themes in prior work. We dis-
cuss and evaluate against some prior works already. To recap:
(1) Some large enterprises use path-based global optimiza-
tion problems similar to MaxFlow to manage traffic on their
WANs [35, 36, 38]. We saw in §5 that doing so does not
scale to the WAN topologies of today or the future, which
consist of thousands of sites; (2) We saw that approximate
algorithms for multi-commodity max flow, such as [27], re-
quire a large number of switch forwarding entries since they
can send flow along any edge. Also, NCFlow allocates more
flow and is faster compared to path-based versions of these
algorithms. (3) Probabilistic fault protection schemes such as
TEAVAR [19] take infeasibly long to run on large topologies
when considering multiple link failures; they also allocate less
flow to reserve capacity to deal with possible failures. Other
oblivious techniques [13,14,19,44,49,66] have a similar trade-
off. Quickly recomputing using NCFlow trades off slightly
more loss after a fault to carry much more traffic before the
fault and after recomputation; hence, we believe that NCFlow
is better suited to enterprise WANs, which target very high
link utilization and have traffic that is elastic to short-term
loss (e.g., scavenger-class traffic, such as replicating large
datasets [35, 38, 49]). Here, we discuss other related work.

TE on WANs: Typically, a WAN node is not a single switch,
but rather a group of switches connected in a specific way
such as a full mesh. Similarly, a WAN edge is a systematic
collection of links between many switches. [36] discusses
how to hide the intra-node connectivity from the global TE
solution. NCFlow complements this technique; it can use a

similar intra-node scheme and can support WANs that are
10× larger than were considered in [36]. The specific con-
traction used by NCFlow—node clusters with large capacity
and/or demand between themselves—also differs from the
contractions used in route planning [4, 9, 15]. Some BGP-
based TE schemes [24, 62, 69], which address how best to
move traffic between different (BGP) domains, are also com-
plementary to NCFlow which considers the WAN of a single
enterprise (domain). Other TE schemes use different proto-
cols, such as OSPF, or work over longer timescales (e.g., hours
to days) [29, 39, 46, 51].

Multi-Commodity Flow Solutions: Both the edge- and path-
based LP formulations are well-studied [16, 67]. Some works
consider the case of a single commodity, i.e., one source and
target, and do not directly extend to the case of multiple com-
modities [34,48,55]. The best-known approximate algorithms
for multi-commodity flow problems incrementally allocate
flow on the shortest path and increase the length of all edges
on that path [17, 27, 30, 41]. For the problem sizes considered
here, LP solvers such as Gurobi are faster in practice, perhaps
because they take larger steps towards the optimal allocation.
A few works customize LP solvers to improve performance
on flow problems [23, 50]. NCFlow is agnostic to the solver
used and can use any solver for the sub-problems in Figure 6.

Decompositions: Using standard decomposition techniques
for large optimization problems, such as Dantzig-Wolfe and
Benders [16,20], for multi-commodity flow problems has lead
to inconclusive results [31,54]; i.e., not consistently faster than
MaxFlow. NCFlow can be thought of as a problem-specific de-
composition that leverages the observation that both capacity
and demands are concentrated in today’s WANs.

8 Conclusion

We present a fast and practical solution for allocating flow
on large WANs. We leverage the concentrated nature of de-
mands and topologies to divide nodes into clusters and solve
sub-problems per cluster and on the aggregated graph. Our
heuristics guarantee feasibility and empirically achieve close-
to-optimal flow allocations. By reusing pathlets and splitting
rules across demands, we require fewer forwarding entries in
switches. Empirically, on topologies that are over 10× larger
than were considered in prior work and many traffic matrices,
our solution NCFlow is 8.2× faster than the state of the art,
while allocating 98.8% of the total flow and using 6× fewer
forwarding entries in the median case. We demonstrate that
NCFlow offers sizable benefits when tracking changing de-
mands and reacting to failures. As enterprise WANs continue
to grow, we believe techniques such as NCFlow can enable
improved traffic orchestration and higher link utilization.
Acknowledgements: We thank Himanshu Raj, Umesh Kr-
ishnaswamy, Dejan Kostic, Jakub Tarnawski and the NSDI
reviewers for comments which improved this paper.

186 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Capacity planning for the Google backbone network.
https://bit.ly/2lViJ4t.

[2] Code for NCFlow and Baselines. https://github.
com/netcontract/ncflow.

[3] Code for TEAVAR. https://github.com/
manyaghobadi/teavar.

[4] Contraction Hierarchies Path Finding Algorithm.
https://bit.ly/3eaiqtg.

[5] GAP: Generalizable Approximate Graph Partitioning
Framework. https://arxiv.org/pdf/1903.00614.
pdf.

[6] Internet Topology Zoo. http://www.topology-zoo.
org/.

[7] Market Trends: SD-WAN and NFV for Enterprise Net-
work Services. https://gtnr.it/3c8hNyA.

[8] Cristinel Ababei. Code for Karakostas. https://bit.
ly/2woSloP.

[9] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and
Renato F. Werneck. A Hub-Based Labeling Algorithm
for Shortest Paths in Road Networks. In Experimental
Algorithms, 2011.

[10] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Solving
Flow Problems Quickly by Contracting Wide-area Net-
work Topologies: Extended Version. https://bit.ly/
35oyQdU.

[11] Ravindra Ahuja, Thomas Magnanti, and James Orlin.
Network Flows. Theory, Algorithms, and Applications.
Prentice Hall.

[12] Muthukaruppan Annamalai et al. Sharding the Shards:
Managing Datastore Locality at Scale with Akkio. In
OSDI, 2018.

[13] D. Applegate, L. Breslau, and E. Cohen. Coping with
Network Failures: Routing Strategies for Optimal De-
mand Oblivious Restoration. In SIGMETRICS, 2004.

[14] David Applegate and Edith Cohen. Making Intra-
Domain Routing Robust to Changing and Uncertain
Traffic Demands. In SIGCOMM, 2003.

[15] Hannah Bast, Daniel Delling, Andrew V. Goldberg,
Matthias Müller-Hannemann, Thomas Pajor, Peter
Sanders, Dorothea Wagner, and Renato F. Werneck.
Route Planning in Transportation Networks. CoRR,
2015.

[16] Dimitris Bertsimas and John N Tsitsiklis. Introduction
to linear optimization, volume 6. Athena Scientific
Belmont, MA, 1997.

[17] Daniel Bienstock. Potential function methods for ap-
proximately solving linear programming problems: the-
ory and practice, volume 53. Springer Science & Busi-
ness Media, 2002.

[18] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks, 2008.

[19] Jeremy Bogle et al. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineer-
ing. In SIGCOMM, 2019.

[20] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

[21] P. Brucker. On the complexity of clustering problems.
In Optimizing and Operations Research, Berlin, West
Germany, 1977. Springer-Verlag.

[22] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani.
Robust validation of network designs under uncertain
demands and failures. In NSDI, 2017.

[23] P. Chardaire and A. Lisser. Simplex and Interior Point
Specialized Algorithms for Solving Nonoriented Multi-
commodity Flow Problems. Operations Research, 2002.

[24] David Chou, Tianyin Xu, Kaushik Veeraraghavan, An-
drew Newell, Sonia Margulis, Lin Xiao, Pol Mauri Ruiz,
Justin Meza, Kiryong Ha, Shruti Padmanabha, et al.
Taiji: Managing Global User Traffic for Large-Scale
Internet Services at the Edge. In OSDI, 2019.

[25] A. Clauset, M.E.J. Newman, and C. Moore. Finding
community structure in very large networks. Phys. Rev.,
2004.

[26] Aaron Clauset. Fast Modularity Community Structure
Inference Algorithm. https://bit.ly/3aAVGQH.

[27] Lisa K. Fleischer. Approximating Fractional Multicom-
modity Flow Independent of the Number of Commodi-
ties. SIAM J. Discret. Math., 2000.

[28] Ken Florance. How Netflix Works With ISPs Around the
Globe to Deliver a Great Viewing Experience. https:
//bit.ly/2RYYrEM, 2016.

[29] B. Fortz and Mikkel Thorup. Internet Traffic Engineer-
ing by Optimizing OSPF Weights in a Changing World.
In INFOCOM, 2000.

[30] Naveen Garg and Jochen Könemann. Faster and Simpler
Algorithms for Multicommodity Flow and Fractional
Packing Problems. SIAM J. Comput., 2007.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 187

https://bit.ly/2lViJ4t
https://github.com/netcontract/ncflow
https://github.com/netcontract/ncflow
https://github.com/manyaghobadi/teavar
https://github.com/manyaghobadi/teavar
https://bit.ly/3eaiqtg
https://arxiv.org/pdf/1903.00614.pdf
https://arxiv.org/pdf/1903.00614.pdf
http://www.topology-zoo.org/
http://www.topology-zoo.org/
https://gtnr.it/3c8hNyA
https://bit.ly/2woSloP
https://bit.ly/2woSloP
https://bit.ly/35oyQdU
https://bit.ly/35oyQdU
https://bit.ly/3aAVGQH
https://bit.ly/2RYYrEM
https://bit.ly/2RYYrEM

[31] A. M. Geoffrion and G. W. Graves. Multicommodity
Distribution System Design by Benders Decomposition.
Management Science, 1974.

[32] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and
Ion Stoica. Pathlet routing. In SIGCOMM, 2009.

[33] Zonghao Gu, Edward Rothberg, and Robert Bixby.
Gurobi optimizer reference manual, version 5.0. Gurobi
Optimization Inc., Houston, USA, 2012.

[34] Jeff Hartline and Alexa Sharp. Hierarchical Flow. Tech-
nical Report 2004-09-29, Cornell University, 2004.

[35] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In SIGCOMM, 2013.

[36] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Chandan Bhagat,
Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev,
et al. B4 and after: managing hierarchy, partitioning,
and asymmetry for availability and scale in google’s
software-defined WAN. In SIGCOMM, 2018.

[37] Yuanfang Hu, Yi Zhu, Hongyu Chen, Ronald L. Graham,
and Chung-Kuan Cheng. Communication latency aware
low power NoC synthesis. In DAC, 2006.

[38] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, and Min Zhu. B4: Experi-
ence with a globally-deployed software defined WAN.
In SIGCOMM, 2013.

[39] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Bren-
dan Lucier, and Ishai Menache. Dynamic pricing and
traffic engineering for timely inter-datacenter transfers.
In SIGCOMM, 2016.

[40] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula.
Calendaring for Wide Area Networks. In SIGCOMM,
2014.

[41] George Karakostas. Faster Approximation Schemes
for Fractional Multicommodity Flow Problems. ACM
Trans. Algorithms, 2008.

[42] Robert Krauthgamer, Joseph (Seffi) Naor, and Roy
Schwartz. Partitioning Graphs into Balanced Compo-
nents. In SODA, 2009.

[43] Alok Kumar et al. Bwe: Flexible, hierarchical bandwidth
allocation for wan distributed computing. In SIGCOMM,
2015.

[44] Praveen Kumar et al. Semi-Oblivious Traffic Engineer-
ing: The Road Not Taken. In NSDI, 2018.

[45] Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster,
Robert Kleinberg, and Robert Soulé. YATES: Rapid
Prototyping for Traffic Engineering Systems. In SOSR,
2018.

[46] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang,
and Pablo Rodriguez. Inter-datacenter Bulk Transfers
with NetStitcher. In SIGCOMM, 2011.

[47] David Lebrun, Mathieu Jadin, François Clad, Clarence
Filsfils, and Olivier Bonaventure. Software Resolved
Networks: Rethinking Enterprise Networks with IPv6
Segment Routing. In SOSR, 2018.

[48] Chansook Lim, S. Bohacek, Joao Hespanha, and Katia
Obraczka. Hierarchical Max-Flow Routing. In Globe-
com, 2005.

[49] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In SIGCOMM, 2014.

[50] Richard McBride. Progress Made in Solving the Multi-
commodity Flow Problem. SIAM Journal on Optimiza-
tion, 1998.

[51] Srinivas Narayana, Joe Jiang, Jennifer Rexford, and
Mung Chiang. Distributed Wide-Area Traffic Manage-
ment for Cloud Services. In SIGMETRICS, 2012.

[52] NetworkX. Edge Disjoint Paths. https://bit.ly/
37VJ71k.

[53] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On
spectral clustering: Analysis and an algorithm. In NIPS,
2002.

[54] Murat Oguz, Tolga Bektas, and Julia A. Bennell. Mul-
ticommodity flows and Benders decomposition for re-
stricted continuous location problems. European Jour-
nal of Operational Research, 2017.

[55] James Orlin. A polynomial time primal network simplex
algorithm for minimum cost flows. Math. Programming,
1997.

[56] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Victor Bahl, and Ion
Stoica. Low Latency Geo-distributed Data Analytics.
In SIGCOMM, 2015.

[57] H Racke. Optimal Hierarchical Decompositions for
Congestion Minimization in Networks. In STOC, 2008.

[58] R Tyrrell Rockafellar and Stanislav Uryasev. Con-
ditional Value-at-Risk for General Loss Distributions.
Journal of banking & finance, 26(7):1443–1471, 2002.

188 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bit.ly/37VJ71k
https://bit.ly/37VJ71k

[59] E. Rosen, A. Viswanathan, and R. Callon. Multi-
Protocol Label Switching Architecture. RFC 3031.

[60] Matthew Roughan, Albert Greenberg, Charles
Kalmanek, Michael Rumsewicz, Jennifer Yates, and
Yin Zhang. Experience in Measuring Backbone
Traffic Variability: Models, Metrics, Measurements and
Meaning. In IMW, 2002.

[61] S. Kandula and D. Katabi and S. Sinha and A. Berger.
Dynamic Load Balancing Without Packet Reordering.
In CCR, 2006.

[62] Brandon Schlinker et al. Engineering Egress with Edge
Fabric: Steering Oceans of Content to the World. In
SIGCOMM, 2017.

[63] Submarine Cable Map. http://www.
submarinecablemap.com.

[64] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and
Aviv Tamar. Learning to Route. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks,
HotNets, 2017.

[65] Santosh Vempala, Ravi Kannan, and Adrian Vetta. On
Clusterings Good, Bad and Spectral. In FOCS, 2000.

[66] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang,
Yin Zhang, and Albert Greenberg. COPE: Traffic Engi-
neering in Dynamic Networks. In SIGCOMM, 2006.

[67] I-Lin Wang. Multicommodity Network Flows: A Survey,
Part I: Applications and Formulations. Internal Journal
of Operations Research, 2018.

[68] Mathieu Xhonneux, Fabien Duchêne, and Olivier
Bonaventure. Leveraging eBPF for programmable net-
work functions with IPv6 Segment Routing. In CoNext,
2018.

[69] Kok-Kiong Yap et al. Taking the edge off with espresso:
Scale, reliability and programmability for global internet
peering. In SIGCOMM, 2017.

[70] Jin Yen and NetworkX. K-Shortest Paths. https://
bit.ly/2OpNGJn.

MaxAggFlow MaxClusterFlow’s
(green)(yellow)

Figure 17: Considering the crossing edges between the yellow and green
clusters from Figure 2; MaxAggFlow has a single bundle; the yellow and
green instances of MaxClusterFlow have one bundle for each incident node
in their cluster.

A More Discussion

NCFlow is agnostic to the underlying solver used for the
problems in Figure 6 and can benefit from future improve-
ments to LP solvers and approximate methods [27, 30, 41].

Further use cases: Beyond serving as a drop-in replace-
ment for today’s production WAN traffic controllers, NCFlow
can be used whenever fast and close-to-optimal solutions
are desirable such as: when allocating flow for future time-
steps [39, 40] or to compare topology changes [1, 22] or to
accelerate the training of ML-based routing systems [64].

B Properties of NCFlow’s flow allocation algo-
rithm

B.1 Proof that the algorithm in §3.1 meets de-
mand and capacity constraints

Satisfying demand constraints: Demands whose source
and target are in the same cluster are considered by only one
instance of MaxClusterFlow; hence, they do not receive more
flow than their demands. Specifically, MaxClusterFlow in Fig-
ure 6 invokes MaxFlow which in turn imposes the demand
constraints listed in FeasibleFlow; Equation 1.

Demands whose source and target are in different clusters
receive no more flow than their demand due to SrcTarget-
Max; observe in Figure 6 that one of the four constraints in
SrcTargetMax explicitly controls the flow for such demands.

Satisfying edge capacity constraints: We say an edge is
local to a cluster if both its incident nodes are within the
same cluster. Flow is assigned to a local edge only by the
MaxClusterFlow instance of the cluster that contains that edge.
Since MaxClusterFlow ultimately invokes FeasibleFlow; by
Equation 1 a local edge is allocated no more than its capacity.

Edges that are not local receive flow allocation in MaxAg-
gFlow where, as noted in §3.1, all of the edges that lie between
a pair of clusters are treated as a single edge whose capacity
equals the sum of the capacity of the underlying edges. Thus,
the flow assigned to a bundle of edges by MaxAggFlow is no
more than the total capacity of the edges in the bundle. Sub-
sequently, MaxClusterFlow instances behave similarly; that
is, the flow allocated for a bundle of edges is no more than
the capacity of that bundle. For example, Figure 17 shows the
four edges between the yellow and green clusters in Figure 2
as well as the bundles considered by MaxAggFlow (in the

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 189

http://www.submarinecablemap.com
http://www.submarinecablemap.com
https://bit.ly/2OpNGJn
https://bit.ly/2OpNGJn

middle) and the two instances of MaxClusterFlow correspond-
ing to the yellow and green clusters on the right. The later
steps in Figure 6 do not increase flow and so we conclude that
capacity constraints are satisfiable for all non-local edges.

B.2 Proof that the heuristic in §3.2 leads to
feasible flow allocations

Here, we prove Theorem 1. First, note that the heuristic in §3.2
which only restricts the edges between clusters and paths on
the aggregate graph that can be used by some demands does
not affect the proof in §B.1; that is, edges still receive flow
less than their capacity and demand constraints hold.

We now prove that the heuristic will satisfy flow conser-
vation; that is, at any node in the network, for any demand
which neither originates nor ends at this node, the net flow is
zero, i.e., incoming flow to the node equals the flow leaving
that node.

It is easy to see that flow conservation holds for demands
whose source and target are in the same cluster even without
the heuristic in §3.2 because: (1) Only the instance of Max-
ClusterFlow for that cluster assigns flow to such a demand. (2)
Since MaxClusterFlow invokes FeasibleFlow in Equation 1,
the flow is allocated along paths which start and end at the
source and target of that demand respectively. (3) Thus, every
node that is neither the source or target will have incoming
flow equal to the outgoing flow.

We now consider the remaining demands, that is, whose
source and target are in different clusters.

It is easy to see that for such demands, flow conservation
holds at all nodes that do not have edges to or from other clus-
ters by logic that is similar to the above. The MaxClusterFlow
instance of the cluster containing such a node would allocate
flow to some bundle of demands on paths in this cluster that
neither start nor end at such a node.

The only case left is nodes which have edges to and from
other clusters. Suppose by contradiction that some demand
k violates flow conservation at such a node u. The heuristic
in §3.2 allocates flow for demand k along only one path in the
aggregated graph and on only one edge between connected
clusters. If the cluster containing u is not on the chosen path
or none of the chosen edges are incident on u, then the net
flow allocated for k over all edges incident on u will be zero.
Let e be that one chosen crossing edge incident on u which
can receive non-zero flow for demand k. Observe that all of
the other demands whose source and target are in the same
clusters as k would also be allocated flow on the same path
and edges as k. Thus, all the flow allocated for these demands
entering or leaving node u as the case may be would be on
edge e. Two instances of MaxClusterFlow, one corresponding
to the cluster that contains u and another corresponding to
the other side of edge e, will assign possibly different flow
values for this bundle of demands on edge e. To conclude our
proof, note that MinPathE2E takes the minimum flow assigned

along all such crossing edges e on the chosen path through the
aggregated graph and that SrcTargetMax further breaks open
the bundle to assign feasible flow for each actual demand
contained in the bundle.

If more than one crossing edge or more than one path
on the aggregate graph are used for a demand, it is easy to
see how the above proof will break. The two instances of
MaxClusterFlow that correspond to the clusters on either side
of a crossing edge will be forced by MinPathE2E to only agree
on the total volume for the cluster bundle of demands for all
edges between the pair of clusters; that is, these instances may
allocate different flow on different edges or allocate different
flow to individual demands in the bundle. Figure 8 shows
simple examples of such disagreement.

B.3 Proof of optimality for algorithm in §3.1
given some sufficient conditions

Here, we prove Theorem 2. We already discussed in §3.3 the
case where the number of clusters, η, is 1 or N, the number of
nodes in the graph. To prove optimality for the other sufficient
conditions, we posit a helper theorem.

Theorem 3. Given a set of paths P that can be used by flows,
there exists a clustering of nodes into clusters such that any
flow allocated on a set of paths P can also be allocated by
the method in Figure 6 over those clusters.

Proof. The claim is trivially true by using N clusters, where
each node is in a cluster by itself. We show that it is possible to
use fewer clusters next. Let S be a set of nodes such that every
path in P contains at most one contiguous sequence of the
nodes in S . For example, the set {u,v} satisfies this property
if every path in P has neither u nor v, just u but not v (no
repetitions allowed), just v but not u, u→ v (no repetitions of
u or v anywhere else in the path) or v→ u. Coalescing each
such set S into a cluster would allow the method in Figure 6 to
allocate the same flow as MaxFlow using the paths in P .

If Gagg is a tree and there is at most one edge between any
pair of clusters, any set of paths P on the actual graph would
consist of contiguous segments that are contained within
each cluster. Thus, per the above theorem, any flow allocated
by MaxEdgeFlow (Equation 6) can also be allocated by the
method in Figure 6. The only difference then between the
global optimization and the method in Figure 6 is that whereas
the former is a single optimization call, the latter is a sequence
of optimizations. Since demands are satisfiable, however, all
of the steps in Figure 6 will allocate the entirety of demand
and hence will allocate the maximum amount of flow.

Note, in particular, that for the sufficient conditions listed
in Theorem 2 a single iteration of the steps in Figure 6 suffice.

In §H, we show some counter-examples where NCFlow can
lead to sub-optimal allocations when any of these sufficient
conditions do not hold.

190 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C Data-plane details for NCFlow

C.1 Actions at the NCFlow controller, after
each allocation

The SDN controller for NCFlow computes total flow per de-
mand and some splitting ratios after each allocation.

Total Flow: The flow assigned to a demand whose source
and target are in different clusters is read off SrcTargetMax,
i.e., f4,k. For intra-cluster demands, their flow is read off Max-
ClusterFlow, i.e., f x

2,k at the cluster x that contains the source
and target of demand k. These flow values are summed up
over all the iterations used by NCFlow.

Splitting ratios at sources: At source s of cluster x, we have
two cases depending on whether the target of the demand is
within the cluster x or in some other cluster y.

For the former case, let Pst be the path set to target t for
demand k; the splitting ratio for each path p in the set is
f x,p
2,k summed up over all iterations, divided by the total flow

assigned to demand k above. Here, f x,p
2,k is the flow assigned

to demand k on path p by the MaxClusterFlow instance for
cluster x.

For the latter case, let zi be the next cluster on the one path
that can receive flow in iteration i for all traffic going to targets
in cluster y. The splitting ratio for path p in the path set

⋃
i Pszi

is the value of ∑r∈Ksy f x,p
2,r summed up over all iterations where

Ksy is the set of all demands from source s to targets in cluster
y divided by the total value for all such paths.

Uniquely, note that each source s has a splitting ratio per
target t within the same cluster or per target cluster y.

We call a subset of nodes as ingresses if they have at least
one edge to a node in another cluster that is chosen by the
offline component of NCFlow in §3.4 as a crossing edge

Splitting ratios at ingresses are computed in a similar way
to the splitting ratios at sources. At each ingress node w of
cluster y for traffic from cluster x, there are two cases depend-
ing on whether the target is some node t in the same cluster
as the ingress (y) or in some other cluster z.

For the former case, in iteration i, the splitting ratio for path
p in the set Pwt is the value of ∑r∈Kxt f y,p

2,r in iteration i divided
by the total over all such paths. As above, Kxt is the set of
demands from sources in cluster x to target t.

For the latter case, in iteration i, let zi be the next cluster on
the path to targets in z; the splitting ratio for path p in the set
Pwzi is the value of ∑r∈Kxz f y,p

2,r divided by the total value over
all such paths. As above, Kxz is the set of all demands from
sources in cluster x to targets in cluster z.

Note that an ingress node w has splitting ratios only for
demands whose chosen path at an iteration contains w’s clus-
ter (y) and whose chosen edge enters y at w.

C.2 Details on switch forwarding entries
Pathlets: NCFlow sets up label-switched paths (LSPs) be-
tween each pair of nodes in each cluster. Which paths to setup
is pre-determined by the offline component in §3.4.

Splitting rules: A source s in cluster x has a splitting rule for
each other node in the same cluster and for each other cluster.
The splitting ratios are as computed in §C.1.

In each iteration, at each cluster, at most one ingress node is
active per pair of other clusters. This is because the bundle of
demands for a given pair of clusters has at most one crossing
edge entering a cluster.

The active ingress node at a cluster x for the bundle of
demands from cluster y to cluster z has one splitting rule
when z 6= x and one splitting rule per target in cluster x when
z = x.

Packet content: The LSP (which pathlet to use) is encoded
in the L2 header [59]. Additionally, NCFlow has the following
tuple in each packet: (x,y, i,e) where x and y are the source
and target cluster ids, i is the iteration number of the flow
allocation that the packets have been assigned to and e is
the edge to leave the current cluster on. The bits needed are
2lnη+ ln I + lnnode degree.5 We note that 16 bits of header
space suffice for all the WAN topologies and experiments con-
sidered in this paper; that is η≤ 64 clusters, I ≤ 8 iterations
and up to 2 edges to nodes in other clusters being used per
egress node by NCFlow.

Data path actions:

• At source s in cluster x:

– The host or middleware adds the cluster-ids x and
y into the packet.

– Source switch uses the appropriate splitting rule to
pick a (p, i,e) tuple; the values e and i are placed
in the packet and the L2 header gets the identifier
for path p. To avoid reordering packets in the same
TCP flow, traffic can be split using flow hashes or
flowlets [61].

• Each cluster egress removes e from the packet header
and forwards packets to the next-hop of the edge e.

• Each cluster ingress uses the appropriate splitting rule
to pick a (p,e) tuple; the value e is put into the packet
header and p determines the identifier in the L2 header.

D Definitions of NoMoreFlow

In the flow vector computed by MaxClusterFlow at a cluster
x, fx

2, we use the subscript k to denote a bundle that may
include (1) transit demands through cluster x (i.e., from all
sources in some other cluster w to targets in some other cluster
z), (2) leaving demands (i.e., from a source in cluster x to

5The edge id must suffice to distinguish at an egress node between the
edges to a particular next cluster; so node degree is an overestimate.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 191

all targets in some other cluster z) or (3) entering demands
(i.e., to a target in cluster x from all sources in some other
cluster z). Furthermore, we use the subscript yout to denote
the flow allocated for the bundle k on paths to the virtual node
that corresponds to the cluster y. Thus, f x

2,k,yout
is the flow

allocated at cluster x for all demands in the per-cluster bundle
k on paths to the virtual node corresponding to a neighboring
cluster y.

With this background, Equation 3 ensures that the flows
allocated in MinPathE2E for an inter-cluster bundle K in Dagg
on all paths in Pagg that contain a cluster edge (x,y) is no
more than the flow that is allocated at either cluster x or cluster
y for their respective per-cluster bundles that are contained in
K to and from each other respectively.

NoMoreAlongPaths(f, f2), ∀K ∈Dagg, ∀x,y ∈ Vagg,x 6= y,

∑
p∈Pagg ,(x,y)∈p

f p
K ≤min

(
∑
k∈K

f x
2,k,yout , ∑

k′∈K
f y
2,k′,xin

)
(3)

Equation 4 is logically similar to Equation 3 except that
the constraints are specific to a cluster x and the constants and
variables have been flipped; that is, here, the flows on the paths
in the aggregate graph are given (f p

1,K) and the flow on paths
within the cluster are to be computed by MaxClusterFlow. In
particular, note that ∑p′∈Px,∗yout

f p′
k , f x

2,k,yout
; that is, the

flow assigned in MaxClusterFlow of cluster x on all paths
leading to the virtual node corresponding to a neighbor cluster
y is precisely the value on the right that is used above in
Equation 3.

NoMoreFlowThruCluster(f, f1,x), ∀K ∈Dagg, ∀y ∈ Vagg : y 6= x,

∑
p∈Pagg:(y,x)∈p

f p
1,K ≥ ∑

k∈K, p′∈Px,yin∗
f p′
k , and

∑
p∈Pagg:(x,y)∈p

f p
1,K ≥ ∑

k∈K, p′∈Px,∗yout

f p′
k (4)

E Fault Model

When failures happen, prior works [19, 49] assume that the
sources of the label switched paths (LSPs) will proportionally
shift traffic. That is, a source that splits traffic in the ratio of
(0.3,0.5,0.2) between three paths will change to a splitting
ratio of (0.6,0,0.4) when the middle LSP fails. Doing so can
cause congestion on either of the remaining LSPs.

The key idea in prior works [19, 49] is to proactively al-
locate flow such that the maximal load on any link remains
under capacity—FFC [49] protects against up to k simulta-
neous link failures, whereas TEAVAR [19] ensures that the
flow at risk is below a given fraction (e.g., 99.9% of flow can
be carried by the network on average over all possible failure
scenarios).

The cost of such congestion protection is two-fold: (1)
proactive schemes substantially increase the solution runtime,
and (2) they under-allocate flow, since capacity must be set
aside to help with possible failures. Instead, NCFlow uses
a reactive strategy, and recomputes a new flow allocation
after the fault occurs. This enables NCFlow to carry more
flow before the fault, and potentially carry more flow after
recovery. Furthermore, since NCFlow uses fewer FIB entries
for the same number of paths, it is naturally easier to spread
flow onto more paths with NCFlow. Thus, the key trade-off is
slightly longer and more lossy episodes immediately after a
fault when using NCFlow versus longer solver runtimes and
flow under-allocation with proactive schemes [19, 49].

F Benchmarking TEAVAR and TEAVAR*

F.1 Formulation for TEAVAR*

Here, we discuss our adaptation of TEAVAR to maximize
total multi-commodity flow. The TEAVAR [19] paper consid-
ers a different objective – maximizing the concurrent multi-
commodity flow (see Table 2). When all demands are satisfi-
able, both objectives allocate the same flow; however, when
not enough capacity is available to meet the desired failure
assurance, maximizing total flow leads to a strictly larger
allocation. We describe TEAVAR* from first principles here.

In addition to the inputs of MaxFlow (see Equation 2),
TEAVAR* has the following inputs:

• A value β ∈ [0,1]; larger values of β correspond to
greater fault assurance.

• A set of fault scenarios, S ; each scenario i has a proba-
bility of occurrence βi and a set of failed edges Ei.

In a fault scenario i, the edges in Ei will fail and so the
flow allocated to paths that contain any edge in Ei will be
lost. The number of possible fault scenarios is exponential
in the number of edges in the network. Thus, to keep the
optimization tractable, we consider only a subset of scenarios.

Let L(i) denote the total flow lost in fault scenario i.
Per Proposition 8 in [58], minimizing the potential func-
tion, α + 1

1−β
E[Li −α]+, would minimize the conditional

value at risk. Here, the expectation is over all possible fault
scenarios. Since we only consider a subset of fault sce-
narios to keep optimization tractable, we minimize: α +

1
1−β

(∑i∈S βi[Li−α]++(1−∑i∈S βi)(1−α)) . The last term
accounts for the unconsidered scenarios for which we must
assume the worst possible loss. Note that we can simplify this
expression by dropping the constant 1−∑i∈S βi

1−β
.

192 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TEAVAR*(V ,E ,D,P ,β,S) (5)

,argminf

(
α+ 1

1−β
(∑i∈S βiExcessi− (1−∑i∈S βi)α)

)
s.t. f ∈ FeasibleFlow(V ,E ,D,P), (Eqn. 1)

Li,k ≥ 0, ∀i,k (loss is non-negative)

Li,k ≥ dk− ∑
p∈Pk

f p
k Activep,i, ∀i,k (loss)

α≥ 0 (loss cutoff)

Excessi ≥ 0 ∀i (excess loss in scenario i)

Excessi ≥ ∑
k∈D

Li,k−α, ∀i (excess loss)

The formulation for TEAVAR* is in Equation 5. Recall that
f p
k is the flow assigned to demand k on path p. Activep,i is an

indicator denoting whether path p is active in fault scenario
i. Thus, the allocation for demand k in scenario i will be
∑p∈Pk

f p
k Activep,i. When the allocation is below the required

volume dk, the demand will suffer loss; we use Li,k to denote
the flow loss for demand k in scenario i.

The flow allocation resulting from the above formulation
cannot be promised to the demands; in particular, more flow
will be assigned on some paths to account for possible failures
on other paths. After solving the above LP, we compute the
flow allocation for a demand k as follows: (1) sort the per-
scenario losses Li,k in ascending order; (2) starting at index
0, add up the probability of each scenario until the running
sum is at least β—let iβ be the unique crossing index; (3) Set
demand k’s flow to be dk−Liβ,k, the demand minus the loss
at the crossing index.

Choosing the fault scenarios to use in TEAVAR*:

• Intuitively, achieving a greater amount of fault assurance
requires considering more fault scenarios. Specifically, if
the total probability of considered scenarios is below β,
the above LP as well as the LP used by TEAVAR become
unbounded. To see why, the coefficient of α in Eqn. 5
is (∑i∈S βi)−β

1−β
. If the probability of considered scenarios

is less than β, this coefficient becomes negative, and the
objective value reaches −∞ by setting α to ∞.

• Intuitively, if the total probability of considered scenarios
is just larger than β, the flow allocated to demands is very
small. To see why, the smaller the value of ∑i∈S βi−β,
the smaller the positive coefficient of α in the objective
of Eqn 5. Thus, the solution of Eqn 5 will have a large
value of α and a very small amount of allocatable flow.

• In light of these two points, in our experiments, we
choose all scenarios that are individually more likely
to occur than a cutoff ρ and multiplicatively reduce ρ un-
til the total probability of considered scenarios exceeds
1− 1−β

2 .

100 101 102 103

Speedup, relative to PF4 (log scale)

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

rel. flow 0.99
0.80 rel. flow < 0.99

0.65 rel. flow < 0.80
rel. flow < 0.65

Figure 18: Breaking down the NCFlow results from Figure 11b into four
separate CDFs based on relative total flow.

F.2 Comments on benchmarking TEAVAR
Observe that the number of scenarios affects the complexity
of the TEAVAR* optimization; specifically, the number of
equations and variables increases by |S | ∗ |P |. The path set is
at least as large as the node pairs, i.e., |P |> N2 where N is the
number of nodes. The appropriate choice of fault scenarios
to consider, as discussed above, depends on the size of the
topology, the failure probability of edges, and the required
assurance level β. Suppose one considers all 2-edge failure
scenarios; then |S | ∼ M2 where M is the number of edges.
Hence, the increase in equations and variables exceeds N2M2.
Note that MaxFlow is substantially simpler, having at most
O(N2) variables and constraints (Equation 1).

On the topologies listed in Table 5, our implementation of
TEAVAR* never ran to completion even after several days. We
ran with β = 0.99 and link failure probability set to 0.004;
both of these are the default values used in [3]. The reason
is that the optimization problem becomes intractably large.
TEAVAR behaves similarly [19]. We conclude that probabilis-
tic fault protection using this methodology is infeasible on
large topologies and for non-trivial fault assurance levels such
as when considering multiple link failures.

We also note that we are unable to simultaneously achieve
the solution quality and the runtimes that are reported in
TEAVAR [19] using their code [3]. Specifically, achieving the
assurance levels reported in their experiments requires many
scenarios to be considered. The runtimes reported in [19]
appear to have been measured when considering only single
link failures.

G Additional Experiments

G.1 Breakdown of NCFlow’s Performance
To further understand the performance of NCFlow, Figure 18
breaks down the results in Figure 11 into four ranges based
on total relative flow. We plot CDFs of the speedup ratio per
range. The solid blue and green dashed line, which correspond
to relative flow above 0.99 and in [0.8,0.99) respectively, ac-
count for 49% and 46% of all experiments. The figure shows
that NCFlow achieves sizable speedups while allocating large

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 193

Topology Edge-Based Räcke KSP NCFlow

Total # FIB Entries

PrivateLarge 945,038,502 52,515,090 22,483,244 1,694,027
Kdl 427,524,786 76,794,001 30,199,751 1,876,289
PrivateSmall 7,684,182 1,232,866 625,282 139,346
Cogentco 7,567,952 2,054,323 915,207 139,862
UsCarrier 3,894,542 1,520,821 510,894 82,301
Colt 3,534,912 1,048,779 346,905 67,307
GtsCe 3,263,696 1,077,350 535,135 101,368
TataNld 3,006,720 1,062,629 540,088 93,179
DialtelecomCz 2,590,122 1,427,780 529,663 83,128
Ion 1,922,000 886,414 418,362 71,614
Deltacom 1,417,472 459,159 246,811 53,948
Interoute 1,306,910 483,960 249,979 32,193
Uninett2010 394,346 133,742 57,428 21,185

Maximum # FIB Entries

PrivateLarge 962,361 828,397 313,850 18,124
Kdl 567,009 576,274 309,575 16,926
PrivateSmall 38,809 49,663 21,796 3,639
Cogentco 38,416 60,676 30,601 3,144
UsCarrier 24,649 41,897 17,822 2,234
Colt 23,104 47,077 17,344 3,572
GtsCe 21,904 36,070 15,477 2,748
TataNld 20,736 24,776 13,179 2,104
DialtelecomCz 18,769 34,014 11,084 1,393
Ion 15,376 25,261 12,954 1,387
Deltacom 12,544 25,135 13,029 1,737
Interoute 11,881 14,182 8,346 710
Uninett2010 5,329 8,891 3,626 868

Table 6: Number of FIB entries for NCFlow vs. edge-based formulations
(e.g., Fleischer-Edge), path-based formulations using Räcke Randomized
Routing Trees (SMORE*), and path-based formulations using k-shortest paths
(PF4, Fleischer-Path, TEAVAR*) on every topology.

amounts of flow.
Figure 19 further breaks down the aggregate results

from Figure 11 across various aspects of interest. In the
two left-most columns, we break down the results by differ-
ent settings of α, which illustrates how NCFlow performs on
both under-subscribed (α = {1,8}) and over-subscribed (α =
{32,64,128}) traffic matrices. In the former case, NCFlow
is typically able to fully satisfy the TM’s requested demand,
thereby matching the total flow allocated by the other methods.
At the same time, NCFlow is strictly faster on all TMs, except
for those belonging to smaller topologies (e.g., Uninett2010),
which we discuss later on. As α increases, so, too, does
NCFlow’s runtime advantage; however, this does come at the
cost of the total flow allocated. For example, when α = 32,
we see many instances where NCFlow is > 100× faster than
PF4, but allocates 75% of PF4’s total flow in the worst case.
This effect becomes more evident for the largest settings of
α: here, the speedups are > 1000×, but more flow is sacri-
ficed for some TMs. This behavior occurs perhaps because, as
the traffic volume increases and the topology becomes more
congested, paths that are not allowed by NCFlow’s scheme
become more critical for maximizing the total flow.

In the middle two columns, we break down the results by
traffic model. NCFlow tends to perform best when demands
are highly concentrated within clusters. In the bottom middle
plot (Poisson, δ→ 0), we see that NCFlow allocates > 90%
of PF4’s total flow for almost every TM, while still achieving
speedups > 100×. Recall that as δ→ 0 in the Poisson traffic

model, the traffic volume between clusters decreases, thus
generating concentrated demands. In contrast, when δ→ 1,
demands are less concentrated, which leads to worse perfor-
mance for NCFlow in terms of total flow, but not in terms of
runtime.

Finally, in the two right-most columns, we break down the
results by topology size. On Uninett2010, the smallest topol-
ogy in our evaluation set, NCFlow’s trade-off between total
flow and runtime is not much better than the other baselines,
particularly Fleischer-Edge.

As the topology size increases, NCFlow’s advantage be-
comes more apparent. On Colt, NCFlow offers faster runtimes
and sacrifices little flow, no more than 10% less than PF4.
On PrivateSmall and Kdl, NCFlow’s speedup increases even
more: > 100× faster than PF4 on the majority of cases on
Kdl. But flow is sacrificed, particularly for large values of
α. However, NCFlow’s trade-off is still favorable compared
to other methods: for Kdl, we see multiple instances where
NCFlow achieves 1,000× speedups at only a 20% reduction
in flow. For PrivateLarge, we see both the biggest speedups
and the smallest fraction of total flow relative to PF4. As
previously discussed, the outlier coincides with a highly over-
subscribed TM (α = 128). When we move to other regimes
on PrivateLarge, NCFlow’s performance improves: on 31 of
the 400 TMs with α ∈ {32,64}, NCFlow is > 1,000× faster
than PF4 while achieving > 80% of PF4’s total flow.

In summary, we can see in this panel of CDF plots where
NCFlow’s strengths lie: on (1) large topologies, and (2) TMs
with moderate demand volumes that are highly concentrated
within the topology.

G.2 Alternate clustering methods

For each topology, we evaluate the three different clustering
techniques mentioned in §3.4; on each topology we ask each
technique to compute the number of clusters listed in Table 5.
Figure 21 shows CDFs of the ratio of total flow and latency
speed-up of a clustering technique relative to that achieved by
using FMPartitioning; thus values to the left of x = 1 indicate
worse performance compared to FMPartitioning while those
on the right indicate better performance. The figure shows
that clusters discovered by FM partitioning almost always
let NCFlow carry more flow (red lines); using either spectral
clustering or leader election leads to a noticeably smaller
allocation in about 20% and 40% of the cases. The figure
shows a less clear-cut separation on latency speed-up; clusters
discovered by leader election offer more speedup in over
30% of the experiments. Overall, we see that FMPartitioning
performs better on average but not in all cases.

G.3 Effect on path latency

Figure 22 shows a CDF of the normalized path latency for de-

194 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 1 101 103
0.0

0.25
0.5

0.75
1.0

Fr
ac

tio
n

of
 C

as
es

= 1

0.6 0.8 1.0 1.2 10 1 101 103

Gravity

0.6 0.8 1.0 1.2 10 1 101 103

Uninett2010

0.6 0.8 1.0 1.2

10 1 101 103
0.0

0.25
0.5

0.75
1.0

Fr
ac

tio
n

of
 C

as
es

= 8

0.6 0.8 1.0 1.2 10 1 101 103

Bimodal

0.6 0.8 1.0 1.2 10 1 101 103

Colt

0.6 0.8 1.0 1.2

10 1 101 103
0.0

0.25
0.5

0.75
1.0

Fr
ac

tio
n

of
 C

as
es

= 32

0.6 0.8 1.0 1.2 10 1 101 103

Uniform

0.6 0.8 1.0 1.2 10 1 101 103

PrivateSmall

0.6 0.8 1.0 1.2

10 1 101 103
0.0

0.25
0.5

0.75
1.0

Fr
ac

tio
n

of
 C

as
es

= 64

0.6 0.8 1.0 1.2 10 1 101 103

Poisson, 1

0.6 0.8 1.0 1.2 10 1 101 103

Kdl

0.6 0.8 1.0 1.2

10 1 101 103

Speedup, rel. to PF4

0.0
0.25
0.5

0.75
1.0

Fr
ac

tio
n

of
 C

as
es

= 128

0.6 0.8 1.0 1.2
Total Flow, rel. to PF4

10 1 101 103

Speedup, rel. to PF4

Poisson, 0

0.6 0.8 1.0 1.2
Total Flow, rel. to PF4

10 1 101 103

Speedup, rel. to PF4

PrivateLarge

0.6 0.8 1.0 1.2
Total Flow, rel. to PF4

NCFlow SMORE* Fleischer-Path, = 0.5 Fleischer-Edge, = 0.5

Figure 19: A breakdown of the experimental results from Figure 11 along various dimensions of interest: scale factor, traffic model, and topology size. NCFlow
excels on large topologies with TMs that have highly concentrated demands.

0 5 10 15 20
TM Number

0
1
2
3
4

No
rm

al
ize

d
Re

qu
es

te
d

De
m

an
d

Figure 20: Traffic demand for each traffic matrix used in the demand tracking
experiment (see Figure 15) on PrivateLarge. The exact values are not shown
for confidentiality reasons.

mands6 under different flow allocations. The figure on the top
shows CDFs of the actual normalized path latency. Observe
that these distributions are nearly identical. The figure on the
bottom shows a CDF of the ratio of normalized latency; we

6The latency of the paths along which each demand is routed weighted
by the fraction of the demand routed along each path. That is, if a demand
is divided equally between two paths, the normalized latency will be the
average of the path latencies.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.3 0.4 1 2

Fr
a
ct

io
n
 o

f
C

a
se

s

Ratio of Metric vs FM Partitioning (log scale)

latency speedup: spectral clust.
latency speedup: leader election
total flow: leader election
total flow: spectral clust.

Figure 21: Comparing the total flow allocated and the speedup in computing
allocations when clusters are chosen using the three techniques mentioned
in §3.4–FM partitioning, spectral clustering and leader election. The default
technique used in our evaluation, FM partitioning, generally performs better
but not in all cases.

see that roughly 70% of the demands are carried by NCFlow
on paths that are at most as long as the paths used by PF4 (i.e.,
to the left of x=1). Most of the cases where NCFlow uses

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 195

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10

Fr
a
ct

io
n
 o

f
D

e
m

a
n
d
s

Ratio of Path Latency when using NCFlow vs. using PF4

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100
Path Latency (ms)

NCFlow
PF4

Figure 22: Effect of NCFlow on path latency

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Total Flow, relative to PF4n

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

NCFlow
SMORE*

Fleischer-Path, = 0.5
Fleischer-Edge, = 0.5

(a) CDF of total flow relative to PF4n

10 1 100 101 102

Speedup, relative to PF4n (log scale)

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

(b) CDF of speedup relative to PF4n

Figure 23: Similarly to Figure 11 all schemes use up to k = 4 shortest
paths between each pair of nodes except that the paths are chosen without
ensuring edge disjointness. The figure shows no qualitative difference relative
to Figure 11.

relatively longer paths are for demands that have very small
latency paths as illustrated by the top figure.

Note that path latency can be further explicitly controlled
in NCFlow by determining which paths can be used or by
weighting the objective to prefer shorter paths in the various
steps of Figure 6.

G.4 Alternate path choices

With Figure 23, Figure 24, Figure 25, Figure 26, Figure 27
we evaluate different numbers of paths between node pairs
chosen with or without edge disjointness. PFk refers to path
formulation with k shortest paths chosen using edge disjoint-
ness and PFkn indicates paths chosen without edge disjoint-
ness. Comparing these figures with Figure 11, we note that
NCFlow’s improvements over baselines hold across different
path choices.

Note that Figure 26 and Figure 27 are missing some of the
larger topologies listed in Table 5 for some of the baseline

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Total Flow, relative to PF8

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

NCFlow
SMORE*

Fleischer-Path, = 0.5
Fleischer-Edge, = 0.5

(a) CDF of total flow relative to PF8

10 1 100 101 102 103

Speedup, relative to PF8 (log scale)

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

(b) CDF of speedup relative to PF8

Figure 24: Similar to Figure 11 except all schemes use up to k = 8 shortest
paths between each pair of nodes; paths chosen with edge disjointness. The
figure shows no qualitative difference relative to Figure 11.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Total Flow, relative to PF8n

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

NCFlow
SMORE*

Fleischer-Path, = 0.5
Fleischer-Edge, = 0.5

(a) CDF of total flow relative to PF8n

10 1 100 101 102

Speedup, relative to PF8n (log scale)

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

(b) CDF of speedup relative to PF8n

Figure 25: Similar to Figure 11 except all schemes use up to k = 8 short-
est paths between each pair of nodes; paths chosen without ensuring edge
disjointness. The figure shows no qualitative difference relative to Figure 11.

schemes because the baselines ran out of memory (we used
a server with up to 3TB of memory) or raised some other
exception.

H Illustrative examples

Here, we show some illustrative examples where applying
NCFlow using adversarially chosen clusters can lead to sub-
optimal flow allocation.

Figure 28 shows a case wherein NCFlow is sub-optimal
because the aggregate graph (wherein nodes are clusters) is

196 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Total Flow, relative to PF16n

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

NCFlow
SMORE*

Fleischer-Path, = 0.5
Fleischer-Edge, = 0.5

(a) CDF of total flow relative to PF16n

10 1 100 101 102 103

Speedup, relative to PF16n (log scale)

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

(b) CDF of speedup relative to PF16n

Figure 26: Similar to Figure 11 except all schemes use up to k = 16 short-
est paths between each pair of nodes; paths chosen without ensuring edge
disjointness. The figure shows no qualitative difference relative to Figure 11.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Total Flow, relative to PF16

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

NCFlow
SMORE*

Fleischer-Path, = 0.5
Fleischer-Edge, = 0.5

(a) CDF of total flow relative to PF16

10 2 10 1 100 101 102 103

Speedup, relative to PF16 (log scale)

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 C

as
es

Better

(b) CDF of speedup relative to PF16

Figure 27: Similar to Figure 11 except all schemes use up to k = 16 shortest
paths between each pair of nodes; paths chosen with ensuring edge disjoint-
ness. The figure shows no qualitative difference relative to Figure 11.

0.5

0.5

0.33

0.67

0.17

Flow in Iter 1
0.83
0.67

Flow in Iter 2
0.17
0

Iteration 1 Iteration 2

Demand Volume Optimal flow
 1.0 1.0

 1.0 1.0

Figure 28: Sub-optimality of NCFlow when the aggregate graph is not a tree.

1

0.5

0.5

NCFlow
0.5
0.5
0.5

Demand Volume Optimal flow
 1.0 0

 1.0 1.0

 1.0 1.0 0.5

0.5

Figure 29: Sub-optimality of NCFlow when demands cannot be fully satis-
fied.

Demand Volume Optimal flow
 1.0 1.0

1

Figure 30: Sub-optimality of NCFlow when there are multiple-edges between
pairs of clusters.

(a) For the suboptimality problem in Figure 28, a different clustering choice that leads
to optimal flow allocation with NCFlow.

(b) For the suboptimality problem in Figure 29, a different clustering choice that leads
to optimal flow allocation with NCFlow.

(c) For the suboptimality problem in Figure 30, a different clustering choice that leads
to optimal flow allocation with NCFlow.

5

5

(d) For the disagreement problem in Figure 8a, a different clustering choice that does
not lead to such a disagreement.

(e) For the disagreement problem in Figure 6, a different clustering choice that does
not lead to such a disagreement.

Figure 31: Alternate clustering choices that fix suboptimality concerns and
disagreements.

not a tree. The network topology and optimal allocations are
shown in the graph on the left; assume each link has a unit
capacity. With NCFlow, as shown in the figures on the right,
MaxAggFlow can route the flow from s1 to t1 on either the top
or the bottom path or divide between the two paths in some
proportion; note that MaxAggFlow is not aware of demands

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 197

that are local to a cluster (such as the flow from s2 to t2).
Whenever MaxAggFlow assigns non-zero flow for the s1→ t1
demand on the top path, NCFlow will be sub-optimal because
then the other demand cannot be fully satisfied when MaxClus-
terFlow executes later on the yellow cluster. Any unsatisfied
volume for s1 → t1 can be routed on the bottom path in a
later iteration but the flow for s2→ t2 will not increase since
the links that demand can use are fully utilized in the first
iteration. The root of the problem here is that MaxAggFlow
allocates traffic over multiple paths without being aware of
the demands within clusters.

Figure 29 shows a case wherein NCFlow is sub-optimal
when demands cannot be fully satisfied. As above, the topol-
ogy and optimal allocations are shown on the left. Also, as
above, the root of the issue here is that MaxAggFlow allo-
cates the cross-cluster flow on the aggregate graph without
being aware of the demands within clusters. As shown, subse-
quently, MaxClusterFlow will under-allocate flow for the local
demands even though total flow would be larger if the local
demands are fully satisfied.

Reordering the sub-problems, i.e., executing MaxCluster-
Flow before MaxAggFlow, may appear promising based on
these examples but simple counter-examples exist even for
such a reordered solution. The underlying cause of sub-
optimality is not the order in which the global and local solu-
tions are computed but rather that the optimal flow allocation
requires jointly solving these problems.

Figure 30 shows a case wherein NCFlow can be sub-optimal
when multiple edges connect clusters. As above, each un-
marked link has unit capacity and the optimal allocations are
shown in blue. Recall that NCFlow uses exactly one edge
between each pair of clusters per iteration to avoid disagree-
ments. There are two edges between each cluster but among
the four possible crossing edge choices in an iteration, exactly
one choice can carry non-trivial amount of flow (the top edge
for each cluster pair). If that choice is somehow not picked,
as shown marked in red on the right in Figure 30, NCFlow
will not satisfy the demand. Simply increasing the number
of iterations may not suffice either since the number of edge
choices can be large, depending on the path lengths on the
aggregate graph and on the number of edges between clusters.

As noted previously, the above examples are in part due to
poor cluster choices; Figure 31 shows different cluster choices
for these examples under which NCFlow will lead to optimal
flow allocation.

I Optimality gap

ue,ve ∈ V Edge e ∈ E goes from node ue to node ve
mu,∀u ∈ V mu denotes the cluster containing node u. Note that

mu ∈ Vagg (i.e., the cluster is a node on the aggre-
gate graph) and u ∈ Vmu (i.e., the node u belongs
in the restricted graph for the mu’th cluster)

∀k ∈D,msk 6= mtk ,x ∈ Vagg
OutNodes(x,k) The nodes in cluster x that can carry flow of

demand k out to some other cluster, i.e., {u |
mu = x,∃v∈V , p∈Pagg,Ksktk

s. t. mv = y,(x,y)∈
p,(u,v) ∈ E}

InNodes(x,k) The nodes in cluster x that can carry flow of de-
mand k into cluster x, i.e., {u |mu = x,∃v∈V , p∈
Pagg,Ksktk

s. t. mv = y,(y,x) ∈ p,(v,u) ∈ E}

Table 7: Additional notation for optimality gap; builds on top of notation
from Table 2 and Table 3.

MaxEdgeFlow(V ,E ,D), argmax
f ∑

k∈D
fk s.t. (6)

f =
{

fke | ∀k ∈D,e ∈ E
}

and

fke ≥ 0 ∀e ∈ E ,k ∈D (non-negative flow)

fk ≤ dk, ∀k ∈D (below volume)

∑
∀k,e

fke ≤ ce, ∀e ∈ E (below capacity)

∑
e,ue=u

fke− ∑
e,ve=u

fke =

fk if u = sk

− fk if u = tk
0 o/w.

∀k ∈D,u ∈ V (flow cnsrvtn.)

I.1 Optimal MaxEdgeFlow

The optimal flow allocation algorithm, in terms of carrying
the maximum amount of flow possible on a network, is as
shown in Equation 6. We will call this the EF, short for
MaxEdgeFlow. Some additional notation is in Table 7. Ob-
serve that, in this formulation, any demand can be allocated
on any edge (the variable fke) as long as flow conservation
holds (the longer equation at the bottom). As noted in §2, this
edge-form of the problem carries the maximal amount of flow
but has a high computation time and requires a large number
of forwarding entries at switches (one rule per nodepair at
each node).

I.2 Edge flow with cluster constraints
Relative to the optimal MaxEdgeFlow, we first ask how much
flow will be lost by using clusters. To compute this value,
we add to MaxEdgeFlow the constraint shown in Equation 7.
Specifically, demands whose source and target are in the same
cluster can only use edges within the cluster. However, as
above, paths remain otherwise unconstrained.

fke = 0 ∀e,ue /∈ Vx or ve /∈ Vx, if msk = mtk = x. (7)

We will call this optimization problem EF with cluster con-
straints.

198 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

0.8 0.9 1 1.1

Fr
a
ct

io
n
 o

f
C

a
se

s

Total flow, relative to PF4 (log scale)

 0
 0.2
 0.4
 0.6
 0.8

 1

10-4 10-3 10-2 10-1 1 10 102

Speedup, relative to PF4 (log scale)

NCFlow
PF + cluster and path constr.

EF + cluster constr.
EF

Figure 32: Comparing flow allocated by NCFlow with the best possible flows

I.3 Path form with cluster and path con-
straints

Next, we ask how much flow will be lost when using the
clusters as well as the given set of paths within and between
clusters? Computing this value is somewhat more complex
because we have to stitch together the flow carried on paths
within each cluster with the flow on the edges between clusters
while also ensuring that flow follow the chosen paths on the
aggregate graph (where clusters are nodes). For reference, we
write this out in Equation 8.

In more detail, this optimization problem, as shown in Equa-
tion 8, has three classes of decision variables – f p

K , f p
k , fke –

which respectively are the flow allocated to a bundled demand
on a path on the aggregate graph, the flow allocated to a de-
mand on a path within a cluster and the flow allocated to a
demand on a crossing edge between clusters.

Equation 9 computes the net flow for each demand k which
for the case of a demand whose source and target are in the
same cluster is the sum of flow carried on all intra-cluster
paths. For demands whose source and target are in different
clusters, the net flow is the flow from the demand’s source
to all of the nodes in the source’s cluster that connect with
other clusters as well as the flow to the demand’s target from
all of the nodes in the target’s cluster that connect with other
clusters.

For flow conservation, consider Equation 11 which ensures
that all of the flow leaving at a node u for a demand k on
crossing edges to other clusters equals the flow that comes
into the node u either from the source of the demand (if the
source is within its cluster) or from all of the nodes in u’s
cluster that can receive flow for demand k from other clusters–

InNodes(mu,k). Equation 12 considers the converse case for
demands that leave at a node. Finally, Equation 13 relates
the total flow between a pair of clusters x,y on the crossing
edges between these clusters with the flow along paths on the
aggregate graph that contain the edge (x,y). We will call this
optimization problem PF with cluster and path constraints.

Note that the above constraints naturally lead to a reduction
in forwarding table size as discussed in §3.5. However, it is not
clear how much less flow these constraints allow for relative
to the optimal EF. Moreover, since this optimization has more
variables (and constraints) than PF4 (see Equation 2), it can
take longer to compute and may not be practically useful. We
use this optimization problem to discern how much flow is
lost by the constraints used in NCFlow (restricting to clusters
and paths) relative to the flow that is lost due to the heuristic
allocation process described in §3.

I.4 Experimental results

Our results are in Figure 32; the baseline is PF4 and the fig-
ures plot CDFs of total flow and latency speedup for many
topologies and traffic demands. Note that using the edge for-
mulation (purple dash-dots) often leads to substantially more
flow being allocated compared to PF4; however, as the fig-
ure on the top shows, edge formulation is a more complex
problem that takes longer to run (over 1000× longer).

Adding the clustering constraint to edge formulation has
an un-noticeable effect on the flow allocation (green dashes).
Note that we use clusters computed using FMPartitioning for
all topologies.

Constraining the path formulation using both the given
clusters and the given paths (between clusters and within each
cluster), as shown with the red dash line, allocates much more
flow than PF4 and not much less than is allocated in edge
formulation. Thus, empirically, constraining flow allocation to
traverse the chosen clusters and paths does not limit the flow
that can be allocated. The figure also shows that computing
the optimal flow given clusters and paths takes longer than
PF4 (roughly 10× – 100× longer). Thus, NCFlow offers a
heuristic which finishes substantially faster than PF4.

To sum up, our two main contributions are: (1) constraining
flow allocations to use specific clusters and paths which re-
duces the number of forwarding table entries needed without
affecting the flow that can be allocated and (2) a heuristic
that computes flow allocations quickly given this constraint
but can under-allocate flow. We believe that future work can
improve the heuristic to reduce the flow loss further.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 199

MaxClusterPathFlow(V ,E ,D,P), argmax
f ∑

k∈D
fk s.t. (8)

f =
{

f p
K | ∀K ∈Dagg, p ∈ Pagg, (flow on inter-cluster paths)

f p
k | ∀k ∈D, p ∈ P , (flow on intra-cluster paths)

fke | ∀k ∈D,e ∈ E ,mue 6= mve (flow on edges between clusters)
}

and

fk =

∑
p∈Psk ,tk

f p
k if msk = mtk (flow within a cluster)

∑
t∈OutNodes(msk ,k)

∑
p∈Psk ,t

f p
k if msk 6= mtk (flow from source to outnodes)

∑
s∈InNodes(mtk ,k)

∑
p∈Ps,tk

f p
k if msk 6= mtk (flow to target from innodes)

∀k ∈D(net flow) (9)

fk ≤ dk(flow below volume) ∀k ∈D

ce ≥

∑

k∈D
∑

p∈P , p3e
f p
k if mue = mve (intra-cluster edges; note: k goes over all demands)

∑
k∈D

fke otherwise (inter-cluster edges)
∀e ∈ E , (10)

∑
e∈E |ue=u, mue 6=mve

fke =

∑

p∈Psku

f p
k if mu = msk (at cluster mu, flow from sk to u)

∑
v∈InNodes(mu ,k)

∑
p∈Pv,u

f p
k otherwise (at cluster mu, flow from all InNodes to u)

∀u ∈ V ,k ∈D (11)

∑
e∈E |ve=u, mue 6=mve

fke =

∑

p∈Pu,tk

f p
k if mu = mtk (at cluster mu, flow from u to tk)

∑
v∈OutNodes(mu,k)

∑
p∈Pu,v

f p
k otherwise (at cluster mu, flow from u to all OutNodes)

∀u ∈ V ,k ∈D (12)

∑
p∈Pagg|(x,y)∈p

f p
K = ∑

e|mue=x, mve=y, k∈K
fke ∀K ∈Dagg, x, y ∈ Vagg (flow b/w clusters = flow on inter-cluster path) (13)

200 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	NCFlow
	Basic Flow Allocation
	Properties of Basic Flow Allocation

	A feasible heuristic
	Stepping towards optimality
	Choosing clusters and paths
	Setting up switch forwarding entries

	Implementing NCFlow
	Evaluation
	Methodology
	Comparing NCFlow to the State of the Art
	Effect of Design Choices
	NCFlow on Real-World Traffic
	Tracking Changing Demands
	Handling Failures with NCFlow

	Discussion
	Related Work
	Conclusion
	More Discussion
	Properties of NCFlow's flow allocation algorithm
	Proof that the algorithm in §3.1 meets demand and capacity constraints
	Proof that the heuristic in §3.2 leads to feasible flow allocations
	Proof of optimality for algorithm in §3.1 given some sufficient conditions

	Data-plane details for NCFlow
	Actions at the NCFlow controller, after each allocation
	Details on switch forwarding entries

	Definitions of NoMoreFlow
	Fault Model
	Benchmarking TEAVAR and TEAVAR*
	Formulation for TEAVAR*
	Comments on benchmarking TEAVAR

	Additional Experiments
	Breakdown of NCFlow's Performance
	Alternate clustering methods
	Effect on path latency
	Alternate path choices

	Illustrative examples
	Optimality gap
	Optimal MaxEdgeFlow
	Edge flow with cluster constraints
	Path form with cluster and path constraints
	Experimental results

