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ABSTRACT

While prior work has explored many proposed datacenter designs,

only two designs, Clos-based and expander-based, are generally con-

sidered practical because they can scale using commodity switching

chips. Prior work has used two different metrics, bisection band-

width and throughput, for evaluating these topologies at scale. Little

is known, theoretically or practically, how these metrics relate to

each other. Exploiting characteristics of these topologies, we prove

an upper bound on their throughput, then show that this upper

bound better estimates worst-case throughput than all previously

proposed throughput estimators and scales better than most of

them. Using this upper bound, we show that for expander-based

topologies, unlike Clos, beyond a certain size of the network, no

topology can have full throughput, even if it has full bisection band-

width; in fact, even relatively small expander-based topologies fail

to achieve full throughput. We conclude by showing that using

throughput to evaluate datacenter performance instead of bisection

bandwidth can alter conclusions in prior work about datacenter

cost, manageability, and reliability.
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1 INTRODUCTION

A primary contributor to the success of cloud computing is the dat-

acenter, a warehouse-style agglomeration of compute and storage

on commodity servers. The performance of distributed applica-

tions running inside a datacenter, like search, reliable storage, and

social networks, is strongly determined by the design of the dat-

acenter network. This network consists of a topology in which

switches interconnect servers. Today, datacenters routinely have

tens of thousands of switches connecting hundreds of thousands

of servers. Our focus, in this paper, is on the design and evaluation

of topologies for such large-scale datacenters.

Datacenter topology designs. Two distinct classes of topology

designs have emerged in recent years. Clos [8] based designs include

Fat-tree [1], VL2 [15], Jupiter [42] and Facebook Fabric [3], and

failure-resilient variants, such as F10 [36]. These hierarchical de-

signs are bi-regular, in which a switch either connects to 𝐻 servers,

or none at all (Figure 1). More recent alternative designs target

lower installation costs and/or incur lower management costs than

Clos-based topologies. These designs employ an expander-graph to

interconnect switches, and include Jellyfish [44], Xpander [47], and

FatClique [52]. These topologies are uni-regular : every switch con-

nects to 𝐻 servers (Figure 1). In both classes, each server connects

to exactly one switch.
1

Measures of topology capacity. The capacity of the data center

network limits the performance of applications it hosts. Intuitively,

a topology with enough capacity to permit every server to send

traffic at full line rate simplifies cloud application design: operators

can place application instances anywhere in the network without

impacting performance, and this placement flexibility enables ap-

plications to be more cost efficient and more robust to correlated

failures (e.g., of an entire rack or power domain) [15, 21, 35, 42].

Most prior work [1, 3, 15, 42, 52] has used the network’s bisection
bandwidth, the smallest aggregate capacity of the links crossing the

worst-case cut among all the cuts that divide the topology graph

into two halves, as a measure of its capacity. A topology has full
bisection bandwidth if its bisection bandwidth is at least equal to

half of the total servers; for Clos-based designs, such a topology

permits arbitrary application instance placement.

Other work [24, 26, 27, 50, 51] has explored an alternative mea-

sure of network capacity, throughput, defined as follows. The

throughput under traffic matrix 𝑇 is the highest scaling factor 𝜃 (𝑇 )
such that the topology can support the traffic matrix, 𝑇 · 𝜃 (𝑇 ),

1
Other topology designs, such as DragonFly [30], and SlimFly [6], do not scale to the

sizes of modern data centers, so we do not consider them in this paper; see §7.
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Figure 1: Uni-regular and bi-regular topologies.

without violating any link’s capacity constraint. The throughput
of a topology denoted by 𝜃∗ is the worst-case throughput among

all traffic matrices. A topology can support any traffic demand if

and only if 𝜃∗ is at least 1 (in this case, we say the topology has

full throughput). Because it can support any traffic demand, a full

throughput topology also permits arbitrary application instance

placement by definition.
2

How prior work uses these metrics. These metrics can help

evaluate topology design, perform cost comparisons, or assess the

complexity of network expansion. As Table 1 shows a substantial
body of work has used bisection bandwidth to perform these

assessments on large-scale uni-regular and bi-regular topologies.

(Some prior work [27, 43, 44, 47] has used throughput to perform

some of these assessments, but for much smaller-scale topologies
with only a few thousand servers.)

Objective Metric Topology Class Prior work

Evaluate Design BBW

bi-regular [1, 15, 42]

uni-regular [44, 47, 52]

Assess Cost BBW

bi-regular [15, 42, 44, 52]

uni-regular [44, 52]

Estimate Expansion

complexity

BBW

bi-regular [10, 42, 52, 53]

uni-regular [44, 52]

Table 1: Prior work has used bisection bandwidth for large-scale evalua-

tions.

Given this discussion, it is natural to ask: What is the difference

between these metrics for uni-regular and bi-regular topologies?

Should the papers listed in Table 1 have used throughput instead?
How would these assessments change if they did?

To our knowledge, the literature has not explored the precise

difference between these two metrics, but has explored related,

but slightly different questions. Bisection bandwidth is a graph-cut

based metric, and [27] has studied the relation between cut based

metrics and throughput at a scale much smaller than those we

consider in this paper. As well, [34] shows that the sparsest cut

of any topology for a given traffic matrix is within 𝑂 (𝑙𝑜𝑔𝑁 ) of its
throughput for that traffic matrix. Finally, Yuan et al. [50] show
that bisection bandwidth cannot predict average throughput of a

topology.

2
To actually achieve arbitrary instance placement, one also might need a scalable,

practical routing scheme that can exploit the topology’s available capacity. For Clos-

based networks, ECMP-based routing can do so. For large-scale uni-regular topologies,

we believe this question is open. We don’t address this in this paper since we focus on

topology properties.

In this paper, we take a first step in understanding the relation-

ship between these metrics by making the following contributions.

Contribution: The Difference Between Full Throughput and

Full Bisection Bandwidth for Uni-regular Topologies. We

prove (§4) that for any uni-regular topology, there exists a size (in

terms of the number of servers) beyond which the topology cannot
have full throughput even if it has full bisection bandwidth. This is
true even of small instances of uni-regular topologies with as few

as 10-15K servers (§4.2). By contrast, bi-regular Clos topologies are

not subject to this limit, and a full bisection bandwidth topology

always has full throughput (Figure 2). This means that a topology

designer cannot ensure application placement independence (more

precisely, the ability to support any arbitrary traffic demand) using

a full bisection bandwidth uni-regular topology (Table 1). Put

differently, for uni-regular topologies, full bisection bandwidth is

necessary but not sufficient to support arbitrary traffic demand; by

definition, full throughput is both necessary and sufficient.

Figure 2: Full throughput vs. Full bisection bandwidth.

Contribution: A Throughput-Centric View. Table 1 shows that

prior work has used bisection bandwidth to evaluate uni-regular

and bi-regular topologies; we show that using throughput can lead

to different conclusions, impacting cost and management complex-

ity (§5.1). It is also the more appropriate metric: as the previous

contribution demonstrates, throughput better captures the capac-

ity of both uni-regular and bi-regular topologies, while bisection

bandwidth does not.

▶ Prior work has argued that a full bisection bandwidth Jellyfish,

Xpander or FatClique uses 50% fewer switches than a full bisection

bandwidth Clos [8]. We show that a full throughput Jellyfish [44],

Xpander [47] or FatClique [52] uses only 25% fewer switches than a

full throughput Clos. This finding is important, because the smaller

cost differential may make uni-regular topologies less attractive

relative to Clos (whose packaging and routing simplicity may out-

weigh its higher cost).

▶ Prior work has argued that a Jellyfish or FatClique can be ex-

panded: (a) with minor bandwidth loss while keeping the num-

ber of servers per switch constant; (b) using a random rewiring

strategy [52] simpler than that for Clos [53]. This assumes that

bandwidth loss is estimated using bisection bandwidth. We show

that, expanding a full throughput Jellyfish or FatClique by even a

small amount, while keeping fixed the number of servers per switch,

can result in a topology without full throughput. Thus, a designer
wishing to maintain full throughput for uni-regular topologies after

expansion may need to re-wire servers, requiring a much more

complex expansion strategy than Clos.
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▶ Datacenter designers have traded off topology capacity for lower

cost by designing over-subscribed topologies. The FatTree [1] paper

defines the over-subscription ratio of a topology as the ratio of

the worst-case achievable throughput between end-hosts to the

aggregate bisection bandwidth. Our results suggest that, for uni-

regular topologies, a more direct definition of over-subscription

ratio is the throughput itself (a throughput less than 1 indicates an

over-subscribed topology). We find that, for these topologies, the

bisection-bandwidth based over-subscription ratio overestimates

the throughput by up to 50%. Thus, a designer using that definition

would build a network whose actual capacity is lower than the

targeted capacity.

Contribution: An Efficiently-Computable, Tight, Through-

put Upper Bound. The previous contributions require a way to

compute the throughput of large uni-regular and bi-regular topolo-

gies. To this end, we make the following contributions.

▶We prove an upper bound on the throughput of uni-regular and

bi-regular topologies (§2).

▶ We empirically show (§3) that this upper bound is tighter and
scales better than existing approaches of estimating network ca-

pacity or throughput: the throughput bound in [43], heuristics for

estimating throughput in [23, 24, 51], bisection bandwidth, and

sparsest cut [27].

▶ This scalable throughput upper bound can be used to better assess
properties of datacenter topologies at larger scales than previously

possible, giving a designer greater confidence in a particular topol-

ogy (§5.2). A concrete example is resilience. Prior work showed that

Jellyfish [44] and Xpander [47] degrade gracefully with random link

failure for up to 1K servers; we show that, for a 131K sized Jellyfish

or Xpander, degradation is less than graceful (the throughput after

failure can be up to 20% lower than what one might expect with

graceful degradation) under random failure.

Ethics. This work does not raise any ethical issues.

2 AN UPPER BOUND ON THROUGHPUT

In this section, we prove an upper bound on throughput that applies

to uni-regular and bi-regular topologies.

2.1 Complexity of Computing Throughput

Bounds

A permutation matrix is one in which each row and each column

has exactly one non-zero entry. A permutation matrix can indicate

traffic either at the server-level (where each entry denotes traffic

between two servers), or switch-level. In server-level permutation

matrices, all non-zero entries are normalized to 1 while for switch-

level matrices, they are the number of servers connected to the

switch (𝐻 ). In this section, we show that this set of switch-level
permutation trafficmatrices, denoted by ˆT , is sufficient to characterize
the throughput of uni-regular and bi-regular topologies.

Notation. Entry 𝑡𝑢𝑣 of the switch-level traffic matrix 𝑇 describes

the traffic demand from switch 𝑢 to switch 𝑣 . LetK be the set of all

switches with servers, and𝐻 be the number of servers connected to

each switch inK . To determine the throughput of the topology, we

Notation Description

𝑁 Total number of servers

𝐸 Total number of switch-to-switch links

𝑅 Switch radix

𝐻 Number of servers per switch

S Set of switches with and without servers

K Set of switches with 𝐻 servers (K ⊆ S)
𝑡𝑢𝑣 Traffic demand from 𝑢 to 𝑣 where 𝑢, 𝑣 ∈ K

𝑇 = [𝑡𝑢𝑣 ] |K | × |K | traffic matrix with demands 𝑡𝑢𝑣 ’s

T Saturated hose-model set

ˆT Permutation traffic set

𝜃 (𝑇 ) Throughput under traffic matrix𝑇

𝜃∗ Topology throughput (𝜃∗ = min𝑇 ∈T 𝜃 (𝑇 ))
𝐿𝑢𝑣 Shortest path length from switch 𝑢 to 𝑣

Table 2: Notation

use the hose model [11]
3
, where every switch sends and receives

traffic at no more than its maximum rate 𝐻 (for simplicity, each

link has unit capacity). The hose-model traffic set is the set of traffic

matrices that conform to the hose model:{
𝑇 ∈ R |K |×|K |+ :

∑
𝑢∈K 𝑡𝑢𝑣 ≤ 𝐻 ∀𝑣 ∈ K∑
𝑣∈K 𝑡𝑢𝑣 ≤ 𝐻 ∀𝑢 ∈ K

}
,

where R+ is the set of non-negative reals. This traffic set includes

the commonly-used traffic matrices such as all-to-all and random

permutations, and it applies not just to uni-regular topologies, but

to bi-regular topologies as well. A bi-regular topology contains two

types of switches: one without attached servers, and one in which

each switch has𝐻 servers. Switches without servers can not source

or sink any traffic, and as a result, it suffices to describe the traffic

matrix only by switches with attached servers (K).
Our hose model definition is consistent with [27], which bases

its definition on server-level traffic matrices. Our definition uses

switch-level traffic matrices, leveraging the fact that uni-regular

and bi-regular topologies have𝐻 servers per switch and each server

connects to exactly one switch.

On computing the throughput of a topology. Since the hose-

model traffic set contains an infinite number of traffic matrices,

computing the throughput of the topology (the minimum through-

put across all traffic matrices) is intractable.

To improve the tractability, consider the following set of traffic

matrices that we call the saturated hose model set, T , where each
switch sends and receives traffic at exactly its maximum rate 𝐻 :

T =

{
𝑇 ∈ R |K |×|K |+ :

∑
𝑢∈K 𝑡𝑢𝑣 = 𝐻 ∀𝑣 ∈ K∑
𝑣∈K 𝑡𝑢𝑣 = 𝐻 ∀𝑢 ∈ K

}
.

This set dominates the hose-model traffic set, since we can always

augment any hose-model traffic matrix with a non-negative value

to produce a saturated hose-model traffic matrix. So, the minimum

throughput across all traffic matrices in the hose model set cannot

be smaller than the minimum throughput across all traffic matri-

ces in T . However, there are still infinitely many elements in T .
The following theorem shows that for uni-regular and bi-regular

3
In the hose model, the end-host traffic rate is bounded by the port speed, which means

the model only permits admissible traffic patterns for the topology. Our use of the

hose model is consistent with prior work [11, 27].
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topologies, it suffices to consider an even smaller traffic set in order

to compute throughput.

Theorem 2.1. The throughput of a uni-regular or a bi-regular
topology is the minimum throughput across all traffic matrices in the
permutation traffic set ˆT .

Proof Sketch. §A contains the detailed proof, which proceeds

in two steps. First, it shows that
ˆT represents the extrema of the

convex polytope formed by the trafficmatrices inT . Second, relying
on the convexity of the set T , it shows that the minimum through-

put across all traffic matrices must correspond to a permutation

traffic. □

Prior work [45] has used a similar convexity argument in a

slightly different context, and [46] proves a similar theorem in a

more limited context (for oblivious routing). Other prior work ([29],

Conjecture 2.4) has stated Theorem 2.1 as a conjecture.

The size of
ˆT , while finite, grows combinatorially with thematrix

dimension, so it is still infeasible to iterate over all its elements in

order to compute throughput. However, in any traffic matrix in
ˆT ,

each switch 𝑢 sends traffic at full rate to exactly one other switch 𝑣 .

We exploit this, together with the structure of uni-regular and bi-

regular topologies to derive an efficiently computable upper bound

on the throughput of these topologies (§2.2).

2.2 Throughput Upper Bound

We now use Theorem 2.1 to derive a closed-form expression for

the upper bound on the throughput of a uni-regular or a bi-regular

topology. Throughput is both a function of the topology and the

routing algorithm used to route traffic demands; the derived upper

bound is independent of the routing algorithm.

Upper bound for uni-regular topology throughput. The fol-

lowing theorem establishes a tractable closed-form expression for

the throughput of a uni-regular topology. It assumes, without loss

of generality, a uni-regular topology with𝐻 servers per switch, and

unit link capacity.

Theorem 2.2. The maximum achievable throughput for a uni-
regular topology, under any routing, is bounded by:

𝜃∗ ≤ min

𝑇 ∈ ˆT

2𝐸

𝐻
∑
(𝑢,𝑣) ∈K2 𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] (1)

where 𝐸 is the number of switch-to-switch links in the topology, 𝐿𝑢𝑣
is the shortest path length from switch 𝑢 to switch 𝑣 and I [·] is an
indicator function.

Proof Sketch. §B contains the detailed proof, which relies on

the optimal solution of the path-based multi-commodity flow prob-

lem (§H, commonly used in wide-area network traffic engineer-

ing [33]). For a given traffic matrix 𝑇 , path-based multi-commodity

flowmaximizes throughput 𝜃 (𝑇 ). Now, consider an arbitrary switch
𝑢. Its total ingress traffic consists of two components: the traffic

destined to its servers, which depends on 𝜃 (𝑇 ), and its transit traffic.

We upper-bound the ingress traffic by the aggregate link capacity

at the switch, and lower-bound it by the total transit traffic de-

rived from the path lengths and the flow split ratios. Solving these

inequalities, and applying Theorem 2.1 gives Equation 1. □

Efficiently computing the throughput bound. The RHS of

Equation 1 chooses a permutation traffic matrix that maximizes

total path length. Finding this matrix is equivalent to finding near-

worst-case traffic matrix in [27]. In that work, the authors present

an intuitive form of the throughput upper bound and suggest an

intuitive heuristic for constructing a “difficult” server-level traffic

matrix (near-worst-case). In this paper, we formally prove the

throughput upper bound and use a slightly different approach

(discussed below) that constructs a switch-level traffic matrix to

achieve the minimum of the RHS of Equation 1.

To find the minimum throughput, we construct a complete bipar-

tite graph 𝐵 (consisting of two disjoint set of nodes 𝑈 and 𝑉 ) from

the given topology𝐺 .𝑈 and𝑉 represent all the possible source and

destination switches with directly connected servers in 𝐺 respec-

tively. The weight of the edge (𝑢, 𝑣) where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 is the

shortest path length from switch 𝑈 to switch 𝑉 . The permutation

traffic matrix that determines the throughput bound in Equation 1

corresponds to the weighted maximum matching in 𝐵. We call this

the maximal permutation matrix.

Extension to bi-regular topologies. Theorem 2.2 applies to bi-

regular topologies as well. Intuitively, additional switches with no

servers increase capacity for transit traffic which is reflected in

the numerator of Equation 1. We prove this formally in §C. The

theorem also applies to uni-regular and bi-regular topologies in

which each switch 𝑢 has a different radix 𝑅𝑢 ; we have omitted the

description of this extension for brevity.

Theorem 2.2 implies that throughput of a topology is propor-

tional to total link capacity and inversely proportional to maxi-

mal total path length of the maximal permutation matrix. Prior

work [43] has computed an upper-bound on the average through-

put of uni-regular topologies across all uniform traffic matrices

(the all-to-all and permutation matrices). In contrast, we bound the

worst-case throughput, and our bound is significantly closer (§3.2)

to the worst-case behavior of uni-regular topologies at all scales

than the bound of [43]. Our bound is also more general: it applies

to bi-regular topologies as well, and across all traffic matrices (as a

consequence of Theorem 2.1).

On server-level vs. switch-level trafficmatrices.We exploit the

regularity in uni-regular and bi-regular topologies and reason about

switch-level permutation traffic matrices, rather than server-level

ones. This helps us efficiently compute the upper-bound even for

large topologies (§3). This efficiency does not impact the throughput

estimate, relative to using a server-level permutation matrix, as we

now show.

If we had used the server-level TMs, the throughput upper-bound
would have been the same. A switch-level maximal permutation

matrix 𝑇 , when converted to server-level 𝑇𝑛 , is a solution to the

corresponding server-level weighted maximum matching problem.

We can prove this by contradiction. Let, for any server 𝑢, 𝑠 (𝑢) be
the switch connected to 𝑢 and assume that 𝑇𝑛 can be improved by

(the total path length of the permutation matrix can be increased

by, see denominator of Equation 1) a set of actions on (𝑢, 𝑣) (e.g.,
insertion or deletion of a flow). We can show that 𝑇 can be also im-

proved by the same amount by a similar set of actions on (𝑠 (𝑢), 𝑠 (𝑣)).
This is because the link from the server to its directly connected
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Figure 3: Throughput bound vs K-shortest paths Multi-commodity flow.

Gap approaches zero as the number of servers (𝑁 ) increases for all choices

of uni-regular topologies and servers per switch (𝐻 ).

switch does not constrain throughput, so all 𝐿𝑢𝑣s do not include

it. Thus, adding/removing (𝑠 (𝑢), 𝑠 (𝑣)) increases/decreases the total
path length by the same amount as adding/removing (𝑢, 𝑣) does.
This is a contradiction since we assumed 𝑇 is the maximal permu-

tation matrix.

However, the actual throughput of the topology under switch-

level maximal permutation matrix is always less than or equal to
the server-level one. If the server-level maximal permutation ma-

trix, when converted to switch-level, is not a permutation matrix, a

similar line of proof as Theorem 2.1 can show that the correspond-

ing switch-level traffic matrix is a convex combination of some

switch-level permutation traffic matrices. So, at least one of the

switch-level permutation matrices has lower throughput than this

TM. Hence, considering switch-level matrices not only improves

the scalability of our throughput bound but also better captures the

minimum throughput of the topology.

3 EVALUATING THE THROUGHPUT UPPER

BOUND

In this section, we show that throughput upper bound (abbreviated

tub) (a) accurately estimates the worst case throughput and (b) all

previously proposed throughput estimators [23, 24, 43, 51] produce

worse estimates for uni-regular topologies and most scale poorly.
4

3.1 Throughput Gap

In this section, we compute the throughput gap between the

throughput upper bound (abbreviated tub) and the throughput

4
Our code is available at https://github.com/USC-NSL/TUB
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Figure 4: Jellyfish (H=8). (a) Throughput gap appears at topology sizes that

shortest paths does not provide enough diversity. (b) The number of pairwise

shortest paths in the maximal permutation matrix periodically increases

and decreases. (sp=shortest path, nsp=non-shortest path, spl=shortest path

length)

achieved by routing a “worst-case” traffic matrix, and show that

this gap is small.

Methodology. Prior work [27] has shown that maximal permu-

tation matrix can achieve worst-case throughput. We have inde-

pendently verified this. For small topologies, we exhaustively com-

pared the throughput of every TM under KSP-MCF, and the maxi-

mal permutation matrix achieves the lowest throughput. For large

topologies, we compared the throughput of the maximal permuta-

tion matrix with 20 random permutations, and observed that the

throughput of maximal permutation matrix is constantly lower, and

the gap between these two increases with scale.

To demonstrate that the throughput gap is small, we need to

select a routing scheme. We have found that it suffices to solve a

path-based multi-commodity flow [33] over K-shortest paths (KSP-

MCF, see §H). To compute the throughput gap, we sweep values of

𝐾 until increasing 𝐾 does not increase throughput
5
; in most cases,

𝐾 = 100 suffices to match tub. As an aside, we do not mean to

suggest that KSP-MCF is practical for large networks; especially for

uni-regular topologies, finding a scalable routing scheme that can

achieve high throughput is an open question left to future work.

Other details. For all results in the paper, we use METIS [28]

to (over) estimate bisection bandwidth, Gurobi [18] to solve linear

programs forMCF, the networkx [19] implementations of𝐾-shortest

paths [49] and the igraph [9] implementation of maximum bipartite

matching [32, 40]. FatClique deviates slightly from our definition

of uni-regular topologies: in a FatClique topology, 𝐻 can differ by 1

across switches.We have adapted tub and themaximal permutation

algorithm to deal with this deviation (§I).

For Uni-regular Topologies. Figure 3 shows the throughput gap

for tub for the three uni-regular topologies, for different 𝐻 .

Jellyfish. Figure 3(a) shows the throughput gap for 𝐾 = 100 for

Jellyfish with 𝐻 = 8 (other values of 𝐻 are qualitatively similar).

The gap is non-zero at small scales between 3K – 15K. However,

for larger instances, the gap is close to zero.

tub is loose in the range 3K – 15K because (a) the proof of

Theorem 2.2 uses the observation that throughput is highest when

5
§J shows the results for different values of 𝐾
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all paths between each source-destination pair are shortest paths

and (b) topologies in this size range have fewer shortest paths,

so KSP-MCF routes traffic over non-shortest paths. (Figure 4(a)

plots the distribution of the fraction of flows over shortest and

non-shortest paths for different topology sizes).

Interestingly, topologies with 100K – 180K servers have a smaller

fraction of shortest paths (Figure 4(b)), so we expect tub to be loose

in that range (we cannot confirm this because KSP-MCF does not

scale to those sizes), but expect the throughput gap to be small

beyond that range because the fraction of shortest paths increases.

However, in §E, we show that the maximum possible throughput

gap approaches zero asymptotically. Future work can explore better

throughput bounds that exploit diversity in non-shortest paths.

Xpander and FatClique. Figure 3 shows the throughput gap
for Xpander and FatClique, for different values of 𝐻 . Like Jellyfish

at 𝐻 = 8, the gap is significant at small scales between 5K – 15K for

these topologies and the gap is close to zero for larger instances.

Bi-regular Topologies. For Clos-based bi-regular topologies,

ECMP is able to achieve (close to) full throughput (modulo

differences in flow sizes [15]). We find that tub’s estimate is also 1

for different Clos topologies, showing that the gap is zero for them

as well (Table A.1).

3.2 Comparison with other throughput metrics

Prior work has proposed other ways of estimating throughput. For

uni-regular topologies, we expect tub to be (a) faster and (b) more

accurate than these other methods, because it leverages properties

of uni-regular topologies. In this section, we validate this intuition.

Efficiently computing tub. Before doing so, we briefly discuss

some empirical results for the speed of computing tub. The bottle-

neck in this computation is the weighted maximum matching in a

complete bipartite graph. Several network analysis tools such as

networkx [19] and igraph [9], have an efficient implementation of

weightedmaximummatching. Furthermore, our computation scales

well because we abstract the server-level traffic into a switch-level

traffic matrix, so that the number of nodes in the constructed bipar-

tite graph reduces significantly. On a machine with 64GB of RAM,

we were able to find the throughput upper bound for topologies

with up to 180K servers with 𝐻 = 8 within 20 minutes. For calibra-

tion, on the same platform, computing the throughput for routing

a permutation traffic matrix using KSP-MCF does not scale beyond

50K servers, and using full-blown MCF does not scale beyond 8K

servers.

Comparison alternatives. Prior work [27] has compared through-

put (i.e., the solution to MCF) with cut-based metrics, such as

sparsest-cut (using an eigenvector based optimization in [26]) and

bisection bandwidth, and [43] computes an upper bound on average

throughput of uni-regular topologies across uniform trafficmatrices.

In addition to these, we compare our method to two other through-

put estimators developed for general graphs. Hoefler’s method [51]

divides a flow into sub-flows on each path between source and

destination, and splits the capacity of a link equally across all flows

traversing it. Jain’s method [24] incrementally routes flows on each

path; at each step it allocates residual capacity on a link to all

new flows added to the link at this step and iterates until no paths

remain.

Results. Figure 5 compares tub against these alternatives, for

Jellyfish topologies with 8 servers per switch. Results for other

topologies are similar (omitted for brevity).

Small to medium scale. Figure 5(a) shows the throughput gap
(determined using themethodology described in §3.1) for topologies

with up to 25K servers. tub has the smallest throughput gap across

all alternatives. In the range 15K – 25K, tub’s throughput gap is

zero, that of others is higher than 0.2, and sometimes as high as 0.4.

To illustrate why it is important to have a small throughput gap,

consider a scenario in which a network operator wishes to design a

full throughput topology; if she uses a loose throughput estimator,

the resulting topology may not actually have full throughput.

Moreover, tub is among the most efficient of the alternatives

(Figure 5(b)).

It is both more accurate, and faster than Jain’s method (JM)

and Hoefler’s method (HM). These have large throughput gaps at

larger topology sizes (Figure 5(a)). JM and HM exploit edges of each

available path, but their estimates are loose because they assume all

the sub-flows going through each edge get a fair share of the edge’s

capacity. This assumption may not maximize the throughput of a

trafficmatrix; to do this, flows that currently have lower throughput

should get more share of the available capacity. JM and HM are

a few orders of magnitude slower than tub (Figure 5(b)) because

they exploit more of the topological structure.

Bisection bandwidth and [43] scale better than tub, but their

estimates have large error. Bisection bandwidth is a loose cut-based

estimate of throughput as shown by [27] at small scales, and proven

by us in §4. Figure 5(a) empirically verifies this at much larger

scales than [27]. Computing exact bisection bandwidth for general

networks is intractable [4], so we use a fast heuristic [28] that

approximates the bisection bandwidth. Furthermore, the bound

in [43] relies on average distance among all the pairs of switches,

based on the fact that every switch splits its traffic equally and sends

to all the other switches in the average case. Our bound, however,

considers structural properties (e.g., distance between individual

pairs) to maximize the congestion by routing the traffic between

pairs with the largest distance. Therefore, the gap for tub is smaller

than that for [43], but tub is slower since it considers more details

about the topology.

Large scale. Figure 5(c) plots the bisection bandwidth, and the

throughput estimated by tub, and by [43], for topologies for up to

300K servers. At these scales, we cannot compute KSP-MCF to esti-

mate the throughput, so we depict the absolute throughput values.

[43]’s throughput estimate is consistently and considerably higher

across the entire range compared to tub’s. The latter’s computa-

tional complexity is comparable to that of [43], except for the range

200K – 280K where tub exhibits a non-monotonic behavior. tub

attempts to choose disjoint pairs of switches with large distances

from each other to construct the maximal permutation matrix, but

in topologies of this size range, there are fewer of these pairs with

longest possible distance (i.e., diameter), so it takes longer for the
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Figure 5: tub is more accurate compared to all the other metrics and almost as fast as bisection bandwidth and throughput bound in [43]. (BBW is bisection

bandwidth, SC is sparsest cut, HM(.) is Hoefler’s method and JM(.) is Jain’s method in which (.) is the number of paths)

algorithm to search for these disjoint pairs. We expect to signifi-

cantly reduce the search by parallelizing the weighted maximum

matching implementation; we have left this to future work.

Summary. tub’s throughput gap is smaller than those of prior

estimators and scales to up to 300K servers. This enables us to

revisit whether prior evaluations of large-scale topologies using

bisection bandwidthwould yield different conclusions if throughput

were used instead (§5).

4 LIMITS ON THE THROUGHPUT OF

UNI-REGULAR TOPOLOGIES

In this section, using Theorem 2.2 we establish asymptotic limits on

the size of full-throughput uni-regular topologies. Then, exploiting

tub’s scalability and tightness (§3), we establish practical limits

on the size of full-throughput uni-regular topologies for different

values of 𝐻 .

4.1 Asymptotic Limits

A throughput upper bound for all uni-regular topologies.

Theorem 2.2 determines an upper-bound on the throughput for a
given uni-regular or bi-regular topology, independent of routing.

The following theorem, which applies only to uni-regular topolo-

gies, establishes an upper-bound on the throughput across all uni-
regular topologies, independent of routing.

Theorem 4.1. The maximum achievable throughput of any uni-
regular topology with 𝑁 servers, switch radix 𝑅 and 𝐻 servers per
switch under any routing is:

𝜃∗ ≤ 𝑁 (𝑅 − 𝐻 )
𝐻2𝐷

(2)

where;

𝐷 = 𝑑 (𝑁
𝐻
− 1) − 𝑅 − 𝐻

𝑅 − 𝐻 − 2

(
(𝑅 − 𝐻 − 1)𝑑 − 1

𝑅 − 𝐻 − 2 − 𝑑
)

and 𝑑 is the minimum diameter required to accommodate 𝑁 /𝐻
switches computed using Moore bound [39].

Proof Sketch. §D contains the detailed proof. We observe from

Equation 1 that throughput is lowest for switch pairs (𝑢, 𝑣) for
whom the shortest path length 𝐿𝑢𝑣 is high. Our constructive proof

Figure 6: uni-regular topologies can have limited throughput.

first bounds the number of switches whose distance is at least𝑚

from a given switch (Lemma 8.1 in §D). Then, we construct (Algo-

rithm 1 in the Appendix) the maximal permutation traffic matrix in

which each switch exchanges traffic with other switches that are

furthest from it (Lemma 8.2 in §D). This construction maximizes

𝐿𝑢𝑣 , and from this construction and using Lemma 8.1, we can bound

the number of communicating switch pairs whose distances are at

least𝑚 hops of each other. The bound applies to the denominator

of the RHS of Theorem 2.2, resulting in a throughput upper bound

independent of the traffic matrix (Lemma 8.3 in §D). □

This theorem formalizes the intuition captured in Figure 6. Fun-

damentally, a uni-regular topology is constrained by the fact that

every switch has to have 𝐻 servers. The figure shows topologies in

which 3-port switches have (at most) 𝐻 = 1 servers. The leftmost

4-switch topology has full throughput. However, the addition of a

single switch (the middle topology) drops throughput significantly.

To recover full throughput in this setting, we need to add four more

switches with no servers; these provide additional transit capacity.

Figure 7 shows the worst-case TM for the middle topology along

with the optimal routing of the TM. It also presents the through-

put of the same TM on the bi-regular topology with 4 additional

switches.

Relationship between bisection bandwidth and throughput.

Using Theorem 4.1, we can derive a necessary condition for any

full throughput uni-regular topology:

𝐷 ≤ 𝑁 (𝑅 − 𝐻 )
𝐻2

(3)

Unlike bi-regular topologies where Clos topologies have full bi-

section bandwidth and full throughput (see below), uni-regular

355



SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

s1

s2 s3

s4
s5

1/2

1/3

s1 -> s4: 1
s4 -> s2: 1
s2 -> s5: 1
s5 -> s3: 1
s3 -> s1: 1

TM s1

s2
s3

s4

s5

1.0

1.0 1.0
1.0

1.0

Figure 7: The uni-regular topology can support the given worst-case

permutation traffic matrix with throughput=
5

6
while the bi-regular topology

with 4 additional switches can support the TM at full throughput. In the

uni-regular topology setup, the optimal routing is the following:
1

2
of each

flow is routed through the shortest path while
1

3
of each flow is routed

through the non-shortest path.

Topology Condition 𝐻 = 8 𝐻 = 7 𝐻 = 6

Uni-regular Equation 3 111K 256K 3.97M

Jellyfish Full-BBW >20M >20M >20M

Xpander Full-BBW >20M >20M >20M

FatClique Full-BBW >20M >20M >20M

Table 3: Maximum number of servers, each topology set up can support

without violating the condition.

topologies can have full bisection bandwidth, but not full through-

put (as illustrated in Figure 2). Table 3 shows the maximum number

of servers each topology family can support without violating Equa-

tion 3 (switch radix 𝑅 is 32). It shows that the largest full throughput

uni-regular topology with 8 servers per switch can only support

111K servers, while the largest full bisection bandwidth Jellyfish,

Xpander, or FatClique topologies can support over 20M servers! (In

Table 3, for all uni-regular topologies, we were unable to estimate

the bisection bandwidth for topologies larger than 20M servers

because of computational limits.)

Scaling limits on uni-regular topologies. Another way of stat-

ing the results in Table 3 is that no uni-regular topology with𝐻 = 8

and more than 111K servers can have full throughput. This implies

that there is a bound on the number of servers that a full through-

put uni-regular topology can have. Corollary 1 formalizes this; we

prove it in §G.

Corollary 1. For a given switch radix 𝑅 and servers per switch
𝐻 , there exists a 𝑁 ∗ (𝑅,𝐻 ) such that for 𝑁 ≥ 𝑁 ∗ (𝑅,𝐻 ), no full
throughput uni-regular topology exists with 𝑁 servers, switch radix
𝑅 and 𝐻 servers per switch.

Every Clos-based topology always has full throughput. In

contrast to these scaling limits for uni-regular topologies, a fully-

deployed Clos-based topology always has full throughput. In §2.1,

we observed that Theorem 2.1 applies to Clos-based topologies.

Prior work has shown that a multi-stage Clos can (re-arrangeably)

support every permutation traffic matrix [25, 41]. Since Clos is a

bi-regular topology, it must have a throughput of 1 because, by The-

orem 2.1, it suffices to consider only permutation traffic matrices

to compute the throughput, and Clos can support all permutation

traffic matrices (i.e., for each matrix in
ˆT , Clos has a throughput of

1). Thus, bi-regular topologies like VL2 [15] and FatTree [1], being

Clos topologies, have full throughput. We conjecture that F10 [36]

also has full throughput (F10 uses a different striping than Clos),

but have left it to future work to prove that.

4.2 The Full-Throughput Frontier

Table 3 shows the largest possible number of servers any uni-regular

topology can support at full throughput. However, this bound is

loose in part because it applies generically to all uni-regular topolo-

gies. In this section, for each topology family, we characterize, as a

function of 𝐻 , the largest size beyond which no topology has full-

throughput
6
(as estimated by tub). We call this the full-throughput

frontier. For calibration, we also draw the full bisection-bandwidth
frontier, defined similarly. This comparison helps us quantitatively

understand the Venn diagram of Figure 2.

Methodology. To compute these frontier curves, we generate

topologies from each topology family, for different 𝐻 and 𝑁 . For

Jellyfish and Xpander, there is a uniquely defined topology given 𝐻

and 𝑁 . (In our experiments, we have assumed a fixed switch radix

of 32 unless otherwise mentioned.) For each value of 𝐻 , we use

binary search on the total number of servers to find the maximum

𝑁 that provides full bisection bandwidth, or full throughput.

For FatClique, we cannot precisely estimate the full-throughput

frontier since its topology instances can be non-monotonic with

respect to throughput. Specifically, because of the way it is con-

structed, for a given 𝐻 , a topology with 𝑁 servers can have full

throughput, but a topology with 𝑁 ′ < 𝑁 servers may not. For this

reason, for FatClique, we generate a large number of instances for

each 𝐻 and for each, we evaluate whether that instance has both

full bisection bandwidth and full throughput, or only full bisection

bandwidth.

Results. Figure 8 shows the results of these experiments for Jelly-

fish, Xpander, and FatClique.

Jellyfish and Xpander. Figure 8(a) shows the full-throughput
and full-bisection bandwidth frontier curves for Jellyfish, and Fig-

ure 8(b) for Xpander. For both Jellyfish and Xpander, there is a

large gap between these curves; there are many topologies that have
full bisection bandwidth, but do not have full throughput. In some

configurations (specifically 𝐻 of 7 and 8), these topologies cannot
achieve full throughput even with 10K-15K servers. At 𝐻 of 9, these

topologies can support a few hundred servers with full throughput.

For 𝐻 of 6, Jellyfish and Xpander can support full throughput up to
225K servers (off-scale in Figure 8(a), Figure 8(b)).

How does throughput degrade beyond the frontier? At 7 servers

per switch, a Jellyfish with 13K servers has a tub of 1, with 15K

servers a tub of 0.94, and with 17K servers a tub of 0.89. Similar

results hold for Xpander. This appears to suggest that the through-

put of these topologies degrade gracefully beyond the frontier, but

we have left a more detailed analysis to future work.

FatClique. Because FatClique instances can be non-monotonic

with respect to throughput, the full-throughput frontier curve is

approximately the boundary separating the blue (Throughput)

points from the red (BBW) points in Figure 8(c). Like Jellyfish and

6
Some topologies smaller than this size may also not have full throughput because

tub is an upper bound.
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Figure 8: Full-throughput Frontier Curve. Uni-regular topologies with H=8 and H=7 can not scale well while preserving full throughput even though they

maintain full BBW up to a very large size.

Xpander, there are no FatClique topologies above 10K which have

full throughput by the tub for 𝐻 values of 7 and 8 (at these values,

above 10K, all instances are labeled BBW).

Takeaways. While uni-regular topologies have elegant designs

(Jellyfish and Xpander) and useful manageability properties (Fat-

Clique), their throughput scaling is fundamentally limited (§4), and

many of their topology instances do not have full-throughput even
at scales far smaller than modern data centers (e.g., Amazon AWS

with more than 50K servers [2], Google Jupiter with more than 30K

servers [42]). At these larger scales, these topologies can use smaller

values of 𝐻 , but this can negate the cost advantages of uni-regular

topologies, as we show next.

5 A THROUGHPUT-CENTRIC VIEW OF

TOPOLOGY EVALUATIONS

In this section, we revisit prior work on topology evaluation from

a throughput-centric perspective.

5.1 Throughput vs. Bisection Bandwidth

§4.1 shows that, for uni-regular topologies, throughput and bisec-

tion bandwidth are different, and that, by definition, throughput

accurately captures the capacity of the network. Here we explore

whether conclusions from prior work that has used bisection band-

width to evaluate uni-regular topologies would change if through-

put were used instead. Table 4 summarizes our findings.

Topology Cost. Datacenter designers seek highly cost-effective

designs [35]. FatClique [52] and Jellyfish [44] have compared the

cost of their designs against Clos-based topologies by generating

full bisection bandwidth instances of their topology using the mini-

mum number of switches, and then comparing that number against

a Clos with the same number of servers. Figure 9 shows what would

happen if they had, instead, generated full throughput instances,

for topologies with different sizes and switch radices.

Figure 9(a) and Figure 9(b) show that the full throughput Jelly-

fish and Xpander built from 32-port switches use about 33% more

switches than the full bisection bandwidth topology at the scale of

32K and 131K servers (because, to achieve full throughput at larger

sizes, uni-regular topologies must use a smaller 𝐻 ). This increase

in the number of switches for FatClique is approximately 27%. This
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Figure 9: Topology Cost. Number of switches to build a full throughput

topology is larger than a full BBW topology. (a) Number of switches to

build a topology with 32K servers using 32-port switches. (b) Number of

switches to build a topology with 131K servers using 32-port switches (At

these scales, tub is expected to have a small throughput gap.) (c) Number

of switches to build a Jellyfish topology with different switch radices to

support the same number of servers as a 1/8th 4-layer Clos. (Percentages

are Full-tub/Full-BBW - 1.)

affects the comparison with Clos
7
: Clos uses 1.8x more switches

compared to uni-regular topologies to achieve full bisection band-

width
8
but only 1.3x more relative to full throughput uni-regular

topologies.

Figure 9(c) demonstrates that, at higher switch radices, the im-

pact of the choice of metric is more severe for uni-regular topologies.

To do this experiment, we needed to normalize the scale of the topol-

ogy relative to the radix of a switch. A natural way to normalize

this is to design a uni-regular topology with as many servers as a

full Clos with a given switch radix. However, at a radix of 64, a full

Clos has 2.1M servers to which our tub implementation does not

yet scale. So, we normalize the topology scale by designing Jellyfish

7
In this and subsequent evaluations, for Clos topologies the number of servers per

switch for leaf switches is always equal to
𝑅
2
, where 𝑅 is the switch radix, while the

rest of the switches have no servers.

8
Results for bisection bandwidth are consistent with findings of [44, 52]
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[52] Jellyfish, Xpander, and FatClique use 50% fewer switches to support the same servers as Clos at large-scale.

tub Jellyfish, Xpander, and FatClique use 25% fewer switches to support the same servers as Clos at large-scale.
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[44] Jellyfish using random rewiring can be expanded with minor bandwidth loss while keeping the servers per switch constant (even under large expansion)

tub Expanding jellyfish without considering the target size can cause significant throughput drop when servers per switch is preserved (even under small

expansion).

Table 4: Throughput vs. Bisection Bandwidth. Conclusions can change significantly.

topologies with the same number of servers as a 1/8th Clos for the

corresponding switch radix. At a radix of 64, a 1/8th Clos has 263K

servers. Figure 9(c) shows the percentage increase in the number of

switches required to support Full Throughput over those required

to support Full BBW. This fraction increases with switch radix; with

64-port switches, Full BBW requires almost 50% more switches.

This difference can change a topology designer’s tradeoff analy-

sis. Clos and uni-regular topologies differ in one other important

way: the former has demonstrated, through wide deployment, a

simple and practical routing scheme (ECMP) that can achieve high

throughput, but proposed routing for uni-regular topologies rely

on routing schemes such as MPTCP [48] over K-shortest paths [49],

ECMP-VLB hybrid [29] or FatPaths [7]. The deployment and op-

erational cost of these schemes is not known, so, if the relative

switch cost advantage of uni-regular topologies is low, a designer

might find them less attractive when other costs, such as routing,

are taken into account.

Fabric Expansion. As recent work has shown [52, 53], datacenter

fabrics are rarely deployed at full scale initially. Rather, for a Clos-

based topology like Jupiter [42], a designer starts by determining a

target number of servers in the datacenter and the number of layers

needed in the Clos topology to achieve that scale. Then, they can

incrementally deploy the topology, often in units of superblocks [53].
One attractive aspect of some uni-regular topologies like Jellyfish

over Clos is that, at least conceptually, their expansion is simpler and

requires no advance planning [44, 47, 52]. For example, it is possible

to add one switch and its servers to Jellyfish by randomly removing

links and connecting the opened ports to the new switch. It is easy

to see, from Figure 8(a), that this expansion likely preserves full

bandwidth. For example, if one starts with a 5K Jellyfish topology

with 𝐻 = 8, and augments it to 10K servers, the resulting topology

is still under the BBW line, so has full bisection bandwidth.

However, this expansion strategy may not always preserve full

throughput. In the same example, at 10K servers with 𝐻 = 8, the

topology is above the Throughput line: in other words, while the

topology before expansion has full throughput, the final topology

does not.

Thus, when planning a datacenter topology, a designer must

carefully consider future target expansion sizes and choose 𝐻 ac-

cordingly. If the target size is 10K, the topology designer needs

to plan in advance (as in Clos) and start with a 𝐻 = 7 instance

in order to preserve throughput after expansion. (The alternative

is to re-wire servers, which can significantly increase the cost of

expansion).

Over-subscription. The Fat-Tree work [1] defined a topology’s

over-subscription ratio as the ratio between the actual bisection

bandwidth and full bisection bandwidth. This definition can be mis-

leadingwhen applied to uni-regular topologies. For these topologies,

Topology N H BBW Throughput

Jellyfish 32K 10 3:4 1:2

Xpander 32K 10 3:4 1:2

FatClique 32K 8.6 3:4 2:3

Clos 32K 32 1:2 1:2

Table 5: Throughput-based vs BBW -based over-subscription ratio. Num-

bers in one row are computed on the same topology.

the throughput itself is a measure of over-subscription. A through-

put of 𝑓 indicates that each server can send traffic at a fraction

𝑓 of its line rate, corresponding to an over-subscription ratio of

1:
1

𝑓
. Table 5 illustrates the difference between these two definitions

of over-subscription ratio for uni-regular topologies. For all uni-

regular topologies we have measured, the over-subscription ratio

defined using throughput is lower than bisection bandwidth-based

over-subscription ratio.
9
For Clos, these two values are identical.

This suggests that, for uni-regular topologies, throughput is a

more conservative measure of over-subscription. It is also more

accurate, since it measures the upper bound of the actual achievable

throughput.

5.2 Scaling Throughput Evaluations

§3 shows that tub better estimates worst-case throughput and

scales better than most of the previous throughput estimators.

Here we revisit the conclusions from prior work that has eval-

uated topology properties at smaller-scales using other ways to

estimate throughput. Table 6 summarizes our findings; we describe

these below.

Cost and Expansion. Singla et al. [44] have estimated throughput

using ideal routing on a few random permutations and show that

Jellyfish can support 27% more servers at full throughput than a

Fat-Tree [1] using the same number of switches. They conjecture

that this advantage improves by using a higher radix switch. In §K,

we show that: (1) the cost advantage at the largest considered

size in [44] is only 8% when tub is used to estimate throughput,

and (2) the cost advantage does not improve by using a higher

radix switch. Similarly, Xpander has used ideal routing on all-to-all

trafficmatrices to estimate the throughput, and has shown that their

topology is more cost efficient than Fat-tree, and allows incremental

expandability up to any size with minor throughput loss. In §L, we

show that throughput of Xpander can drop significantly when

9
The instance of FatClique we chose for this experiment uses a different 𝐻 than the

instances of Jellyfish and Xpander, which is why it has a different throughput.
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t

[44] Jellyfish supports 27% more servers at full throughput than a (same-equipment) Fat-tree (at <900 servers) and this advantage improves by using higher port

switches.

tub Jellyfish supports 8% more servers at considered size and the advantage does not always improve by using higher port switches.

[47] Xpander uses 80% – 85% switches to support the same number of servers as Fat-tree at the scale of <4K servers.

tub At the largest considered size in [47], Xpander usesmore than 95% switches. However, at larger scale (>40K servers), Xpander uses 80% switches (matching

the number reported in [47])

E
x
p
.

[47] Xpander using random rewiring can be incrementally expanded to any size while preserving high performance.

tub Expanding Xpander without considering the target size can cause significant throughput drop, leading to a topology with less than full-throughput.

F
a
i
l
u
r
e

[44] Jellyfish is highly resilient to random link failures at the scale of <1K servers built using 12-port switches.

tub At some scales, Jellyfish can be as much as 20% less resilient compared to optimal resiliency using 32-port switches..

[47] Xpander is resilient to failures at the scale of <1K servers built using 14-port switches.

tub At some scales, Xpander can be as much as 20% less resilient compared to optimal resiliency using 32-port switches.

Table 6: Scaling Throughput Evaluations. Conclusions can change significantly.
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Figure 10: Throughput of uni-regular topologies under random link failure.

Large uni-regular topologies degrade less than gracefully with failure.

using random rewiring even for very small expansions, resulting

in a topology with less than full-throughput (similar to Jellyfish).

Failure Resiliency. Prior work has explored the resilience of Jel-

lyfish [44] and Xpander [47] to random link failures for relatively

small topologies (at the scale of a few thousand servers). To do

this, they compute the throughput achieved by ideal routing (using

multi-commodity flow, which limits scaling) for a few randomly

chosen permutation matrices. The showed that, at these scales,

these topologies degrade gracefully, defined as follows. If 𝜃 is the

throughput of a topology without failure, and a randomly cho-

sen fraction 𝑓 of all links fail, then the nominal throughput under
failure is (1 − 𝑓 )𝜃 (other work [45] has used a similar definition

to assess failure resilience in WAN switches). We say a topology

degrades gracefully if the actual throughput (in our experiments,

the throughput upper bound) under failure closely matches the

nominal throughput under failure.

tub allows us to evaluate failure resilience of these topologies

at larger scales.

Figure 10 shows the throughput behavior of Jellyfish with 8

servers per switch under random link failures, based on tub for: (a)

32K , (b) 131K. Jellyfish with 32K servers is perfectly resilient for

up to 30% link failure and deviates by <1% afterward while 131K

server topology is perfectly resilient for up to 11% link failures and

then deviates by 20% from the nominal throughput. This deviation

occurs because, the 131K topology has a relatively smaller number

of shortest paths (compared to the 32K topology) between each

pair in the maximal permutation matrix (Figure 4(b)). Higher rates

of random failures can reduce the available shortest paths even

further, reducing throughput.

This relationship between deviation from the nominal, and the

number of shortest paths, is more evident when comparing Fig-

ure 10(c) with Figure 4(b). The former plots the root mean square

deviation from the nominal as a function of topology size. In the

latter, the number of shortest paths decreases steadily from 24K

to 131K; in Figure 10(c), the deviation increases correspondingly.

Xpander exhibits same behavior as Jellyfish under random link

failures.

Takeaway. This example illustrates how tub can reveal previously

unobserved properties of a topology at larger scales. Using our

bound, we are able to measure the resiliency of uni-regular topolo-

gies for up to 131K. Using the throughput estimators in [44, 47]

(full-blown MCF), we are unable to scale beyond 8K servers on our

platform.

6 PRACTICAL CONSIDERATIONS

The importance of worst-case bounds. Focusing on worst-case

bounds can result in pessimistic designs and evaluations. In many

situations, it may be appropriate to focus on average case perfor-

mance. However, datacenter topologies, once deployed, are used

for several years [42]; in this time, traffic demands can grow signifi-

cantly. Because it is hard to predict demand over longer time-frames,

datacenter designers have focused on worst-case measures (like bi-

section bandwidth) as a design aid to maximize the lifetime of their

designs. tub follows this line of thinking: this paper shows that

tub is a better measure of worst-case performance for uni-regular

topologies than bisection bandwidth.

Clos-based deployments.Most deployed datacenter designs to-

day are Clos-based. However, designers are actively exploring other

lower-cost designs, one of which is the spine-free design [22], in

which the spine or topmost layer of switch blocks is replaced by

direct connections between the intermediate-layer (or aggregation

layer) pods [1]. Pods may carry transit traffic between other pods.

In this design, the inter-pod topology is effectively uni-regular, for

which tub can be used to understand performance.

Practical Workloads. In this paper, we have compared full-

bisection bandwidth topologies with full throughput topologies.
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Deployed topologies are often over-subscribed; a deployed Clos

might have less than full bisection bandwidth. These deployments

work well because operators carefully manage datacenter work-

loads to ensure that they don’t exceed fabric capacity. They also

leave spare capacity for management operations such as expansion

and upgrade [42, 53]. For Clos, the bisection bandwidth of the

oversubscribed topology is a good measure of the capacity. For

uni-regular topologies, tub is a better measure of capacity for an

oversubscribed network (§5.1).

Benchmarking routing designs. Aside from topology, routing

design also determines whether the datacenter is able effectively

utilize its capacity in serving workloads. For uni-regular topologies,

or variants thereof, tub can be used to understand how well a

proposed routing design can utilize capacity.

7 RELATEDWORK

Datacenter Designs. Prior work has investigated a large body

of topology designs focusing on high bisection bandwidth, cost-

effective topologies with low diameter [8, 30, 44, 47, 52]. Our paper

addresses the performance of many of these topology designs. We

do not evaluate topologies such as SlimFly [6] and Dragonfly [30].

These focus on reducing latency, but, to scale to today’s datacen-

ters, they generally need switches with much higher port counts

than available with merchant silicon. For instance, with a 64-port

switch, a SlimFly can support 32K servers, but a 4-stage Clos can

accommodate 2.1M. We emphasize that tub applies to these two

topologies as well as they are uni-regular. Prior work has described

server-centric topologies such as DCell [17] and BCube [16] which

equip servers with multiple ports and route packets through servers.

Server-based forwarding can be highly unreliable [42], so deployed

datacenters have not adopted these designs, and we have not con-

sidered these in this paper. Future work can explore throughput

bounds for this class of topologies.

A more recent direction focuses on reconfigurable topology de-

signs [13, 14, 20, 37, 38, 54] that adapt the topology in response to

the observed traffic. Most reconfigurable topology designs adapt

instantaneously to shifts in traffic demand, and attempt to minimize

flow completion times. To the extent that each adapted topology is

uni-regular or bi-regular, Theorem 2.2 will apply to the topology.

However, we have left it to future work to understand how topology

throughput relates to the objective of minimizing flow completion

times, the focus of topology reconfiguration.

Throughput. As discussed earlier, significant prior work exists

on throughput in datacenters. Some work [50] has explored the

application-level throughput under different traffic conditions. Prior

work has developed a theoretical understanding of throughput [12,

27, 43]. Of these, [12] compares performance of 3 throughput-

approximating algorithms (Jain [24], Hoefler [23, 51], and an LP-

based approximation), and show that Jain method is a more accurate

approximation model compared to the other two in capturing the

average throughput over all the flows. More recently, [43] focuses

on approximating average throughput under uniform traffic, and

[27] studies the relationship between traffic-dependent sparsest-

cut and throughput at the scale of few thousand servers. Inspired

especially by the latter two papers, we derive a tight throughput

upper bound across all traffic matrices and explore it to understand

practical scaling limits for uni-regular topologies, and the utility

of a throughput-centric view in evaluating properties of datacen-

ter topologies. We also compare tub against many of these prior

approaches.

Practical Routing. In practice, throughput highly depends on the

routing algorithm and the underlying topology. ECMP is optimal

for the Clos family [1, 15, 42]. For Jellyfish, Xpander, and FatClique,

routing strategies like an ECMP-VLB hybrid [29] and FatPaths [7]

have shown promising throughput performance. We have left it to

future work to understand the gap between achievable throughput

using these more practical routing strategies and tub.

8 CONCLUSIONS AND FUTUREWORK

This paper broadens our understanding of the throughput metric

for datacenter topology performance, and its relationship to bi-

section bandwidth. We derive a closed-form expression for the

upper bound of the throughput (tub) of a given topology that is

independent of routing. This bound applies to most proposed dat-

acenter topologies. For a sub-class of these designs, uni-regular

topologies, we are able to derive an upper-bound on throughput

that applies to any instance in this sub-class, using which we show

that uni-regular topologies are fundamentally limited: beyond a

certain scale, they cannot have full throughput even if they have

full bisection bandwidth. In practice, many instances of uni-regular

topologies with 10-15K servers cannot have full throughput. Finally,

we demonstrate that tub to evaluate properties of a topology can

result in different conclusions compared to using other metrics.

Future work can explore the throughput gap between tub and the

throughput achievable using practical routing algorithms, explore

the throughput of Clos-variants like [36], scale tub to even larger

topologies, and improve its tightness.
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APPENDIX

Appendices are supporting material that have not been peer-
reviewed.

A Proof of Theorem 2.1

Proof. In a doubly-stochastic matrix, each row and each column

contain non-negative values that add up to 1. The Birkhoff-von

Neumann theorem states that the 𝑛 × 𝑛 permutation matrices form

the vertices of the convex polytope containing the set of 𝑛 × 𝑛
doubly-stochastic matrices. We observe that T contains all doubly-

stochastic matrices scaled by 𝐻 . From the Birkhoff-von Neumann

theorem, it follows that the vertices of the convex polytope con-

taining T is the set of traffic matrices in
ˆT . It remains to show that

the minimum throughput across
ˆT is always equal to that across

T .
To prove that min𝑇 ∈T 𝜃 (𝑇 ) = min

𝑇 ∈ ˆT 𝜃 (𝑇 ), let 𝜃
∗ = 𝜃 (𝑇 ∗) be

the minimum of the LHS achieved at traffic matrix 𝑇 ∗ ∈ T . We

will show by contradiction that at least one permutation traffic

𝑇 ∈ ˆT leads to this 𝜃∗. Specifically, let 𝜃∗ = min
𝑇 ∈ ˆT 𝜃 (𝑇 ). Sup-

pose there is no such permutation traffic matrix. Let
ˆ𝜃 > 𝜃∗ and

ˆ𝜃 = min
𝑇 ∈ ˆT 𝜃 (𝑇 ) be the minimum achieved by some permutation

traffic matrix in
ˆT . Caratheodory’s theorem [5] implies that there

exists at most |K |2 + 1 permutation traffic matrices {𝑇𝑥 } in ˆT such

that

𝑇 ∗ =
|K |2+1∑
𝑥=1

𝜆𝑥𝑇𝑥 ,

|K |2+1∑
𝑥=1

𝜆𝑥 = 1, and 𝜆𝑥 ∈ [0, 1] ∀𝑥 .

Given this, we can use a convex combination of permutation

traffic matrices {𝑇𝑥 } and {𝜆𝑥 } to construct traffic matrix 𝑇 ∗ and
a solution to the multi-commodity flow problem under 𝑇 ∗. The
throughput of this solution cannot be less than

ˆ𝜃 , since all permu-

tation traffic matrices have a throughput of at least
ˆ𝜃 . This leads

to a contradiction, because we have assumed that 𝜃∗ < ˆ𝜃 . Thus,

there must exist a permutation traffic matrix 𝑇𝑥 ∈ ˆT such that

𝜃∗ = 𝜃 (𝑇𝑥 ).
□

B Proof of Throughput Bound for uni-regular

Topology

Proof. Let K denote the set of all switches with 𝐻 servers.

Fix a permutation traffic matrix 𝑇 from
ˆT . We solve a path-based

multi-commodity flow problem (§H, commonly used in wide-area

network traffic engineering [33]) that maximizes throughput 𝜃 (𝑇 )
under this traffic matrix 𝑇 . At each switch 𝑢, the ingress traffic

consists of 1) traffic destined to servers attached to 𝑢 and 2) transit

traffic 𝑋𝑢 (𝑇 ). This ingress traffic is bounded by the capacity of

network-facing ports, so we have 𝑋𝑢 (𝑇 ) + 𝜃 (𝑇 )
∑
𝑣∈K\{𝑢 } 𝑡𝑣𝑢 ≤

𝑅𝑢 − 𝐻 for every 𝑢 ∈ K , where 𝑅𝑢 is the number of used ports in

switch𝑢. (This models the fact that, for many uni-regular topologies,

some ports are left unused on switches.) Summing over𝑢 ∈ K gives∑
𝑢∈K

𝑋𝑢 (𝑇 ) ≤
∑
𝑢∈K
(𝑅𝑢 − 𝐻 ) − 𝜃 (𝑇 )

∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑣𝑢 . (4)

The LHS of the above inequality is equal to the total transit traffic

in the network caused by traffic matrix 𝑇 . Alternatively, we can

compute the total transit traffic based on the set of paths P𝑢𝑣 and
split ratios for those paths {𝛽𝑝 (𝑇 )} as∑
𝑢∈K

𝑋𝑢 (𝑇 ) = 𝜃 (𝑇 )
∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑢𝑣

∑
𝑝∈P𝑢𝑣

𝛽𝑝 (𝑇 ) (𝑙𝑒𝑛(𝑝) −1) . (5)

Since all the paths in P𝑢𝑣 are at least the shortest path and∑
𝑝∈P𝑢𝑣 𝛽𝑝 (𝑇 ) = 1 for all 𝑢, 𝑣 ∈ K2

, we can rewrite the above

equation as an inequality:∑
𝑢∈K

𝑋𝑢 (𝑇 ) ≥ 𝜃 (𝑇 )
∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑢𝑣 (𝐿𝑢𝑣 − 1) . (6)

From Equation 4 and Equation 6, we have

𝜃 (𝑇 ) ≤
∑
𝑢∈K (𝑅𝑢 − 𝐻 )∑

𝑢∈K
∑
𝑣∈K\{𝑢 } 𝑡𝑢𝑣𝐿𝑢𝑣

.

This throughput holds under every traffic matrix𝑇 for every𝑇 ∈ ˆT .
Taking the minimum over the set yields

𝜃∗ = min

𝑇 ∈ ˆT
𝜃 (𝑇 ) ≤ min

𝑇 ∈ ˆT

∑
𝑢∈K (𝑅𝑢 − 𝐻 )∑

𝑢∈K
∑
𝑣∈K\{𝑢 } 𝑡𝑢𝑣𝐿𝑢𝑣

.

Finally, using the facts that (a)

∑
𝑢∈K (𝑅𝑢 − 𝐻 ) = 2𝐸, (b) every

traffic matrix is a permutation traffic, and (c) the length of the

shortest path from a switch to itself is equal to 0, we have the

throughput upper bound in Equation 1. □

C Proof of Throughput Bound for bi-regular

Topology

Proof. Let S and K denote the set of all switches and switches

with 𝐻 servers respectively. Fix a permutation traffic matrix 𝑇

from
ˆT . We solve a path-based multi-commodity flow problem

that maximizes throughput 𝜃 (𝑇 ) under this traffic matrix 𝑇 . At

each switch 𝑢, the ingress traffic consists of 1) traffic destined to

servers attached to𝑢 and 2) transit traffic𝑋𝑢 (𝑇 ). This ingress traffic

is bounded by the capacity of network-facing ports, and we have

𝑋𝑢 (𝑇 ) + 𝜃 (𝑇 )
∑
𝑣∈K\{𝑢 } 𝑡𝑣𝑢 ≤ 𝑅𝑢 −𝐻𝑢 for every 𝑢 ∈ K . Summing

over 𝑢 ∈ K gives∑
𝑢∈K

𝑋𝑢 (𝑇 ) ≤
∑
𝑢∈K
(𝑅𝑢 − 𝐻𝑢 ) − 𝜃 (𝑇 )

∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑣𝑢 . (7)

Similarly, at every switch 𝑢 with no directly connected server,

the ingress traffic only consists of transit traffic𝑋𝑢 (𝑇 ), and we have
𝑋𝑢 (𝑇 ) ≤ 𝑅𝑢 − 𝐻𝑢 for every 𝑢 ∈ S \ K . Summing over 𝑢 ∈ S \ K
gives ∑

𝑢∈S\K
𝑋𝑢 (𝑇 ) ≤

∑
𝑢∈S\K

(𝑅𝑢 − 𝐻𝑢 ) . (8)

From Equation 7 and Equation 8, we have∑
𝑢∈S

𝑋𝑢 (𝑇 ) ≤
∑
𝑢∈S
(𝑅𝑢 − 𝐻𝑢 ) − 𝜃 (𝑇 )

∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑣𝑢 . (9)

The rest of the proof is similar to Theorem 2.2 (§B). □
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Algorithm 1: Construction of traffic matrix

Input: Topology 𝐺 = (K, E), Server per switch 𝐻
Output: Traffic matrix 𝑇

1 Q ← ∅
2 𝑇 ← 0 ∈ R |K |×|K |
3 for 𝑢 ∈ K \ Q do

4 𝑣 ← argmax𝑣′∈K\Q 𝐿𝑢𝑣′
5 (𝑡𝑢𝑣, 𝑡𝑣𝑢 ) ← (𝐻,𝐻 )
6 Q ← Q ∪ {𝑢, 𝑣}
7 end

D Proof of Theorem 4.1.

Lemma 8.1. Given a uni-regular topology with total servers 𝑁 and
𝐻 servers per switch, for every switch 𝑢, the number of switches with
at least𝑚 hops away from the switch is at least

𝑊𝑚 =
𝑁

𝐻
−1− (𝑅−𝐻 ) (𝑅 − 𝐻 − 1)

𝑚−1 − 1
𝑅 − 𝐻 − 2 , 𝑚 ∈ {1, . . . , 𝑑} (10)

where 𝑑 is the minimum diameter computed using Moore bound [39].

Proof. Fix switch 𝑢. Let 𝑦𝑖 be the number of switches with

distance 𝑖 from switch 𝑢. Since every switch has 𝑅 − 𝐻 switch-

to-switch ports, the number of switches with distance 1 from 𝑢

is bouned by 𝑦1 ≤ 𝑅 − 𝐻 . The number of switches with distance

𝑖 hops away from switch 𝑢 can be recursively bounded by 𝑦𝑖 ≤
(𝑅 − 𝐻 − 1)𝑦𝑖−1 = (𝑅 − 𝐻 − 1)𝑖−1 (𝑅 − 𝐻 ), as each 𝑖-th switch has

one port connecting to (𝑖 − 1)-th switch. Since there are total 𝑁 /𝐻
switches, the number of switches with at least𝑚 hops away from

switch 𝑢 is
𝑁
𝐻
− 1 −∑𝑚−1

𝑖=1 𝑦𝑖 and is at least

𝑁

𝐻
− 1 −

𝑚−1∑
𝑖=1

𝑦𝑖 ≥
𝑁

𝐻
− 1 − (𝑅 − 𝐻 ) (𝑅 − 𝐻 − 1)

𝑚−1 − 1
𝑅 − 𝐻 − 2

□

Algorithm 1 generates a traffic matrix with high pair-wise short-

est path length. In each iteration (Line 3-7), from unpicked switches,

it arbitrarily picks a switch 𝑢 and then a switch 𝑣 which maximizes

the shortest path length from 𝑢 (Line 4). Then, it updates entries

𝑡𝑢𝑣 and 𝑡𝑣𝑢 of the traffic matrix 𝑇 with 𝐻 .

Lemma 8.2. Given a uni-regular topology with total servers 𝑁 and
𝐻 servers per switch, Algorithm 1 constructs a traffic matrix with at
least𝑊𝑚 non-zero entries whose shortest path lengths are at least𝑚,
for𝑚 ∈ {1, . . . , 𝑑}.

Proof. We will show that there are at least𝑊𝑚 non-zero entries

whose shortest path lengths are at least 𝑚 at the end of 𝑘𝑚-th

iteration of Algorithm 1 for every𝑚. Fix𝑚 and𝑊𝑚 from Lemma 8.1.

Let Q𝑘 be the set of switches already picked after 𝑘-th iteration

and Q0 = ∅. In the 𝑘-th iteration, switches 𝑢 and 𝑣 are picked

from unpicked switches in K \ Q𝑘−1 such that 𝑣 maximizes the

shortest path length from 𝑢. Let V𝑢𝑚 denote the set of switches

with distance of at least𝑚 hops from switch 𝑢. We observe that

(a) if

��V𝑢𝑚 \ Q𝑘−1�� is non-empty, 𝑣 will be picked fromV𝑢𝑚 \ Q𝑘−1;
(b) if𝑊𝑚 − 2(𝑘 − 1) > 0, then V𝑢𝑚 \ Q𝑘−1 is non-empty because

|V𝑢𝑚 \ Q𝑘−1 | ≥ |V𝑢𝑚 | − |Q𝑘−1 | ≥ 𝑊𝑚 − 2(𝑘 − 1) > 0. (We use

Lemma 8.1 that |V𝑢𝑚 | ≥𝑊𝑚 and the fact that |Q𝑘−1 | = 2(𝑘 − 1).)

Then, we choose 𝑘𝑚 = ⌊(𝑊𝑚 + 1)/2⌋, which always exists because

𝑊𝑚 is monotonically decreasing and at the highest𝑊1 = |K |−1, the
chosen 𝑘1 = ⌊|K | /2⌋ is feasible. Therefore, in the 𝑘𝑚-th iteration,

we have𝑊𝑚 − 2(𝑘𝑚 − 1) > 0 (satisfying (b)), so

��V𝑢𝑚 \ Q𝑘−1�� is non-
empty (satisfying (a)), and 𝑣 is picked fromV𝑚𝑢 . Thus, at the end of

the iteration, there are 2𝑘𝑚 pairs and all of them have shortest path

lengths at least𝑚 since they are selected from

⋃
𝑢∈K V𝑢𝑚 . Further,

their number is at least 𝑊𝑚 because 2𝑘𝑚 = 2⌊(𝑊𝑚 + 1)/2⌋ ≥
𝑊𝑚 . □

Lemma 8.3. Given a uni-regular topology with total servers 𝑁 and
𝐻 servers per switches, a trafficmatrix𝑇 constructed fromAlgorithm 1
has the following property:

max

𝑇 ′∈ ˆT

∑
(𝑢,𝑣) ∈K2

𝐿𝑢𝑣I
[
𝑡 ′𝑢𝑣 > 0

]
≥

𝑑∑
𝑚=1

𝑊𝑚, (11)

where𝑊𝑚 for𝑚 ∈ {1, . . . , 𝑑} is defined in Lemma 8.1 and 𝑑 is the
minimum diameter from Moore bound [39].

Proof. Since the traffic matrix 𝑇 constructed from Algorithm 1

is a permutation traffic matrix, it follows that

max

𝑇 ′∈ ˆT

∑
(𝑢,𝑣) ∈K2

𝐿𝑢𝑣I
[
𝑡 ′𝑢𝑣 > 0

]
≥

∑
(𝑢,𝑣) ∈K2

𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] .

It remains to show that

∑
(𝑢,𝑣) ∈K2 𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] ≥ ∑𝑑

𝑚=1𝑊𝑚 . In

the traffic matrix𝑇 , letV𝑚 be the set of switch pairs whose shortest

path lengths are at least𝑚 hops. From the definition, we know that

V𝑑 ⊆ V𝑑−1 ⊆ . . . ⊆ V1, andV𝑚 \V𝑚+1 only contains switch pairs

with exactly𝑚 hops for𝑚 ∈ {1, . . . , 𝑑 − 1}. It follows that∑
(𝑢,𝑣) ∈K2

𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] ≥ 𝑑 |V𝑑 | +
𝑑−1∑
𝑚=1

𝑚 |V𝑚 \ V𝑚+1 |

≥ 𝑑 |V𝑑 | +
𝑑−1∑
𝑚=1

𝑚( |V𝑚 | − |V𝑚+1 |) =
𝑑∑
𝑚=1

|V𝑚 | .

Applying the fact that |V𝑚 | ≥𝑊𝑚 for every𝑚 ∈ {1, . . . , 𝑑} from
Lemma 8.1, we have∑

(𝑢,𝑣) ∈K2

𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] ≥
𝑑∑
𝑚=1

𝑊𝑚 .

□

Proof of Theorem 4.1.

Proof. To prove this theorem, we apply Lemma 8.1 and

Lemma 8.3 to the RHS of Theorem 2.2. We have;

𝜃∗ ≤ min

𝑇 ∈ ˆT

2𝐸

𝐻
∑
(𝑢,𝑣) ∈K2 𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0]

=
2𝐸

𝐻 max
𝑇 ∈ ˆT

∑
(𝑢,𝑣) ∈K2 𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] ≤

2𝐸

𝐻𝐷

(12)

where

𝐷 =

𝑑∑
𝑚=1

𝑊𝑚 = 𝑑 (𝑁
𝐻
− 1) − 𝑅 − 𝐻

𝑅 − 𝐻 − 2

(
(𝑅 − 𝐻 − 1)𝑑 − 1

𝑅 − 𝐻 − 2 − 𝑑
)
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From Equation 12 and using the fact that in uni-regular topologies,

2𝐸 = 𝑁
𝐻
(𝑅 − 𝐻 ), we have the upper bound in Equation 2. □

E Asymptotic behavior of throughput gap

In §3.1, we pointed out that the throughput gap for Jellyfish might

be expected to be non-zero in the range 100K – 180K servers, but

could not confirm this because our KSP-MCF implementation does

not scale to these sizes. To be able to quantify the throughput gap

for topologies larger than our computational limit for KSP-MCF, we

compute a lower bound on throughput when routing can exploit all

paths of length equal to or less than the length of the shortest path

plus𝑀 (𝑀 is a parameter to the lower bound calculation) in Theo-

rem 8.4. Define the theoretical throughput gap to be the difference

between the upper and lower bounds (for a given𝑀). Intuitively,

the theoretical throughput gap shows the maximum possible gap

one can expect when using our bound in Theorem 2.2. Figure A.1

shows that the magnitude of the theoretical gap as a function of the

topology size. (we use 𝑀 = 1; at this setting, each topology has at

least 300 distinct paths between each source-destination pair across

the entire range of topology sizes we have considered, which is

sufficient for our path-based MCF computation §H).

Figure A.1 shows that themaximumpossible gap at these scales is

going to be smaller than that of 3K – 15K. Moreover, the theoretical

gap decreases as the size of the topology grows. We prove this

observation in Corollary 2 showing that the theoretical throughput

gap approaches zero asymptotically. In other words, for very large

topologies, we expect our throughput bound to match the actual

topology throughput.
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Figure A.1: Theoretical throughput gap.

We first start by stating the following assumption that always

holds in all of our experiments.

Assumption 1. Given a traffic matrix 𝑇 and a corresponding
solution of our path-based MCF, the ingress capacity of network-
facing ports is saturated by traffic at every switch:

𝑋𝑢 (𝑇 ) + 𝜃 (𝑇 )
∑

𝑣∈K\{𝑢 }
𝑡𝑣𝑢 = 𝑅𝑢 − 𝐻𝑢 for every 𝑢 ∈ K

𝑋𝑢 (𝑇 ) = 𝑅𝑢 for every 𝑢 ∈ S \ K,

where 𝑋𝑢 (𝑇 ) is the amount of transit traffic on switch 𝑢 as a result of
routing the traffic matrix 𝑇 . Note that 𝐻𝑢 = 0 for every switch with
no servers, and it is omitted in the second equality.

Intuitively, the assumption holds in practice because datacenter

topologies are designed such that all the link capacities can be fully

utilized, as are the ingress capacities. We use this assumption to

prove a bound on throughput gap. Let𝑀 denote the additive path

length such that every path length is bounded by

𝑙𝑒𝑛(𝑝) ≤ 𝐿𝑢𝑣 +𝑀 for every 𝑝 ∈ P𝑢𝑣, and every (𝑢, 𝑣) ∈ K2 .

Theorem 8.4. Under a permutation traffic matrix 𝑇 ∈ ˆT , when
Assumption 1 holds with the additive path length 𝑀𝑇 (depending
on 𝑇 ), the maximum achievable throughput of a topology (either
uni-regular or bi-regular) is at least;

𝜃 (𝑇 ) ≥ 2𝐸

𝑁𝑀𝑇 + 𝐻
∑
(𝑢,𝑣) ∈K2 𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] . (13)

Proof. Let S denote the set of all switches. From Assumption

1, we sum the transit traffic 𝑋𝑢 (𝑇 ) over all switches and have the

following equality∑
𝑢∈S

𝑋𝑢 (𝑇 ) =
∑
𝑢∈S
(𝑅𝑢 − 𝐻𝑢 ) − 𝜃 (𝑇 )

∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑣𝑢 . (14)

Note that Assumption 1 changes the inequality in Equation 9 to

equality due to all ingress capacity is fully utilized.

Alternatively, we can compute the total transit traffic

(

∑
𝑢∈S 𝑋𝑢 (𝑇 )) based on Equation 5;∑
𝑢∈S

𝑋𝑢 (𝑇 ) = 𝜃 (𝑇 )
∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑢𝑣

∑
𝑝∈P𝑢𝑣

𝛽𝑝 (𝑇 ) (𝑙𝑒𝑛(𝑝) − 1) .

Since length of all the paths in P𝑢𝑣 is at most 𝐿𝑢𝑣 +𝑀𝑇 from the

definition of the additive path length, we have;∑
𝑢∈S

𝑋𝑢 (𝑇 ) ≤ 𝜃 (𝑇 )
∑
𝑢∈K

∑
𝑣∈K\{𝑢 }

𝑡𝑢𝑣 (𝐿𝑢𝑣 +𝑀𝑇 − 1) . (15)

From Equation 14 and Equation 15, we have

𝜃 (𝑇 ) ≥
∑
𝑢∈S (𝑅𝑢 − 𝐻𝑢 )∑

𝑢∈K
∑
𝑣∈K\{𝑢 } 𝑡𝑢𝑣 (𝐿𝑢𝑣 +𝑀𝑇 )

.

Finally, using the fact that a)

∑
𝑢∈S (𝑅𝑢 − 𝐻𝑢 ) = 2𝐸, b)𝑇 is a permu-

tation traffic matrix, c) 𝐿𝑢𝑢 = 0 for every switch 𝑢 and d) the sum of

all the entries except the diagonals of the traffic matrix𝑇 is at most

𝑁 , we can derive the throughput lower bound in Equation 13. □

The above theorem states the lower bound of throughput with

respect to the additive path length 𝑀𝑇 depending on a given per-

mutation traffic matrix 𝑇 . Our path-based MCF computation shows

that𝑀𝑇 = 1 is sufficient to provide enough path diversity to make

Assumption 1 valid for all Jellyfish, Xpander and FatClique. Us-

ing Theorem 8.4, we show that the gap between the upper bound

and the lower bound can be arbitrarily small when the network

size is sufficiently large and when a mild assumption holds.

Assumption 2. The additive path length for the maximal permu-
tation traffic matrix𝑇 does not increase with a topology size such that
𝑀
𝑇
= 𝑂 (1).
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Corollary 2. When Assumptions 1 and 2 hold, for any positive
value 𝜖 > 0, any uni-regular topology with 𝑁 servers has 𝑁 ∗𝜖 such
that for every 𝑁 ≥ 𝑁 ∗𝜖 ;

𝜃∗ − 𝜃𝑙𝑏 ≤ 𝜖

where 𝜃∗ is the throughput upper bound from Theorem 2.2 and 𝜃𝑙𝑏 =

min
𝑇 ∈ ˆT 𝜃𝑙𝑏 (𝑇 ) is the mininum of throughput lower bound 𝜃𝑙𝑏 (𝑇 )

from Theorem 8.4.

Proof. From Assumption 1, it holds for every permutation ma-

trix 𝑇 ∈ ˆT that

𝜃∗ − 𝜃𝑙𝑏 (𝑇 ) ≤ 𝜃∗ − min

𝑇 ∈ ˆT
𝜃𝑙𝑏 (𝑇 ) ≤

𝜃∗ − min

𝑇 ∈ ˆT

2𝐸

𝑁𝑀𝑇 + 𝐻
∑
(𝑢,𝑣) ∈K2 𝐿𝑢𝑣I [𝑡𝑢𝑣 > 0] .

Let𝑇 = [𝑡𝑢𝑣] be the maximal traffic matrix that minimizes the right

side of Equation 1. We observe that it also minimizes the last term

above, and we have

𝜃 ∗ − 𝜃𝑙𝑏 (𝑇 ) ≤
2𝐸𝑁𝑀

𝑇

(𝑁𝑀
𝑇
+𝐻 ∑

(𝑢,𝑣)∈K2
𝐿𝑢𝑣 I

[
𝑡𝑢𝑣 > 0

]
) (𝐻 ∑

(𝑢,𝑣)∈K2
𝐿𝑢𝑣 I

[
𝑡𝑢𝑣 > 0

]
)
. (16)

Using Lemma 8.3 and Lemma 8.1, we have;∑
(𝑢,𝑣) ∈K2

𝐿𝑢𝑣I
[
𝑡𝑢𝑣 > 0

]
≥

𝑑 (𝑁
𝐻
− 1) − 𝑅 − 𝐻

𝑅 − 𝐻 − 2

(
(𝑅 − 𝐻 − 1)𝑑 − 1

𝑅 − 𝐻 − 2 − 𝑑
)
= 𝐷. (17)

Equation 16 and Equation 17 lead to

𝜃∗ − 𝜃𝑙𝑏 (𝑇 ) ≤
2𝐸𝑁𝑀

𝑇

(𝑁𝑀
𝑇
+ 𝐻𝐷) (𝐻𝐷)

Since the above inequality holds for every 𝑇 ∈ ˆT , it holds at the
worst-case gap

𝜃𝑢𝑏 − min

𝑇 ∈ ˆT
𝜃𝑙𝑏 (𝑇 ) ≤

2𝐸𝑁𝑀
𝑇

(𝑁𝑀
𝑇
+ 𝐻𝐷) (𝐻𝐷) .

Similar to Corollary 1, we can prove that above inequality goes

to 0 as 𝑁 increases because every 𝑀𝑇 is bounded by a constant

independent of 𝑁 under Assumption 2. □

F Throughput of bi-regular Clos topologies

under tub

tub is tight for bi-regular Clos topologies as well, giving throughput

equal to 1 for different topology sizes (Table A.1).

N #Layers #SWs tub

8192 3 1280 1.00

32768 4 7168 1.00

131072 4 28672 1.00

Table A.1: Clos: tub is always 1.

G Proof of Corollary 1

Proof. This follows directly from Equation 2 in Theorem 4.1.

We can show that, in 𝐷 , the term containing 𝑁𝑑 dominates the

other terms for large enough 𝑁 . This is a direct consequence of

defining 𝑑 as the minimum diameter that required to accommodate

𝑁 /𝐻 switches (Moore bound [39]). As a result, in the RHS of the

Equation 2, the numerator grows as 𝑁 and the denominator grows

as 𝑁𝑑 . Therefore, 𝜃∗ approaches zero with increasing 𝑁 , so there

must always exist a 𝑁 ∗ at which 𝜃∗ falls below 1. □

H Path-based Multi-commodity Flow LP

formulation

In this section, we briefly introduce the path-based MCF formula-

tion (common in WAN traffic engineering [33]) used throughout

the paper. Given a traffic matrix𝑇 = [𝑡𝑢𝑣] and set of paths between
every pair of switches with servers (P𝑢𝑣 ), the throughput of the
traffic matrix is the solution to the following LP formula in which

𝑓𝑝 denotes the amount of flow on path 𝑝;

maximize 𝜃

subject to

∑
𝑝∈P𝑢𝑣 𝑓𝑝 ≥ 𝜃𝑡𝑢𝑣 ∀(𝑢, 𝑣) ∈ K2∑
(𝑢,𝑣) ∈K2

∑
𝑝∈P𝑢𝑣 𝑓𝑝 I [𝑒 ∈ 𝑝] ≤ 1 ∀𝑒 ∈ E

𝑓𝑝 ≥ 0 ∀(𝑢, 𝑣) ∈ K2,∀𝑝 ∈ P𝑢𝑣,
where E is the set of directional links with unit capacity.

I Metric Adjustments for FatClique

In a FatClique, the number of servers attached to each switch can

differ by at most 1. To generalize the maximal permutation traffic

matrix generation to accommodate this case, we changed weight

assignment of edges in the complete bipartite graph from𝑤𝑢→𝑣 =
𝐿𝑢𝑣 to 𝑤𝑢→𝑣 = 𝐿𝑢𝑣 min(𝐻𝑢 , 𝐻𝑣). The latter weight assignment

takes into account the maximum amount of flow between each 𝑢, 𝑣

pair along with their distance. More precisely, if in a permutation

traffic matrix 𝑡𝑢𝑣 is non zero, it should be the minimum of 𝐻𝑢 and

𝐻𝑣 since it should conform to the hose-model traffic constraints §2.

So, Equation 1 can be re-written as;

𝜃∗ ≤ min

𝑇 ∈ ˆT

2𝐸∑
(𝑢,𝑣) ∈K2 𝐿𝑢𝑣 min(𝐻𝑢 , 𝐻𝑣)I [𝑡𝑢𝑣 > 0] (18)

Equation 18 is exactly same as Equation 1 when all the switches

have exactly the same 𝐻 . To find the maximal permutation traf-

fic matrix, we need to find the traffic matrix that minimizes the

LHS of Equation 18. This is equivalent to solving the maximum

weight matching in a bipartite graph (§2), with the revised weight

assignment.

This approach does not yield the global minimum of the through-

put bound since Theorem 2.1 does not hold when H differs accross

the switches. A linear programming (LP) formulation can compute

the global minimum [31]. However, we use our matching method

to infer the maximal permutation traffic matrix for FatClique, for

three reasons. First, in FatClique, the number of servers connected

to each switch can differ only by 1, so the difference between global

minimum and throughput bound computed using this approach is

negligible. Second, algorithms for solvingmaximal weight matching

are more efficient than solving an LP. Third, the permutation traffic
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Figure A.2: Topology Cost (Jellyfish vs Fat-tree). The relative difference

of the maximum servers supported at full throughput (per tub) between

Jellyfish and Fat-tree built with the same equipment using {14, 24, 32, 48, 56,

64, 68, 72, 78, 84, 90, 98}-port switches averaged over 5 runs.

matrix generated using our approach is harder to route compared

to an LP generated traffic matrix.

J Throughput Gap for different values of K

Figure A.5 illustrates the absolute difference between path-based

multi-commodity flow over 𝐾-shortest paths and our throughput

bound for different values of 𝐾 (i.e., throughput gap). The results
for 𝐾 = 60, 100, 200 are very similar to each other; a gap of non-

zero for small size topologies, followed by a close-to-zero gap for

larger instances. The only exception is some instances of FatClique

exhibit large throughput gaps in the 5K – 15K compared to Jelly-

fish and Xpander because FatClique cannot fully utilize available

capacity with 𝐾 = 60, 100 for KSP-MCF. However, after increasing

𝐾 to 200 (Figure 5(l)), the throughput gap behavior for FatClique is

comparable to Jellyfish and Xpander.

For 𝐾 = 20, the gap remains significant even at large topolo-

gies since 20-shortest paths does not provide enough diversity to

completely exploit the network capacity, and some of the capacity

remains unused.

K Scaling of Throughput-based Cost

Comparison

Other than bisection bandwidth, Jellyfish [44] and Xpander [47]

used full throughput of random permutations and all-to-all traffic

matrices under MCF to assess the cost advantage of their topolo-

gies. However, throughput under random permutations and all-

to-all traffic matrices can be significantly larger than (worst-case)

throughput [27]. Moreover, as discussed in §3.1, MCF and KSP-

MCF can not scale to the size of current datacenters. In this section,

we show how conclusions can change when using our bound to

perform cost comparisons at larger scale.

Jellyfish. Singla et al. [44] have shown that at the scale of <900

servers Jellyfish can support 27% more servers than a Fat-tree [1]

built with same equipment, and conjecture that this cost advan-

tage increases by using a higher radix switch. Figure A.2 shows

the relative difference of the maximum servers between Jellyfish

and Fat-tree for different switch radices. Using tub, at the scale of

686 servers (𝑅 = 14, which is the largest scale considered in [44]),

Jellyfish can support only 8%more servers than a (same equipment)

Fat-tree (the leftmost point in Figure A.2), dropping the cost ad-

vantage of Jellyfish by 3x. Moreover, using a higher radix switch
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Figure A.3: Topology Cost (Xpander vs Fat-tree). Number of Switches

required to support 𝑁 servers. Percentages are Xpander/Fat-tree.

does not result in higher cost advantage of Jellyfish over Fat-tree.

In fact, using a higher radix switch might result in drop in the cost

advantage. For example, using 98-port switches instead of 64-port

causes the cost advantage to drop slightly from 25% to 22%.

Xpander. Valadarsky et al. [47] have shown that at the scale of

<4K servers, Xpander can support the same number of servers as

Fat-Tree [1] at full throughput using 80% – 85% of the switches.

As Figure A.3 shows at the maximum considered scale in [47]

(3.5K servers, the left most point), Xpander should use more than

95% switches compared to the same size Fat-tree. However, as the

scale grows, the cost advantage of Xpander over Fat-tree increases,

matching the numbers reported in [47].

L Throughput of uni-regular topologies under

expansion

Jellyfish [44] and Xpander [47] have shown that using a very sim-

ple expansion algorithm (random rewiring), their design can be

expanded to any size with minor throughput loss while preserv-

ing the number of servers per switch 𝐻 . Jellyfish uses bisection

bandwidth as their throughput metric while Xpander assesses the

throughput by solving MCF on all-to-all traffic matrix.

Jellyfish. In §5.1, we show that Jellyfish requires advanced plan-

ning in order to preserve full throughput, otherwise, even very

small expansion can turn Jellyfish into a topology with less than

full throughput. To better understand the amount of throughput

degradation, Figure A.4 shows the throughput (computing using

tub), normalized by the topologies initial throughput (before ex-

pansion). At each step, we expand the topology by 20% of the initial

size until its size reaches the 2.6x of the initial topology. For 10K

servers, Figure A.4 shows that throughput drops by more than 20%

when expanding the topology by only 0.6x. On the other hand,

when the initial topology size is 32K, throughput drop is negligible

(<1%). We emphasize that these results are consistent with §4.2;

Jellyfish with H=6 and initial size 8K has full throughput even after

expanding by 2.6x. However, it faces the throughput drop as well.

This suggests that operators should be cautious when expand-

ing uni-regular topologies depending on the topology’s initial and

target size as they might face significant throughput drops. tub,

therefore, helps topology designers to identify and understand these

scenarios before deploying and expanding their desired topology.

Xpander. Using tub to assess the Xpander’s performance under

expansion results in similar conclusions as expanding Jellyfish does.

Similar to Jellyfish, operators who adopt Xpander should have the
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Figure A.4: Throughput of uni-regular topologies under expansion.

target size inmind and choose𝐻 accordingly. Otherwise, they either

end up having a topology with less than full throughput or have
to rewire the servers, bearing a significant cost. The throughput

degradation is also very similar to Jellyfish (Figure A.4); at some

scales (e.g., 10K), expanding the Xpander even by a very small ratio

degrades the throughput by as much as 25%.
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(a) Jellyfish, K=20
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(b) Jellyfish, K=60
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(c) Jellyfish, K=100
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(d) Jellyfish, K=200
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(e) Xpander, K=20
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(f) Xpander, K=60
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(g) Xpander, K=100
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(h) Xpander, K=200
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(i) FatClique, K=20
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(j) FatClique, K=60
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(k) FatClique, K=100
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Figure A.5: Throughput bound vs K-shortest paths Multi-commodity flow for different values of K (20, 60, 100, 200).
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