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ABSTRACT

Streaming 360° videos requires more bandwidth than non-360°

videos. This is because current solutions assume that users per-

ceive the quality of 360° videos in the same way they perceive the

quality of non-360° videos. This means the bandwidth demand must

be proportional to the size of the user’s field of view. However, we

found several quality-determining factors unique to 360° videos,

which can help reduce the bandwidth demand. They include the

moving speed of a user’s viewpoint (center of the user’s field of

view), the recent change of video luminance, and the difference in

depth-of-fields of visual objects around the viewpoint.

This paper presents Pano, a 360° video streaming system that

leverages the 360° video-specific factors. We make three contribu-

tions. (1) We build a new quality model for 360° videos that captures

the impact of the 360° video-specific factors. (2) Pano proposes a

variable-sized tiling scheme in order to strike a balance between

the perceived quality and video encoding efficiency. (3) Pano pro-

poses a new quality-adaptation logic that maximizes 360° video

user-perceived quality and is readily deployable. Our evaluation

(based on user study and trace analysis) shows that compared with

state-of-the-art techniques, Pano can save 41-46% bandwidth with-

out any drop in the perceived quality, or it can raise the perceived

quality (user rating) by 25%-142% without using more bandwidth.

CCS CONCEPTS

• Networks→ Application layer protocols;

1 INTRODUCTION

360° videos are coming to age, with most major content providers

offering 360° video-based applications [1, 3, 7, 10, 12, 19, 20]. At the

same time, streaming 360° videos is more challenging than stream-

ing traditional non-360° videos. To create an immersive experience,

a 360° video must stream the content of a large sphere, in high

resolution and without any buffering stall [35, 55]. To put it into

perspective, let us consider a traditional full-HD video of 40 pixels

per degree (PPD) displayed on a desktop screen, which is an area of

∼48° in width as perceived by viewer’s eyes (if the screen is 15" in
width at a distance of 30" to the viewer). Streaming this video on the

laptop screen takes roughly 5 Mbps. In contrast, if we want to keep
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the perceived quality level (same PPD) for the panoramic sphere, it

will take 400 Mbps, 80× more bandwidth consumption [47].

This paper is motivated by a simple, yet seemingly impossible

quest: can we stream 360° videos in the same perceived quality as

traditional non-360° videos without using more bandwidth? Given

that today’s Internet is capable of streaming high-quality videos

to billions of users in most parts of the world, achieving this goal

would have great societal implications and could spur massive

popularization of 360° videos.

Unfortunately, the current approaches fall short of achieving

this goal. Most solutions (e.g., [26, 32, 34, 50, 52, 59, 68]) follow

the viewport-driven approach, where only the viewport (the region

facing the viewer) is streamed in high quality, but this approach has

several limitations. First, a viewport (∼110° in width [63]) is still
much larger than a laptop screen (∼48° in width) as perceived by
users, so to stream a viewport region would still need at least twice

the bandwidth of streaming a screen-size video at the same qual-

ity [28]. Second, as the viewport content needs to be pre-fetched,

the player must predict where the user will look at in the future, so

any prediction error can cause playback rebuffering or quality drops.

Third, to adapt to arbitrary viewport movements, the 360° video

must be spatially split into small tiles, which could substantially

increase the size of the video.

In this work, we look beyond the viewport-driven approach and

show that the quality of 360° videos is perceived differently than that

of non-360° videos, due to the presence of viewpointmovements1. In

particular, we empirically show three quality-determining factors

unique to 360° videos. The user’s sensitivity to the quality of a

regionM is dependent on (1) the relative viewpoint-moving speed

between the movement of viewpoint (center of the viewport) and

the movement of visual objects in the regionM , (2) the difference

of depth-of-field (DoF) between the region M and the viewpoint-

focused content, and (3) the change in luminance of the viewport

in the last few seconds. For instance, when the viewpoint moves

slowly (e.g., <5 deg/s), users tend to be sensitive to small quality

distortion; when the viewpoint moves quickly (e.g., shaking head or

browsing landscape), the sensitivity can drop sharply—users might

be insensitive to large quality distortion. In short, how sensitive a

user is to quality distortion can vary over time due to the viewpoint

movements. (See §2.2 for more discussions.)

The observation that users perceive 360° video quality differently

opens up new opportunities to improve 360° video quality and save

bandwidth. If we know a user’s sensitivity to quality distortion, we

can raise quality by a maximally perceivable amount, when there

1This paper makes two assumptions: (1) the movement of the head-mounted device
can approximate the movement of the actual viewpoint, and (2) the object closest
to the viewpoint is the one being watched by the user. These assumptions might be
simplistic, but they can be refined with recent work on accurate viewpoint tracking
(e.g., [9, 18, 31, 46, 65]).
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Figure 1: Performance of Pano and the popular viewport-driven ap-

proach on 18 360° videos with real viewpoint traces over an emulated

cellular network link. Full results are in §8.

is spare bandwidth; and we can lower the quality by a maximal

yet imperceptible amount, when the bandwidth is constrained. The

underlying insight is that each user has a limited span of attention.

For instance, when a user moves her viewpoint, the area being

watched does increase, but since the attention will be spread across

a wider area, the user’s attention per-pixel actually decreases.

To explore these opportunities, this paper presents Pano, a 360°

video streaming system that entails three contributions:

First, Pano is built on a new quality model for 360° videos that

systematically incorporates the new quality-determining factors (§4).

We run a user study2 to quantitatively show the relationship be-

tween the user’s sensitivity to quality distortion and the relative

viewpoint-moving speed, the difference of depth-of-field (DoF),

and the change of luminance. The new model allows us to esti-

mate the subjectively perceived video quality more accurately than

traditional video quality metrics (e.g., PSNR [40]).

Second, Pano uses a novel variable-sized tiling scheme to cope with

the heterogeneous distribution of users’ sensitivity over the panoramic

sphere (§5). Traditionally, a 360° video is split into equal-sized tiles

(e.g., 6×12, 12×24), each encoded in multiple quality levels, so that
the player can choose different quality levels for different tiles as

the viewport location moves. This uniform tiling scheme, however,

might be either too coarse-grained to reflect where the user sen-

sitivity varies, or too fine-grained to contain the video encoding

overhead. Instead, Pano uses variable-sized tiling scheme, which

splits the video into tiles of different sizes so that a user tends to

have similar sensitivity when watching the same tile.

Finally, Pano adapts video quality in a way that is (a) robust to

the vagaries of viewpoint movements, and (b) readily deployable in

the existing video delivery infrastructure (§6). Pano optimizes user-

perceived quality by dynamically predicting viewpoint movements

and adapting quality accordingly. Despite the inevitable viewpoint

prediction errors, Pano can still pick the desirable quality levels,

because to estimate the user’s sensitivity to quality distortion, it

suffices to predict the range of viewpoint-moving speed, luminance

and DoF. In addition, since Pano needs information from both client

(i.e., viewpoint trajectory) and server (i.e., video pixel information),

it is incompatible with the mainstream DASH protocols [4] where

a client locally makes bitrate-adaptation decisions. To address this,

Pano decouples the bitrate adaptation into an offline phase and an

online phase. The offline phase pre-computes the perceived quality

estimates under a few carefully picked viewpoint movements, and

2Our study was IRB approved by our university, IRB00001052-18098. It does not raise
any ethical issues.

then it sends them to the client at the beginning of a video. In the

online phase, the client predicts the perceived quality by finding a

similar viewpoint movement that has a pre-computed estimate.

We implemented a prototype of Pano and evaluated it using a

combination of user studies (20 participants, 7 videos) and trace-

driven simulations (48 users, 18 videos). Across several content

genres (e.g., sports, documentary), Pano can increase the mean

opinion score (MOS) [22] by 25-142% over a state-of-the-art solution

without using more bandwidth. It can also save bandwidth usage

by up to 46% or reduce buffering by 60-98% without any drop in

perceived quality. Pano suggests a promising alternative to the

popular viewport-driven approach (e.g., Figure 1), which could

potentially close the gap of bandwidth consumption between 360°

videos and traditional videos as we have hoped.

2 MOTIVATION

We begin by setting up the background of 360° video streaming

(§2.1). Then we introduce the quality-determining factors unique

to 360° videos (§2.2), and analyze the potential improvement (§2.3)

of leveraging these factors.

2.1 Background of 360° video streaming

There are already 36.9 million VR users in the US (over 10% of its

population) [13]. By 2022, there will be 55million active VR headsets

in the US, as many as Netflix members in the US in 2018 [16].

Many content providers (YouTube [3], Facebook [7], Netflix [10],

Vimeo [1], Hulu [19], iQIYI [12]) offer 360° video streaming services

on various platforms [6, 17, 63].

The proliferation of 360° videos is facilitated in part by the cheap

and scalable delivery architecture. Like other Internet videos, 360°

videos can be delivered to viewers through content delivery net-

works (CDNs). A 360° video is first converted to a planar video and

encoded by a 360° encoder (e.g., [8]), which transcodes and chops the

video into chunks (or segments); these video chunks are then sent

to geo-distributed CDN servers; and finally, a client (VR headset or

smartphone) streams the video chunks sequentially from a nearby

CDN server using the standard HTTP(S) protocols [4, 11, 14]. To

cope with bandwidth fluctuations, each video segment is encoded

in different quality levels, such as quantization parameters (QP), so

that during playback the player can dynamically switch between

quality levels at the boundary of two consecutive chunks, similar

to traditional bitrate-adaptive streaming.

A distinctive feature of 360° video streaming is that the viewer’s

attention is unevenly distributed, with more attention in the view-

port area (which directly faces the user) than the rest of the video. In

contrast, non-360° videos are displayed in a more confined area (e.g.,

a desktop screen), so the uneven distribution of attention is less

obvious. The uneven distribution of attention has spurred a rich

literature around the idea of viewport-driven streaming (e.g., [35,

36, 52, 62]) to improve 360° video quality. It spatially partitions a

video into tiles (e.g., 6-by-12 grids) and encodes each tile in multi-

ple quality levels, so the 360° video player can dynamically assign

a higher quality level to tiles closer to the viewpoint (the center

of a viewport). Unfortunately, viewport-driven streaming has two

limitations. First, like traditional videos, each 360° video chunk

must be prefetched before the user watches it, but viewport-driven

streaming only fetches the viewport region in the hope that the
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Figure 2: Illustrative examples of three 360° video quality-determining factors, and how they help save bandwidth by reducing the quality of

some part of the video without affecting the user-perceived quality. The yellow boxes indicate the viewport area (dashed ones are the previous

viewport). In each case, the left-hand side and the right-hand side have similar perceived QoE, despite quality distortion on the right.

fetched content matches the user’s viewport. So any viewpoint

prediction error may negatively affect user experience. Second, to

assign quality by the distance to the dynamic viewpoint, the video

must be split into many fine-grained tiles [52] or encoded in multi-

ple versions each customized for certain viewpoint trajectory [68],

but both methods could significantly increase the video size.

2.2 New quality-determining factors

A basic assumption underlying the prior efforts is that users per-

ceive the quality of 360° videos (within the viewport) in the same

way they perceive the quality of non-360° videos. This assumption

limits the room for improving the performance of streaming 360°

videos. In other words, since the viewport appears larger than a

desktop screen to the user, it still takes more bandwidth to stream

a 360° video than a traditional screen-size video.

In contrast, our key insight is that the user-perceived quality of

360° videos is uniquely affected by users’ viewpoint movements.

Here, we explain three quality-determining factors that are induced

by a user’s viewpoint movements (readers may refer to §4 for more

analysis of their impacts on quality perception).

• Factor #1: Relative viewpoint-moving speed. In general, the

faster the user’s viewpoint moves, the less sensitive the user is

to quality distortion. Figure 2(a) illustrates how this observation

could help save bandwidth: when the user moves her viewpoint,

reducing the quality level of the static background will have little

impact on user-perceived quality. Of course, the moving objects

being tracked by the viewpoint will now appear static to the user,

so its quality degradation has a negative impact on the perceived

quality. This idea is particularly relevant to sports videos, where

the viewpoint often moves with fast-moving objects.

• Factor #2: Change in scene luminance. As a user moves her

view around, the viewed region may switch between different

levels of luminance; when the content changes from dark to bright

(and vice versa), users tend to be less sensitive to quality distortion

in a short period of time (typically 5 seconds [49, 51]). Figure 2(b)

illustrates a simple example of how one can carefully lower the

quality level of part of the video without causing any drop in

the user-perceived quality. Luminance changes are prevalent in

urban night scenes, where the viewpoint may switch frequently

between different levels of brightness.

• Factor #3: Difference in depth-of-field (DoF). In 360° videos,

users are more sensitive to quality distortion of a region whose

DoF3 is closer to that of the viewpoint. So, users may have dif-

ferent sensitivities to the quality of the same region, depending

3360° displays can simulate DoF by projecting an object to two eyes with a specific
binocular parallax (disparity) [27, 39].

on the DoF of the current viewpoint. As illustrated in Figure 2(c),

one can save bandwidth by dynamically tracking the DoF of the

viewpoint and reducing the quality level of objects that have great

difference in DoFs to the viewpoint. DoF adaptation tends to ben-

efit outdoor videos where the viewpoint may switch between

foreground objects (low DoF) and scenic views (high DoF).

Intuitive explanation: The key to understanding these opportu-

nities is that each user has a limited span of attention. Although the

video size grows dramatically to create an immersive experience, a

user’s span of attention remains largely constant. As a result, a user

often gives less attention to the specifics of a 360° video, which in

turn reduces her sensitivity to quality distortion.

What is new about them? Although prior work (e.g., [37, 44, 45,

57]) also improves video encoding and streaming by leveraging the

video perceptual features (e.g., luminance and salient objects) and

intrinsic dynamics (e.g., fast changing content), it is always assumed

that these factors are determined by the video content, not users’

viewpoint movements. In contrast, we seek to take into account

the object movements, luminance changes, and DoF differences, all

caused by users’ viewpoint movements, so our approach can be

viewed complementary to this body of prior work. For instance,

static objects may appear as fast moving objects to a 360° video

user (thus can tolerate low quality), if the user moves the viewport

rapidly. Similarly, fast moving objects will appear static to the user

(thus requiring high quality), if her viewpoint moves with the object.

2.3 Potential gains

Next, we use real viewpoint traces to demonstrate the potential

benefits of these quality-determining factors. The traces [5] consist

of 864 distinct viewpoint trajectories (18 360° videos each watched

by 48 users [21], see Table 2 for a summary). We measure viewpoint-

moving speed in degrees per second (deg/s), luminance in gray

level [30, 56], and DoF in dioptres [27, 39].

Figure 3 shows the distribution of viewpoint-moving speeds, the

distribution of maximum luminance changes in different 5-second

time windows, and the distribution of maximum DoF differences

between two regions in one frame. To see how these values impact

users’ sensitivities to quality distortion, we measure how often

these values exceed some thresholds so that users can tolerate 50%

more quality distortion than they would have if the viewpoint was

static. Based on our empirical user study in §4.2, such threshold of

viewpoint-moving speed is 10 deg/s, that of luminance change is

200 gray level, and that of DoF difference is 0.7 diopters.

We can see that all three factors exceed their thresholds for

5-40% of time. In other words, for instance, for 40% of time the

viewpoint moves over 10 deg/sec, which means during that time,
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Figure 3: Distribution of the new quality-determining factor values.
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Figure 4: Average video sizes under different tiling granularities.

(Error bars show the standard deviation of mean).

the users can tolerate 50% more quality distortion on background

pixels than they would have if the video is viewed on a computer

screen. It should be noticed that the viewpoint movements appear

to be dynamic, in part because the dataset includes many outdoor

sports and adventure videos.

3 PANO OVERVIEW

Exploring the aforementioned opportunities, however, requires not

only changing the objective of video quality optimization, but also

re-architecting several critical components of the video streaming

system. We present Pano, a 360° video streaming system that ad-

dresses three key challenges.

Challenge 1: How to predict 360° video user-perceived quality

by incorporating these new quality-determining factors? To

our best knowledge, none of the existing video quality metrics

directly captures the three new factors, so we first need to aug-

ment the existing video quality metrics to measure different user

sensitivities under different viewpoint trajectories.

Our solution: Pano presents a novel 360° video quality metric (§4)

that models the users’ sensitivities to quality distortion as a function

of viewpoint-moving speed, luminance change, and DoF difference.

A naive approach would profile all possible combinations of these

values and each video. Fortunately, we show that we can decouple

the impact of these factors driven by viewpoint movements from

the impact of the video content. Moreover, we found that the impact

of individual factors is largely mutually independent, which further

reduces the efforts to build the new 360° video quality metric.

Challenge 2: How should the 360° videos be spatially split into

tiles to better exploit the new opportunities? Ideally, the tiling

should separate regions with different object-moving speeds (e.g.,

foreground moving objects vs. static background), different DoF,

or different luminance values. But naively splitting the video into

small tiles (e.g., 12×24) will increase the video size by almost 200%
compared to a coarser 3×6-grid tiling (Figure 4).
Our solution: Pano splits it into a handful of variable-size tiles

(§5), rather than equally sized tiles (see Figure 9 for an example). As

a result, users tend to have similar sensitivities to quality distortion

Figure 5: Overview of Pano and how it fits in the 360° video delivery.

within each tile (according to history trajectories traces). In this

way, we can maintain a coarse tiling granularity to save bandwidth

while still being able to assign higher quality where users are more

sensitive.

Challenge 3: How to adapt quality in a way that is robust to

dynamic viewport movements and readily deployable over the

existing delivery infrastructure? The video quality adaptation

strategy needs to be revisited for two reasons. First, it must tolerate

the vagaries of available bandwidth and the inevitable errors of

viewpoint movement prediction. Second, it must be deployable

on the existing client-driven video streaming protocol [4], but if

done naively, one would need both client-side information (current

viewpoint movement) and server-side information (video content)

to determine the sensitivity of a user to quality distortion.

Our solution:Our empirical study shows that to pick the desirable

quality for each tile, it is sufficient to estimate a range of the view-

pointmovement, rather than their precise values (§6.1). For example,

if the viewpoint moves quickly in a short time, it will be difficult to

predict the exact relative viewpoint-moving speed, but Pano can

still reliably estimate a lower bound of the speed based on recent

history. Although Pano may lose some performance gains (e.g.,

assigning a higher-than-necessary quality given underestimated

relative viewpoint-moving speeds), the conservative decisions still

outperform the baselines which ignore the impact of viewpoint

movements. Finally, to be compatible with the existing client-driven

video streaming architecture, Pano encodes a look-up table in the

video manifest file so that the client can approximately estimate

the perceived quality of each quality level without accessing the

actual video content (§6.2).

As shown in Figure 5, although a video delivery system involves

many comments, deploying Pano only requires minor changes by

the content provider (who controls the video encoding) and client-

side device (usually also managed by the same content provider).

No change is needed to the CDNs or the HTTP streaming protocol.

4 PANO: 360° VIDEO QUALITY MODEL

We start with Pano’s video quality model, which estimates the

user-perceived quality under certain viewpoint movement.

4.1 A general video quality framework

Conceptually, Pano incorporates the new quality-determining fac-

tors in Peak Signal-to-Perceptible-Noise Ratio (PSPNR) [30], a stan-

dard perceived quality metric. It improves the classic Peak Signal-

to-Noise Ratio (PSNR) [67] by filtering out quality distortions that
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Term Brief description

q, k, t Quality level, chunk index, and tile index

Rk,t (q) The bitrate of the t th tile the k th chunk at quality q

pi, j , p̂i, j Pixel value at (i, j) on the original or encoded image
P (q), M (q) PSPNR (or PMSE [30]) of image at quality level q

J NDi, j JND at pixel i, j

Ci, j
Content-dependent JND at pixel (i, j): JND of zero

speed, luminance change, and DoF diff

A(x1, x2, x3) Action-dependent ratio: JND of speed x1, luminance

change x2, and DoF diff x3, divided by C

Table 1: Summary of terminology

are imperceptible by users. The key to PSPNR is the notion of Just-

Noticeable Difference (JND) [67], which is defined by the minimal

changes in pixel values that can be noticed by viewers. PSPNR can

be expressed as follows (Table 1 summarizes the terminology):

P(q) = 20 × log10
255√
M(q)

(1)

M(q) = 1

S

∑
i, j

[|pi, j − p̂i, j | − JNDi, j
]2 × Δ(i, j) (2)

Δ(i, j) =
{
1, |pi, j − p̂i, j | ≥ JNDi, j

0, |pi, j − p̂i, j | < JNDi, j
(3)

where S denotes the image size, pi, j and p̂i, j denote the pixel at
(i, j) of the original image and that of the image encoded at quality
level q respectively, and JNDi, j denotes the JND at pixel (i, j).

Intuitively, a change on a pixel value can affect the user-perceived

quality (PSPNR) only if it is greater than the JND. In other words,

the notion of JND effectively provides an abstraction of users’ sen-

sitivities to quality distortion, which can be neatly incorporated in

the quality metric of PSPNR.

More importantly, we can incorporate the new quality-determining

factors (§2.2) by changing the calculation of JND—higher relative

viewpoint moving speeds, greater DoF differences, or greater lumi-

nance changes will lead to higher JND.

4.2 Profiling JND of 360° videos

JND has been studied in the context of non-360° videos. However,

prior work has focused on the impact of video content on JND.

For instance, users tend to be less sensitive to quality distortion

(i.e., high JND) in areas of high texture complexity or excessively

high/low luminance [29, 30, 56].

As we have seen, however, 360° videos are different, in that a

user’s sensitivity may vary with the viewpoint movement as well.

In other words, the JND of a pixel (i, j) is also dependent on the
following values: (1) the speed v of an object O (of which pixel

(i, j) is a part) relative to the viewpoint; (2) the luminance l of O
relative to where the viewpoint focused on 5 seconds ago; (3) the

DoF difference d between O and the viewpoint focused object; and

(4) the base JNDCi, j , defined by the JNDwhen there is no viewpoint

movement (i.e., v = 0, l = 0) or DoF difference (d = 0). BecauseCi, j
is only dependent on the video content, we refer to it as the content-

dependent JND. We calculate Ci, j using the same JND formulation

from the prior work [29, 30].

To quantify the impact of v, l ,d on JND, we ran a user study

using a similar methodology to the prior studies [29, 30]. Readers

can find more details of our methodology in Appendix. The study
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has 20 participants. Each participant is asked to watch a set of 43

short test videos, each generated with a specific level of quality

distortion. The quality distortion is gradually increased until the

participant reports that the distortion becomes noticeable.

Impact of individual factors: Figure 6 shows how JND changes

with the relative viewpoint-moving speed, luminance change, or

DoF difference, while the other two factors are kept to zero. As

expected, JND increases (i.e., users become less sensitive to quality

distortion) monotonically with higher relative viewpoint-moving

speeds, greater luminance changes, or sharper DoF differences.

Formally, we use Fv (x) (Fl (x) or Fd (x)) to denote the ratio between
the JND when v = x (l = x or d = x) and the JND when v =
0 (l = 0 or d = 0), while holding the other two factors l ,d at

zero. We call Fv (x), Fl (x), and Fd (x) the viewpoint-speed multiplier,

the luminance-change multiplier, and the DoF-difference multiplier,

respectively.

Impact of multiple factors: Figure 7 shows the joint impact

of two factors on JND. In Figure 7(a), we notice that JND under

viewpoint-moving speed v = x1 and DoF difference d = x2 can
be approximated by the product of C · Fv (x1) · Fd (x2), where C is

the content-dependent JND (i.e., when v = 0, l = 0,d = 0). This

suggests the impact of these two factors on JND in this test appears

to be independent. We see similar statistical independence between

the impact of luminance change and that of viewpoint-moving

speed or DoF difference. Figure 7(b) shows the joint impact of

viewpoint-moving speed (one of the 360° video-specific factors) and

the viewpoint’s current luminance value (one of the traditional fac-

tors that affect JND). The figure also shows the impact of these two

factors on JND in this test appears to be independent. Notice that

the impact of current luminance value on JND is non-monotonic

because quality distortion tends to be less perceptible when the

video is too bright or too dark.

The observation that different 360° video-specific factors appear

to have independent impact on JND is well aligned with previous

findings that other factors (e.g., content luminance, distance-to-

viewpoint) have largely independent impact on JND [29, 30, 67].
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Figure 8: 360JND-based PSPNR can estimate MOS much more accu-

rately than the traditional PSPNR and PSNR.

Putting it together: Now, we define a new way of calculating

JND for 360° videos, called 360JND, as follows:

JNDi, j = Ci, j · Fv (x1) · Fd (x2) · Fl (x3) � Ci, j · A(x1,x2,x3) (4)

In other words, 360JND is the product of the content-dependent JND,

and the action-dependent ratio A(x1,x2,x3), which is the product of
the viewpoint-speed multiplier, luminance-change multiplier, and

DoF-difference multiplier. As we will see in §6.2, this separation

has a great implication that the content-dependent JND can be pre-

calculated, whereas the action-dependent ratio can be determined

only in realtime, without the help from the server.

Validation of usefulness: To verify the usefulness of the new

360JND model, we plug the 360JND in the PSPNR calculation in

Equation 1-3, and then check how well the resulting PSPNR value

correlates with the actual user rating (MOS) from 20 participants

over 21 360° videos. (See §8.1 for more details on how user rating

is recorded.) For each video, we calculate the average 360JND-

based PSPNR across users as well as the MOS. Then, we build

a linear predictor that estimates MOS based on average PSPNR.

As reference points, we similarly build a linear predictor using

traditional JND-based PSPNR and a predictor using PSNR (JND-

agnostic). Figure 8 shows the distribution of relative estimation

errors of the three predictors (
|MOSpredict−MOSr eal |

MOSr eal
). We see that

360JND-based PSPNR can predict MOS much more accurately than

the alternatives, which suggests the three 360° video-specific factors

have a strong influence on 360° video perceived quality.

5 PANO: VIDEO TILING

Next, we describe Pano’s tiling scheme, which leverages the quality

metric introduced in §4. Like other DASH-based videos, Pano first

chops a 360° video into chunks of equal length (e.g., one second),

and then spatially splits each chunk into tiles by the following steps

(as illustrated in Figure 9).

Step 1: Chunking and fine-grained tiling. Pano begins by split-

ting each chunk into fine-grained square-shape unit tiles with a

12-by-24 grid. Each unit tile is a video clip containing all content

within the square-shape area in the chunk’s duration. These unit

tiles are the building blocks which Pano then groups into coarser-

grained tiles as follows.

Step 2: Calculating per-tile efficiency scores. Then Pano cal-

culates an efficiency score for each unit tile, which is defined by how

fast the tile’s quality grows with the quality level. Formally, the

efficiency score of unit tile t of chunk k is

γk,t =
Pk,t (qhiдh ) − Pk,t (qlow )

qhiдh − qlow
(5)

(a) Step 1: 
Split to fine-
grained tiles

(b) Step 2: 
Calculate per-tile 
efficiency score

(c) Step 3: 
Group tiles w/ 
similar scores

(d) Reference: 
Traditional 

tiling

Figure 9: The steps of Pano tiling. The shades indicate regions with

similar efficiency score.

where Pk,t (q) is the PSPNR (perceived quality calculated by Equa-
tion 1) of the unit tile when it is encoded at quality level q; and qlow
(and qhiдh ) denotes the lowest (and highest) quality level. There
are two caveats. First, we assume the PSPNR of a unit tile is known.

We will explain how to estimate them offline at the end of this

section. Second, Equation 5 assumes that P grows linearly with

q. This may not be true, but we found this assumption is a good
approximation, and our solution does not crucially rely on it. We

leave further refinements for future work.

Step 3: Tile grouping. Finally, Pano groups the 12×24 unit tiles
into N (by default, 30) variable-size coarse-grained rectangle tiles,

which will eventually be used by Pano to encode the video. The

goal of this grouping process is to reduce the variance of efficiency

scores among the unit tiles in the same group (coarse-grained tile).

More specifically, we try to minimize the weighted sum of these

variances, where each variance is weighted by the area of the group.

The intuition is that, because a higher/lower efficiency score means

a tile will produce higher/lower PSPNR at the same quality level,

the tiles with similar efficiency scores tend to be assigned with

similar quality levels during playback, so grouping these unit tiles

will have limited impact on quality adaptation. At the same time,

having fewer tiles can significantly reduce the video size, as it avoids

re-encoding the boundaries between small tiles.

Our grouping algorithm starts with one hypothetical rectan-

gle that includes all 12×24 unit tiles (i.e., the whole 360° video). It
then uses a top-down process to enumerate many possible ways

of partitioning this hypothetical rectangle into N rectangles, each

representing a coarse-grained tile. It begins by splitting this hypo-

thetical rectangle into two rectangles along each possible vertical

or horizontal boundary. Then it iteratively picks one of the exist-

ing rectangles that has more than one unit tile, and then similarly

splits it, vertically or horizontally, into two rectangle tiles. This pro-

cess runs repeatedly until there are N rectangles (coarse-grained

tiles). This process is similar to how the classic 2-D clustering algo-

rithm [24] enumerates the possible partitions of a 2D space.

Calculating efficiency scores offline: We assume each video

has some history viewpoint trajectories, like in [61, 68]. For each

tile, we compute the PSPNR under each history viewpoint trajectory,

average the PSPNRs per tile across all trajectories, and derive the

efficiency score per tile using Equation 5. The resulting PSPNR per

tile takes both content information and viewpoint movements into

account. Once the tiles are determined offline, Pano does not adjust

them during playback, so the video does not need to be re-encoded.

We acknowledge that computing PSPNR with the average history
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Figure 10: Pano can reliably estimate a lower bound (dotted line) of

the actual viewpoint-moving speed (solid line), which is often sufficient

for accurate PSPNR estimation.

viewpoint movements might cause suboptimal quality for users

with atypical viewing behaviors. That said, we found that the lowest

perceived quality across the users in our traces is at most 10% worse

than the mean quality (Figure 16(b)).

6 PANO: QUALITY ADAPTATION

The design of Pano’s quality adaptation logic addresses two follow-

ing questions. (1) How to adapt quality in the presence of noisy

viewpoint estimates (§6.1)? And (2) how to be deployable on the

existing DASH protocol (§6.2)?

6.1 Robust quality adaptation

Pano adapts quality at both the chunk level and the tile level. First,

Pano uses MPC [64] to determine the bitrate of each chunk, to meet

buffer length target under the predicted bandwidth. The chunk’s

bitrate determines the total size of all tiles in the chunk.

Then, within the chunk k , Pano determines the quality level qt
of each tile t ∈ {1, . . . ,N } (N is the number of tiles per chunk), to

maximize the overall perceived quality (PSPNR) while maintaining

total size of the tiles below the chunk’s bitrate rk . According to
Equation 1, the overall PSPNR of the N tiles is P = 20 × log10

255√
M
,

where M = (∑t=1, ...,N St ·Mt (qt ))/(
∑
t=1, ...,N St ), and St is the

area size of tile t . Since the total area of all tiles is constant, the
tile-level quality allocation can be formulated as follows:

min
∑

t=1, ...,N

St ·Mt (qt ) /* Maximizing overall PSPNR */

s.t.
∑

t=1, ...,N

Rk,t (qt ) ≤ rk /* Total tile size ≤ chunk bitrate */

To solve this optimization problem, we enumerate the possible

assignment of 5 quality levels in each of the N tiles, but instead of

an exhaustive search (which has 5N outcomes), Pano prunes the

search space using the following observation. For any pair of tiles

(t1 and t2), if we found one quality assignment (e.g., assigning q1 to
t1 and q2 to t2) is “strictly” better (i.e., producing higher PSPNR and

smaller total tile size) than another assignment (e.g., assigning q3
to t1 and q4 to t2), then we can safely exclude the latter assignment
when iterating the quality assignments of the remaining tiles.

Coping with viewpoint estimation errors: In theory, optimal

quality adaptation requires accurate PSPNR estimation, which re-

lies heavily on accurate estimation of viewpoint-moving speeds,

DoF differences, and luminance changes. In practice, however, we

found that predicting an approximate range of these three fac-

tors is sufficient to inform optimal quality selection. The reason

is two-fold. On one hand, if the head has little or slow movement

(e.g., staring at an object), it is trivial to accurately predict the

Action 
prediction

Video 
content

PSPNR estimates

Action 
prediction

Video 
content

Manifest 
file

Server Client

(a) PSPNR calculation (b) Decoupled to two phases

PSPNR 
lookup table

Online PSPNR estimates

Figure 11: (a) Pano calculates PSPNR by first pre-processing content-

dependent information offline, and then combining it with online

viewpoint predictions by the client. (b) The offline content-dependent

information (represented by PSPNR lookup table) is included in the

manifest file sent to the client at the beginning of a video.

viewpoint-moving speed, DoF, and luminance. On the other hand,

if the viewpoint moves arbitrarily, it is difficult to predict the exact

viewpoint-moving speed, DoF, and luminance, but it is still plausi-

ble to estimate a lower bound for each factor using recent history.

For instance, the lowest speed in the last two seconds serves a reli-

able conservative estimator of the speed in the next few seconds

(Figure 10). Although these lower bounds would lead Pano to make

conservative decisions (e.g., assigning a higher-than-necessary qual-

ity), these conservative decisions still bring sizable improvement

over the baselines which completely ignore the impact of viewpoint-

moving speed, DoF, and luminance.

6.2 DASH-compatible design

While the logical workflow of Pano is straightforward, it is incom-

patible with the popular DASH protocol [4]. This is because Pano’s

quality adaptation is based on PSPNR (Equation 1), which requires

both viewpoint movements (only available on the client) and the

pixels of the video content (only available on the server). This,

however, violates the key tenet of the popular DASH protocol that

servers must be passive while clients adapt bitrate locally without

aid of the server.

Fortunately, Pano can be implemented in a way that is com-

patible with the DASH protocol. The basic idea is to decouple the

calculation of PSPNR into two phases (as illustrated in Figure 11). In

the offline phase, the video provider pre-calculates the PSPNR for

some “representative” viewpoint movements and stores them in a

PSPNR lookup table. In particular, we choose n representative values
for each of the viewpoint speed, DoF difference and luminance

change, which produces n3 combinations and the corresponding
PSPNR values in the lookup table. The PSPNR lookup table is sent

to the client as part of the DASH manifest file at the beginning of a

video. In the online phase, the client uses the PSPNR lookup table

to estimate PSPNR under the actual viewpoint movement.

6.3 System optimization

Compressing PSPNR lookup table: A PSPNR lookup table (see

Figure 12(a) for an example) includes, for each tile, the PSPNR esti-

mates of every possible combination of viewpoint-moving speed,

luminance change, and DoF difference. Without compression, the

PSPNR lookup table can be 10 MB for a 5-minute video, which can

significantly inflate the manifest file size. We address this prob-

lem by two techniques, which produce an approximate yet more
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Tile ID Viewpoint
speed

DoF
difference

Luminance
change

Estimated
PSPNR

Chunk #1, Tile #1 50dB
… … … … …

Tile ID Action-dependent ratio Estimated PSPNR
Chunk #1, Tile #1 50dB

… … …

Tile ID Parameters of power regression

Chunk #1, Tile #1

… …

(a) Schema of the original full-size PSPNR lookup table

(b) Schema of PSPNR lookup table with dimensionality reduction

(c) Schema of PSPNR lookup table after power regression

Figure 12: The schema of PSPNR lookup table.

compressed representation of the PSPNR lookup table. First, we

reduce the PSPNR lookup table from “multi-dimensional” to “one-

dimensional” (Figure 12(b)), by replacing the viewpoint speed, DoF,

luminance with the products of their multipliers (defined in §4.2).

Using their products, i.e., the action-dependent ratios (see Equa-

tion 4) to index the PSPNR lookup table, we can avoid enumerating

a large number of combinations of viewpoint speed, DoF, and lumi-

nance. Second, instead of keeping a map between action-dependent

ratios and their corresponding PSPNR of each tile, we found that

their relationship in a given tile can be interpolated by a power

function. Thus, we only need two parameters to encode the rela-

tionship between PSPNR and action-dependent ratio (Figure 12(c)).

With these optimizations, we can compress the manifest file from

10 MB to ∼50 KB for a 5-minute video.
Reducing PSPNR computation overhead: Per-frame PSPNR

calculation, in its original form (Equation 1), can be ∼ 50% slower

than encoding the same video. To reduce this overhead, we ex-

tract one frame from every ten frames and use its PSPNR as the

PSPNR of other nine frames. This saves the PSPNR computation

overhead by 90%, and we found this is as effective as per-frame

PSPNR computation.

7 IMPLEMENTATION

Here, we describe the changes needed to deploy Pano in a DASH

video delivery system. We implement a prototype of Pano with 15K

lines of codes by C++, C#, Python, and Matlab [15].

Video provider: The video provider preprocesses a 360° video

in three steps. First, we extract features from the video, such as

object trajectories, content luminance, and DoF, which are needed

to calculate the PSPNR of the video under each of history viewpoint

movements. In particular, to detect the object trajectories, we use

Yolo[54] (a neural network-based multi-class object detector) to

detect objects in the first frame of each second, and then use a

tracking logic [38] to identify the trajectory of each detected ob-

ject in the remaining of the second. Then we temporally split the

video into 1-second chunks, use the tiling algorithm described in

§5 to spatially split each chunk into N (by default, 30) tiles using

FFmpeg CropFilter [8], and encode each tile in 5 QP levels (e.g.,

{22, 27, 32, 37, 42}). Finally, we augment the video’s manifest file

with additional information. In particular, each tile includes the

following information (other than available quality levels and their

corresponding URLs): (1) the coordinate of the tile’s top-left pixel

(this is needed since the tiles in Pano may not be aligned across

chunks); (2) average luminance within the tile; (3) average DoF

within the tile; (4) the trajectory of each visual object (one sample

per 10 frames); and (5) the PSPNR lookup table (§6.3).

Video server: Like recent work on 360° videos [52], Pano does not

need to change the DASH video server. It only needs to change the

client-side player as described next.

Client-side adaptation: Webuilt Pano client on a FFmpeg-based [8]

mockup implementation of the popular dash.js player [4]. To let the

client use Pano’s quality adaptation logic, we make the following

changes. First, the player downloads and parses the manifest file

from the server. We change the player’s manifest file parser to ex-

tract information necessary for Pano’s quality adaptation. Second,

we add the three new functionalities to the DASH bitrate adaption

logic. The viewpoint estimator predicts viewpoint location in the

next 1-3 seconds, using a simple linear regression over the recent

history viewpoint locations [52, 53]. Then the client-side PSPNR

estimator compares the predicted viewpoint movements with the

information of the tile where the predicted viewpoint resides (ex-

tracted from the manifest file) to calculate the relative viewpoint

speed, the luminance change, and the DoF difference. These factors

are then converted to the PSPNR of each tile in the next chunk

using the PSPNR lookup table (§6.2). Finally, after the DASH bitrate

adaptation algorithm [64] decides the bitrate of a chunk, the tile-

level bitrate allocation logic assigns quality levels to its tiles using

the logic described in §6.1.

Client-side streaming: We fetch the tiles of each chunk as sepa-

rate HTTP objects (over a persistent HTTP connection), then de-

code these tiles in parallel into separate in-memory YUV-format ob-

jects using FFmpeg, and finally stitch them together into a panoramic

frame using in-memory copy. We use the coordinates of each tile

(saved in the manifest file) to decide its location in the panoramic

frame. As an optimization, the copying of tiles into a panoramic

frame can be made efficient if the per-tile YUV matrices are copied

in a row-major manner (i.e., which is aligned with how matrices

are laid out in memory), using the compiler-optimized memcpy. As
a result, the latency of stitching one panoramic frame is 1ms.

8 EVALUATION

We evaluate Pano using both a survey-based user study and trace-

driven simulation. Our key findings are the following.

• Compared to the state-of-the-art solutions, Pano improves per-

ceived quality without using more bandwidth: 25%-142% higher

mean opinion score (MOS) or 10% higher PSPNR with the same

or less buffering across a variety of 360° video genres.

• Pano achieves substantial improvement even in the presence of

viewpoint/bandwidth prediction errors.

• Pano imposes minimal additional systems overhead and reduces

the resource consumption on the client and the server.

8.1 Methodology

Dataset: We use 50 360° videos (7 genres and 200 minutes in

total). Among them, 18 videos (also used in §2.3) have actual user
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Total # videos 50 (18 with viewpoint traces of 48 users)

Total length (s) 12000

Full resolution 2880 x 1440

Frame rate 30

Genres (%)
Sports (22%), Performance (20%),

Documentary (14%), other(44%)

Table 2: Dataset summary

PSPNR (360JND-based) ≤ 45 46-53 54-61 62-69 ≥ 70

MOS 1 2 3 4 5

Table 3: Map between MOS and new 360JND-based PSPNR (§4)

viewpoint trajectories from a set of 48 users (age between 20 and 26).

Each viewpoint trajectory trace is recorded on an HTC Vive [21]

device. The viewpoints are refreshed every 0.05s, which is typical

to other mainstream VR devices [12, 20, 21]. Each video is encoded

into 5 quality levels (QP=22, 27, 32, 37, 42) and 1-second chunks

using the x264 codec [23]. Table 2 gives a summary of our dataset.

Baselines: We compare Pano with two recent proposals, Flare [52]

and ClusTile [68]. They are both viewport-driven, but they priori-

tize the quality within the viewport in different ways. Flare uses

the viewport location to spatially allocate different quality to the

uniform-size tiles, whereas ClusTile uses the viewport to determine

the tile shapes. Conceptually, Pano combines their strengths by ex-

tending both tiling and quality allocation using the new 360° video

quality model. As a reference point, we also consider the baseline

that streams the whole video in its 360° view. For a fair comparison,

all baselines and Pano use the same logic for viewpoint prediction

(linear regression) and chunk-level bitrate adaptation [64].

Survey-based evaluation: We run a survey-based evaluation on

20 participants. Each participant is asked to watch 7 videos of dif-

ferent genres, each played in 4 versions: 2 methods (Pano and Flare)

and 2 bandwidth conditions (explained in next paragraph). In total,

each participant watches 28 videos, in a random order. After watch-

ing each video, the participant is asked to rate their experience

on the scale of 1 to 5 [22].4 For each video, we randomly pick a

viewpoint trajectory from the 48 real traces and record the video

as if the user’s viewpoint moves along the picked trajectory with

the quality level picked by Pano or the baseline. That means Pano

can still use its viewpoint prediction to adapt quality over time.

The participants watch these recorded videos on an Oculus head-

set [63] (which generates real DoF and luminance changes). They

are advised not to move their viewpoints. Admittedly, this does

not provide the exact same experience as the users freely moving

their viewpoints. However, since each video is generated with real

dynamic viewpoint trajectories, the experience of the users would

be the same if they moved their viewpoints along the recorded tra-

jectory. Additionally, this method ensures the participants rate the

same videos and viewpoint trajectories across different streaming

systems and bandwidth conditions.

4We acknowledge that by showing a participant four versions of the same video, the
participants may tend to scale their rates on the same video from the lowest to the
highest. While we cannot entirely prevent it, we try to mitigate this potential bias by
displaying the 28 videos in a random order, so the different versions of the same video
are rarely displayed one after another, which reduces the chance that a participant
scales his/her rating in a certain way.
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Figure 13: Real user rating: Pano vs. viewport-driven streaming. The

figure summarizes the results of 20 users with the error bars showing

the standard error of means.

(a) Pano (b) Viewport-driven

Figure 14: A snapshot of 360° video streamed by Pano and Viewport-

driven baseline.

Network throughput traces: To emulate realistic network con-

ditions, we use two throughput traces (with average throughput

at 0.71Mbps and 1.05Mbps, respectively) collected from a public

4G/LTE operator [2]. We pick these two throughput traces, because

they are high enough to allow Pano and the baselines to use high

quality where users are sensitive (e.g., areas with low JND), but not

too high that all tiles can be streamed in the highest quality.

Quality metrics: We evaluate the video quality along two metrics

that have been shown to be critical to user experience: PSPNR,

and buffering ratio. We have seen PSPNR has a stronger correla-

tion with 360° video user rating than alternative indices (Figure 8).

Table 3 maps the PSPNR ranges to corresponding MOS values.

We define buffering ratio by the fraction of time the user’s actual

viewport is not completely downloaded.

8.2 End-to-end quality improvement

Survey-based evaluation: Figure 13 compares the MOS of Pano

and the viewport-driven baseline (Flare) on the seven 360° videos.

Pano and the baseline use almost the same amount of bandwidth

(0.71Mbps or 1.05Mbps). We see that Pano receives a much higher

user rating, with 25-142% improvement. Figure 14 shows the same

snapshot under the two methods. The viewport-driven baseline

gives equally low quality to both the moving object (skier) and

the background of the viewport (not shown). In contrast, Pano

detects the user is tracking the skier and assigns higher quality

in and around the skier while giving lower quality to the static

background (which appears to move quickly to the user).
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Figure 15: Trace-driven simulation of four video genres over two emulated cellular links. Ellipses show 1-σ range of results. We test Pano with

three target buffer lengths of {1, 2, 3} seconds [58].

Trace-driven simulation: Figure 15 compares Pano with the

three baselines on 18 videos across four content genres and over

two network traces. Across all combinations, Pano achieves higher

PSPNR (user perceived quality), lower buffering ratio, or both. We

also see that Pano has more improvement in some videos than

others. This is due largely to the different levels of viewpoint dy-

namics across the videos. More dynamic viewpoint movements

mean lowered sensitivities to quality distortion, thus more oppor-

tunities for Pano to reduce quality levels without hurting users’

perceived quality.

8.3 Robustness

Impact of viewpoint prediction noises: To stress test Pano

under different viewpoint prediction errors, we create a noisier

viewpoint trajectory from each real viewpoint trajectory in our

trace, by adding a random shift to each actual viewpoint location.

Specifically, we shift the original viewpoint location by a distance

drawn uniformly randomly between 0 and n degrees, in a random
direction. By increasing n, we effectively increase the viewpoint
prediction errors. Figure 16(a) shows that more viewpoint noise (n)
does reduce the PSPNR prediction accuracy, but the impact is not

remarkable; a 40-degree noise only deviates the median PSPNR pre-

diction by 7dB. This corroborates the intuition in §6.1 that Pano’s

PSPNR prediction can tolerate a small amount of noise in view-

point movement. Moreover, Figure 16(b) shows that the average

perceived quality does drop with higher viewpoint prediction error,

but the quality always has relatively small variance across users.

This suggests that all users, including those whose viewpoint trajec-

tories are very different from the majority, have similar perceived

quality. Figure 16(c) shows that Pano consistently outperforms the

baseline under an increasing level of viewpoint noise, although

with diminishing improvements. Because subjective rating (MOS)

is monotonically correlated with PSPNR (Table 3), we expect that

Pano’s MOS would be similarly better than that of the baseline,

despite the presence of viewpoint noises.

Impact of throughput prediction errors: Figure 16(d) shows

the performance of Pano (in PSPNR and buffering ratio) under

different throughput prediction errors (a prediction error of 30%

means the predicted throughput is always 30% higher or lower than

the actual throughput). We can see that as the throughput predic-

tion error increases, Pano’s quality degrades, but the degradation

is similar to that of the viewport-driven baseline (Flare). This is be-

cause Pano consumes less bandwidth to provide the same perceived

quality, which is robust when throughput drops down dramatically.

8.4 System overhead

Next, we examine the overheads of a 360° video streaming system,

in computing overhead, video start-up delay, and server-side prepro-

cessing delay. We use an Oculus headset (Qualcomm Snapdragon

821 CPU, 3GB RAM, Adreno 530 GPU) as the client, a Windows

Server 2016-OS desktop of Intel Xeon E5-2620v4 CPU, 32GB RAM,

Quadro M2000 GPU as the video provider, and a 5-minute sports

video as the test video.

Client-side overhead: Figure 17(a) breaks down the client-side

CPU overhead into that of four sequential steps: deciding per-tile

quality level (quality adaptation), downloading, decoding, and ren-

dering video tiles. We see that compared to the baseline of Flare,

Pano induces less computing overhead. This is because Pano needs

to render video tiles with less total size than the baseline, and

although Pano needs extra PSPNR computation to make quality

adaptation decisions, the client-side overhead is still dominated by

video decoding and rendering, which is shared by both Pano and

the baselines.

Video start-up delay: Figure 17(b) breaks down the video start-

up delay (from when video player starts loading to when video

starts playing) into three steps: loading the player, downloading the

manifest file, and downloading the first chunk. Again, we see that
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Figure 17: Pano reduces client-side processing overhead (a) and start-

up delay (b) with minimal additional costs. The pre-processing time

of Pano is on par with the baseline (c).

Pano induces an additional overhead since it needs to download

a larger manifest file that includes the PSPNR lookup table (see

§7). However, the additional start-up delay is offset by the reduc-

tion of the loading time of the first chunk, because Pano uses less

bandwidth (to achieve the same PSPNR).

Video processing overhead: Figure 17(c) shows the pre-processing

delay on the video provider side to pre-compute the PSPNR look-up

table and encode the one minute worth of video (including chunk-

ing and tiling). Both the baseline and Pano fully utilize the CPU

cycles. Note that the preprocessing time does not include build-

ing the JND model. Because the 360JND model (as described in

§4) is agnostic to the specific video content, the 360JND model is

generated once and used in all 360° videos. We can see that Pano

does impose a longer pre-processing delay, due not only to the

additional PSPNR pre-computation, but also to the variable-size

tiling, which is more compute-intensive than the traditional grid-

like tiling. Nevertheless, the processing time of Pano is still on par

with the baseline.

8.5 Bandwidth savings

Finally, Figure 18(a) runs a component-wise analysis to evaluate

the contribution of each technique in Pano by adding one of them

at a time to a viewport-driven baseline. To evaluate bandwidth

savings on a larger set of videos, we extend our dataset from 18

360° videos to 50 360° videos (publicly available at [15]), generate
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Figure 18: Pano reduces the bandwidth consumption needed to

achieve high quality (PSPNR = 72, or MOS = 5).

synthetic viewpoint traces for the new 32 360° videos as follows. We

detect objects in each video using Yolo [54]. Then, we synthetically

generate 48 viewpoint traces for each video by assuming that the

viewpoint tracks a randomly picked object for 70% of the time and

looks at a randomly picked region for the remaining 30% of the

time. We acknowledge that it may not be the most realistic way to

model viewpoint trajectories, but we believe it is useful because

(1) the bandwidth consumption is still derived from encoding real

videos, and (2) the fraction of object-tracking time (70%) matches

the average object-tracking time in the real viewpoint traces.

Conceptually, we can breakdown the improvement of Pano over

the viewport-driven baseline (Flare) into three parts. Figure 18(a)

shows the bandwidth savings by each part, while holding the PSPNR

to be 72 (which approximately translate to MOS = 5).

1. Benefit of JND-awareness: Switching from the basic viewport-

driven quality model (i.e., the perceived quality of a tile is only

a function of its distance to the viewpoint) to a PSPNR-based

quality model (which only includes the traditional JND-related

factors [29, 30]) already saves 17% of bandwidth.

2. Benefit of 360JND vs. classic JND: Next, if we add three new

360°-specific quality-determining factors into the PSPNR model

(§4) and quality adaptation (§6), we can further save 11% band-

width consumption.

3. Benefit of variable-size tiling: Finally, the PSPNR-aware variable-

size tiling (§5) reduces the bandwidth consumption, over grid

tiling, by another 17%.
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Finally, we run the evaluation with real throughput traces. Fig-

ure 18(b) shows that Pano achieves the same PSPNR with 41-46%

less bandwidth consumption than the viewport-driven baseline.

9 LIMITATIONS OF 360JND MODELING

Our 360JND model (§4) is built on a survey study, where partic-

ipants were asked to watch and rate their experience for videos

that spanned a wide range of viewpoint speeds, DoF differences,

and luminance changes. This is a similar methodology to what was

used in the related work [29, 30]. That said, we acknowledge two

limitations of this approach.

First, the values of 360° video-specific factors are varied in a

specific manner (see details in Appendix), which may not match

how they would vary and be perceived by users in the wild. For

instance, when we emulated different viewpoint moving speeds,

the viewpoint was always moving in the horizontal direction and at

a constant rate. However, when watching a 360° video, a user may

move the viewpoint neither horizontally, nor at a constant speed.

Second, we have only tested the impact of two factors at non-

zero values (Figure 7). We have not tested 360JND under all three

factors at non-zero values. Instead, we assume their effects on

JND are mutually independent, thus could be directly multiplied

(Equation 1). While Figure 8 suggests our 360JND calculation is

strongly correlated with user-perceived quality, Pano could benefit

from a more complete and fine-grained profiling of the relationship

between 360JND and various factors.

10 RELATEDWORK

360° video streaming has attracted tremendous attention in indus-

try [3, 7, 55] and academia [25, 32, 33, 35, 36, 41, 52, 59–62, 66]. Here

we survey the work most closely related to Pano.

Viewport tracking: Viewport-driven adaptation is one of the

most popular approaches to 360° videos streaming [32, 33, 35, 55,

62, 66]. The viewport of a user is delivered with high quality, while

other areas are encoded in low quality or not streamed. To accommo-

date slight viewpoint movement, some work takes the recent view-

port and re-scales it to a large region [36, 62], but it may still miss the

real-time viewport if the viewport moves too much [53]. To address

this issue, many viewport-prediction schemes [48, 52, 60, 61] are de-

veloped to extrapolate the user’s viewport from history viewpoint

movements [53], cross-user similarity [25], or deep content anal-

ysis [34]. In addition to predict the viewpoint location, Pano also

predicts the new quality-determining factors (viewpoint-moving

speed, luminance, and DoF) by borrowing ideas (e.g., history-based

prediction) from prior viewport-prediction algorithms.

360° video tiling: Tile-based 360° video encoding is critical for

viewport-adaptive streaming [32, 35, 52, 61, 66]. Panoramic video

is spatially split into tiles, and each tile is encoded in multiple

bitrates, so only a small number of tiles are needed to display the

user’s dynamic viewport. But this introduces additional encoding

overhead as the number of tiles increases. Grid-like tiling is themost

common scheme. Alternative schemes, like ClusTile [68], cluster

some small tiles to one large tile so as to improve compression

efficiency. What is new in Pano is that it splits the video in variable-

size tiles which are well-aligned with the spatial distributions of

the new quality-determining factors.

Bitrate adaptation in 360° videos: Both 360° videos and non-360°

videos rely on bitrate-adaptation algorithms to copewith bandwidth

fluctuations, but 360° videos need to spatially allocate bitrate among

the tiles of a chunk [52, 60] (tiles closer to the viewpoint get higher

bitrates), but non-360° videos only change bitrate at the boundaries

between consecutive chunks (e.g., [43, 58, 64]). While Pano follows

the tile-based bitrate adaptation, it is different in that the importance

of each tile is dependent not only to its distance to the viewpoint,

but users’ sensitivities to its quality distortion.

Just-Noticeable Distortion and perceived quality: Many psy-

chological visual studies (e.g., [29, 30, 67]) have shown that the

sensitivity of Human Visual System (HVS) can be measured by Just-

Noticeable Distortion (JND) [42]. JND has been used in other video

quality metrics (e.g., [30]) to quantify subjective user-perceived

quality, but most of the existing studies are designed for video cod-

ing and non-360° videos. This work aims to leverage the impact of

interactive user behaviors (such as viewpoint movements) on JND

and how users perceive 360° video quality, to achieve higher 360°

video quality with less bandwidth consumption.

11 CONCLUSION

High-quality 360° video streaming can be prohibitively bandwidth-

consuming. Prior solutions have largely assumed the same quality

perception model as traditional non-360° videos, limiting the room

for improving 360° videos by the same bandwidth-quality tradeoffs

as traditional videos. In contrast, we show that users perceive 360°

video quality differently than that of non-360° videos. This differ-

ence leads us to revisit several key concepts in video streaming,

including perceived quality metrics, video encoding schemes, and

quality adaptation logic. We developed Pano, a concrete design in-

spired by these ideas. Our experiments show that Pano significantly

improves the quality of 360° video streaming over the state-of-the-

art, e.g., 25%-142% higher mean opinion score with same bandwidth

consumption).
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Equipment Oculus GO

CPU Qualcomm Snapdragon 821

Memory 3GB

Screen Resolution 2560 × 1440

Refresh Rate 72Hz

Fixed pupil distance 63.5mm

Table 4: Headset parameters used in JND modeling

Appendices are supporting material that has not been peer re-

viewed.

A APPENDIX

This section presents the detailed methodology of modeling 360°

video JND.

A.1 Survey process

The user study was based on 20 participants (age between 20 and

26). The same 20 participants also did the survey-based performance

evaluation (§8), so the results could be affected by the limited size

of the participant pool. In all tests, the participants watch (synthet-

ically generated or real) 360° videos using an Oculus headset [63],

of which the parameters are summarized in Table 4.

Each participant was asked to watch a video with an increas-

ing level of quality distortion (see the next section for how the

quality distortion was added to a video). Every time the quality

distortion increased, the participant was asked whether he or she

could perceive the quality distortion. We define JND of a video by

the average level of quality distortion that was perceivable for the

first time, across the 20 participants. We repeated this test with

43 artificially generated videos, and each participant watched the

videos in a random order (which helped mitigate biases due to any

specific playing order).

A.2 Test videos

Next, we explain (1) how we artificially generate videos with a

controlled noise level added to an visual object, to emulate the effect

of a specific level of quality distortion, and (2) how we emulate

the viewpoint behavior such that the visual object would appear in

the video with a specific relative moving speed, DoF difference, or

background luminance change.

All test videos were generated by manipulating a basic video

where a small square-shaped foreground object (64×64 pixels) was
located in the center of the screen. The object has a constant grey

level of 50. We refer to the foreground object byU .

Adding controlled quality distortion: To add a controlled qual-

ity distortion on U , we borrow a similar methodology from prior

user study on JND [29, 30]. We randomly picked 50% pixels of U ,
and added a value of Δ to their values (grey level). We made sure

that the resulting pixel values were still within the range of 0 to 255.

By varying the value of Δ from 1 to 205, we created a video with

an increasing level of quality distortion on the foreground objectU .
The video was played to each participant until the distortion was

perceived for the first time.

Emulating the effect of relative viewpoint-moving speed: To

emulate the perception of quality distortion under a specific rel-

ative viewpoint-moving speed, we fixed a red spot at the center
of the screen, and moved the foreground objectU horizontally at

a specific speed of v . That is, U and the red spot (viewpoint) has

a relative moving speed of v . The participant was asked to look
at the red spot, and report whether he or she could perceive the

quality distortion added onto the objectU . This process emulated
the effect of viewpoint moving at a relative speed of v to where

the quality distortion occurred. We tested viewpoint speeds from 0

deg/s to 20 deg/s.

Emulating the effect of luminance changes: To emulate the

perception of quality distortion under certain luminance changes,

each video began with the background luminance set to д + l , and
then reduced to д after 5 seconds. Right after the luminance was
reduced to д, the objectU was shown with a gradually increasing

amount of quality distortion. The participant was then asked to

report as soon as the quality distortion was perceived. Although the

report quality distortion may not be the true minimally perceivable

quality distortion (JND), we found the participants always reported

quality distortion within 3 seconds after luminance was reduced.

That suggests the first perceivable quality distortion might be a

reasonable indicator of the real JND under the luminance change

of l . By fixing д at 0 grey level (darkest) and varying l from 0 to

240 grey level, we can test the JND under the different levels of

luminance changes within a short time window of 5 seconds.

Emulating the effect ofDoF differences: To emulate the percep-

tion of quality distortion on an object with a specific DoF difference

from the viewpoint, we asked the participants to focus on a static

spot displayed at a DoF difference d (d = {0, 0.67, 1.33, 2}dioptre)
from the foreground objectU . Then quality distortion was added
to the object U , and the participants were asked to report when
they first perceived the quality distortion.

Joint impact of two factors: So far, each factor (relative viewpoint-

moving speed, luminance change, DoF difference) was varied sep-

arately with others held to zero. We also tested the JND under

both viewpoint speed and DoF differences at non-zero values si-

multaneously. That is, at each possible relative viewpoint-moving

speed, we enumerated different values of DoF differences, using

the same method described above. Similarly, we also tested the JND

under both object luminance and relative viewpoint-moving speed

at non-zero values. These results were shown in Figure 7.
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