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Abstract—Online advertising is a rapidly growing industry  collection systems is degal onel unlike Google (not a
currently dominated by the search engine 'giant'Googl e. Inan  proadband provider), ISPs that provide broadband seréges
attempt to tap into this huge market, Interet Service Provders 4 axempt from the Federal Wiretap Act, originally enacted
(ISPs) started deploying deep packet inspection technigseto . 1968 t tect inst ph iret e d ded
track and collect user browsing behavior. However, such tde !n 0 protect against phone wire applng ‘,"m amende
niques violate wiretap laws that explicitly prevent intercepting in 1986 to cover computer network communications. It states
the contents of communication without gaining consent from a simple prohibitionthou shalt not intercept the contents of
consumers. In this paper, we show that it is possible for ISPs communications (see 18 U.S§2411(1))[11]. Violations can

E:%ri)r(gjr?itc;tsigg browsing patternswithout inspecting contents of yagyt in civil and criminal penaltiesindeed, this prohibition

our contributions are threefold. First, we develop a metho- Nas cléarly been violated by deep packet inspection teabsiq
dology and implement a system that is capable of extracting [12]. The law predicts several exceptioesy, security reasons
web browsing features from stored non-content based recoslof (see 18 U.S.C§2511(2)(a)(i) [11]) or user consent (see 18
online communication, which could be legally shared. Whenuweh . S.C.§2511(2)(d) [11]) but behavioral advertising is certainly
browsing features are correlated with information colleced by nowhere on the exception list.

independently crawling the Web, it becomes possible to rewer . .
the actual web pages accessed by clients. Second, we system- Pressed by the legal constraints on one side, and by huge

atically evaluate our system on the Internet and demonstrat Market opportunities on the other, ISRsg, [13], [14]) started
that it can successfully recover user browsing patterns wit high addressing the legal issue by altering their customericerv

accuracy. Finally, our findings call for a comprehensive leslative  agreements to permit monitoring by describing it as “perfor
e e eacams,  MaCe advertising services" (1, Each company allows users
rights in a more effective way. ’ opt out of the :_;ld targeting, though that permission is buined
customer service documents’ footnotes. Still, there ig@nst
|. INTRODUCTION concern that these approaches opt the user out of targeted
Online advertising is a $20 billion industry that is growingads, butnot the online data collection. Hence, there is a
rapidly [1]. Examples of online advertising include corited fear that ISP-enabled ad targeting with deep packet ingpect
ads on search engine results pages, banner ads, rich méelihniques is highly vulnerable to lawsuits [15], which iByw
ads, social network advertising, online classified adsientj, many ISPs are reluctant to deploy this technology.
advertising networks, and e-mail marketing. Google [2]owh The key finding of this paper is that it is possible to design
originally controlled 35% of the ad server market recentl@ methodology and a system that would make ISP-based user
acquired DoubleClick [3], a 34% market share holder, givingacking and behavioral advertisiriggal, even without user
the combined online ad firm more than 69% of the market [4¢onsent. Leaving for the moment many important implicagion
Internet Service Providers (ISPs) have for years looked off this finding (that we discuss at the end of this section), we
jealousy as Google has grown rich on their subscribers’ weligue that such a system could be a 'game changer’ in the
browsing, while the ISPs have been reduced to “dumb pipesgntention between established Web-based and emerging ISP
ferrying internet traffic for subscribers but unable to wireir based behavioral advertisers: it can remove the legal cnace
online spending [1]. In an attempt to reverse this trend,esorthat currently fundamentally constrain ISP-based behalio
ISPs started cooperating with companies such as Phorm [&d, targeting.
NebuAd [6], and FrontPorch [7]. These companies use deeplhe main idea lies in abandoning controversial deep packet
packet inspection techniquéss., inspect a packet payload, toinspection techniques and reverse engineering user bigwsi
intercept web page requests and responses generated by IgRgerns using alternative methods. We refer to the Elaitiro
subscribers as they roam the net, and then apply behavidt@mmunications Privacy Act [16] which defines the sharing
ad targeting [8]. of particular types of stored records of online activitiés.
A major problem in the above arrangement between ISBtates that any provider can hand-owen-contentecords to
and companies that deploy deep packet inspection based @tgone except the government (see 18. U.SZ7.02(c)(6)

This work is supported by Spanish MEC project TEC2008-06663- 1In this paper, we focus on the U.S. Federal Law. Still, mangrimational
02 (70% FEDER funds), NSF CAREER Award no. 0746360, and Chinaws are similar to the U.S. Federal law [9], since laws hasenbharmonized
Scholarship Council. through treaty and convention [10].



[16]). Consequently, sharing non-content-based storaddrs page. In our approacky, given URI corresponds to a root file
— such as TCP headers — with anyone except a governmérgnd only if there exists a link on the given web site poiptin
body is legal [9]. to the given URI.Like objects, links could be external and
The key challenge and the main research question uweernal depending on the location of the corresponding roo
attempt to address then become if it is possible, and hdile’s URIs.
accurately and scalably, to recover user browsing acceés
patterns based solely on fairly limited information prosid ~- Methodology
in TCP headers? We demonstrate that web browsing patternghe problem we aim to solve is the following: “Given a
stay highly visible at the TCP layer, and we design a meth@écket-level network trace, recover the web pages visited b
to automatically extract such features. Next, we profile tHéserswithout 'touching’ the packet payload.” The key idea
websites by extracting relevant features such as objeet siis as follows: ¢) profile Internet websites visited by users
cacheability, location, link information, transfer modet. represented in the tracée. independently crawl the given
Finally, we design an algorithm that correlates the two sesir websites and collect statistics about web pageg, object
of data to detect the pages accessed by clients. size, cacheability, locality, links among pagets; (ii) extract
We extensively evaluate our algorithm and show that ipe Web-level communication features from the network-
achieves high detection rateise., 86%, with false positive level information available in TCP headers; and finally;)(
rates below 5%. The fundamental reason for such performarggérelate the information from the two sources to detect web
is its ability to extract and exploit significant statisliqgzage pages actually accessed by clients.
diversity available at all sites we explored. Most impothgn 1) Website Profiling: To accurately and comprehensively
we demonstrate that the algorithm is resilient to data seals, profile a website, we develop a web crawler, which extracts
i.e., when either network traces or web profiles are outdatedte following characteristics about the web pages at a eebsi
While the page properties necessarily change over time, ¥t will later be used to recover actual user access pattrn
show that a subset of unique properties remain, making tht site.
detection resilient with time. Size.A root file or an object corresponding to a given URI
We further show that the approach is resistant to differeeuld be downloaded in eithgslain or compressednode,
browsing scenarios including pipelining, caching, NAVde depending on browsers and servers settings. Our goal is to
flow multiplexing, and various browser versions. We alsgbtain the corresponding file size (in bytes) in both modes.
demonstrate that the algorithm scales to entire websitée wh Cacheability. The HTTP response header obtained from the
preserving high detection performance. Finally, we euvaluaserver for a given URI allows the crawler to estimate if a root
our approach in the 'wild’ and successfully recover browsinfile or an object is cacheable or not.
patterns based on real traces collected from a group of 17Locality. The crawler records the location of each root file

volunteers. and its corresponding objects. The location could be itern
i.e,, the root file or the object is hosted at the same server
Il. RECOVERINGWEB BROWSING PATTERNS FROM (same IP address) as the website. Otherwise, the location is
STORED TCP HEADERS external.

In this section, we introduce a methodology for recovering References.A root file pointed to by a URI could con-
web browsing patterns from the information available in TCRain references to other URIs, corresponding to object& Th
headers. First, we briefly present the necessary backgrownawler parses this root file and extracts a list containimese
on the topic. Next, we describe our approach and the correferences.
sponding algorithm. Finally, we discuss a method for hargili  Links. A root file pointed to by a URI could contain links to

several possible sources of error. other URIs. The crawler parses this root file and extractsta li
containing these links. It further crawls URIs correspardi
A. Background to internal links,i.e., root files.

A web page typically consists ofraot file and correspond-  2) Extracting Web Browsing Features from Network Traces:
ing object files. A root file is uniquely determined by a URHere, our goal is to extract the Web-level browsing fea-
[17]. A root file referencesother object files, oobjects that tures from network traces; in particular, the number of web
a given web page consists o&,g.images, scripts, etc. If an pages accessed by a client and the size and location of root
object resides at the same server (determined by a uniquefil®s and objects corresponding to these web pages. When
address in our approach) as the root file, we term the objectmbined with the information obtained via web profiling
asinternal Otherwise, it isexternal (Section 1I-B1), these features will enable recovering useb

Caching is another important Web-related mechanism. Htowsing patterns (Section 11-B3). We refrain from mining
allows retrieving web page objects from intermediate ré@pes packets payloads to obtain URIs accessed by clients ormbnte
ries such as proxies, shared caches, or browsers. Browsgrs generated by servers since both approaches violate thedfede
servers have mechanisms to decide if a given object shouldWeetap Act [9]. Indeed, we constrain ourselves to recagdin
cached or not [18]. Hence, objects in a web page could bad later inspecting TCP headers only.
cacheableor non-cacheable One-way TCP header collectionOur approach is tailored

In addition to referencing objects, a root file typically kos towards access ISPs, and it requires an ISP to record TCP
links (pointers) to other web pages as well. They enable cliemgacket headers at a tapping point in the network. While it
to access other web pages “by clicking” them at a given wéb generally possible to obtain data in both (client-seved
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server-client) directions in access networks, that is dgly SUMMARY OF THE STEPS IN THE DETECTION ALGORITHM

not the case in non-access networks due to path asymmetry
[19]. Still, our approach is applicable even in such scesari
because it requires collecting TCP headers singledirection

only,i.e., from clients to servers, as we explain in detail below.

TAGGING PHASE
1) Forall E, € E:
a) For allR; € R, check if S(Ey) = Sin(R;) and L(E)) =

To extract HTTP level communication from the trace, we filtgr L(R;):
out traffic on port 80 and create per source IP subtraces. i) If ttue— R; = identified.
Webpage-based trace slicingOur next goal is to further b) If only one R; = identified—R; = unique.
separate each of the user subtraces into sepaliats each c) For all Oj;, check if S(Ey) = Sm(0i;) and L(Ey) =

i : - L(Oy):
slice should ideally consist of packets that correspond to a i) If tue— O,; — identified.

singlg page accessed by a client. To aphieve this_ goal, e d) If only oneO;; — identified— O;; — unique.
exploit the well-known Web-user behavior. In particuldr, i ) uild setsPy and Po with pages with identified root files / objects
has been shown experimentally that either a machine [20] or a  respectively.
Web user [21] requires at least one second to process and re&ELECTION PHASE
to the display of a new page. (We experimentally verify this 1) Initial set of detected page®p =0 . _
result ourselves in Section IV by evaluating a represerati 2) gagige?n'%: RUU;O o V‘\:,‘i)tﬂta;?]ya%yni‘éﬂ'g”f’og‘t)oft"gﬁggggg‘tggni ]
user browsing data set we collected.) As a result, each user  algorithm.
‘click’ at a link on a website is followed by a period of| 3) P, =PrNPo.If P, =0— Pp,=PrUPo.
activity corresponding to a web page download, and a peripd a) If S(Pp) =1, Pp = Pp,. End of algorithm.
of inactivity corresponding to the page processing. Henee, 4) Obtain P7 selecting fromP, those pages with highest percentage
use these moments of user inactivity to separate the usestra of 'deTf" 'e(;)f?bje_ms' P — P End of alorith
into slices. Even when this is not the case that more than gne 5 a). S,,(, .D) =5 b= "D =nd of algorithm.
. . . . ) Obtain P/} filtering Py with link information.
page can end up in a slice, our algorithm can handle this a) If S(P!) = 1, Pp = P'”". End of algorithm
situation as well, as we demonstrate below. b ' b '

Extracting web page features.OQur next goal is to extract | Po: Pages with identified objects’r: pages with identified root filesfz: set of all
the size and the position (internal vs. external) of the fet | SEmeni=n e eedy: slemert n race 1 etof al oot e 1 e wetste
and the objects corresponding to a given web page associated): size operatorL (-): location(internal/external) operatdi;empty set.
with a given slice. To recover these features, we inspect the
TCP packet headers corresponding to the given slice. .

Three issues are considered here. First, when accessinlé:) gddress_of the cc_)rresp_ondlng SEIver. . .
web page, the corresponding root file is always requested andP€veral issues, including the ability to estimate object
downloaded first. Second, each HTTP request for any of tR@uUndariese.g, due to pipelining) and the file size estimation
web page objects is requested ineparateset of TCP packets accuracy €.9, dL_’e to va_nable HTTP header size), exist. We
except when pipelining is enabled (Section 11-C2). Thim, j2nalyze these issues in depth in later parts of the paper
the vast majority of scenarios, TCP packets carrying HTT&ections II-C and I1I-E). _
requests have the TCP PUSH flag %et. 3) Detection Algorithm:Here, we present an algorithm that

To verify this behavior at a large scale, we analyze netwof@Irelates informati_on obtained via website profiling (Bat
traces that we obtain from two Tier-2 ISPs from two differer{-B1) and features independently extracted from TCP hesade
parts of the world. In one of the traces, we collect 131,6gPection I1-B2) with the goal of detecting actual web pages
HTTP requests, and in the other one we collect 153,85§c€ssed by clients in the trace. The algorithm is indepthde
requests. In the first case, in more than 96% of scenarios TEXecuted on eachlice of the trace. To avoid confusion, we
packets corresponding to HTTP requests have the TCP pukgier to root files and objects identified in the traceahzm_ents
flags set. In the second case, more than 95% cases have tfiRenote byE = {Ey, Es, ..., E} the set ofl elements iden-
TCP PUSH flags set oh. tified in a trace slice. Next, denote by = { Py, P, ..., P}

Next, to estimate the root file and objects sizes within agtradh€ set ofn web pages identified at the given website in the
slice, we proceed as follows. We consider that the TCP pack®eb profiling phase. Further, denote By= {11, Ry, ..., Ry}
corresponding to a root file or an object are those belong)'ngthe set ofn root files associated with the identified web
the same TCP connection and are delimited by two consecutR@g€S. Also, denote by; = {Oi1,0i2, ..., Oim } the set of
TCP PUSH enabled packets. Once the root file and differéfit different objects contained in page,. As we explained
objects contained in every slice have been identified, @0Ve, €ach root filek; or objectO;; can be downloaded
extract their sizes from the acknowledge numbers availablein €ither plain or compressed mode. As a result, we have
TCP ACK packets. Finally, we determine the object locatiofWO Possible values for the size of each of the root files or
i.e. internal vs. external, in a straightforward way by chegkin®Pj€cts. In particular, for a given root file or object X, démo

by S;(X) its size in the plain mode, and bY:(X) its size
2Even when TCP PUSH flag is not set in the TCP header, HTTP requel? the compressed mode. Finally, the goal of the algorithm
could be distinguished based on the TCP packet size, whigheter than is to determine a subset of detected padgs Pp C P.

the TCP ACK size. . _ _ The algorithm is executed in the following two phases, also
3The root cause for not achieving 100% is the existence of PEST ized in Table |-

QUESTS which may have a long size and are split into severdigts with Summa.rlze In lable o .

PUSH flag activated. Tagging phase.During this phase, for each elemehts

=




from the set of identified elements, we compare the size C. Dealing with Sources of Errors
S(E)) and the location(E}) (internal/external) of the ele-
ments in the trace slice separately with the size and Iamatia
of all root files and then objects in the website profile. Not:
that considering the location of an element as internadfexs

Here, we emphasize the key factors responsible for false
etection. First, we summarize the key elements that lead to
fhaccuracies in a web object size estimation. Then, werautli

other factors that can impact detection accuracy. We etalua

instead of its server IP address permits the tagging of tbje P : :
which are downloaded from CDN networks. This allows uélé(t:?iiie“flactors and their impact on the detection accuracy

to identify possible candidate web pages to be selected a . . L . .
downloaded. Each root file or object whose size corresponds) Object Size EstimationThe estimate of an object (or

to that of one of the elements is taggedidsntified (Table & 0t file) .size_ abtainedi) via website prpfiling (Section
|, tagging phase, steps 1(a) and 1%2))_ Moreover(Eﬁ i [I-B1) and () via TCP-level headers (Section II-B2) can be

identified with a single root file or a single object in theird'ﬁerem' Whenever such a difference occurs, the proligbil

. . o . that the algorithm will make a false decision increases. The
Ires';gg;ti:ge gﬁg]spearlztoenpsé '{(S Zlﬁg tlaég%edB;ngﬂie(szljm é(factorcontributing to the difference in the estimatégjeat
o'bject/root file is’present in only one pége of the websitd2€ 1S the potential variability in the HTTP header size. We
its identification makes this page a good candidate to ha%?:\.”dte sevelz_:?rl_regamples tbelow._ lud kie. Althouah
been downloaded. Finally, in this phase, all the pages with Irst, an request may inciude a cooxie. oug

identified root files are compiled in a sé% and those with It € tsrllzg of ad cookie is gsuallélfcoqstant, |nt§0me hgars]es. 'tﬁt
identified objects in a sebp. ength depends on a seed used for its generation, which mig

involve parameters such as nonces, timestamps, or sowsce IP
ggorder to reduce the amount of false positives due to capkie

Pr and P, as input data and aims to decide which pag r crawler considers two different sizes for those pages th

are downloaded in the trace, and hence should be includg&'m a cookie: one taking into account the cookie size and

; P : ther without it.
in Pp (initially empty, Table 1, selection phase, step 1). W&"° , _ . .
distinguish two different cases:)(if unique root files and _ >€cond, an object might be downloaded using the chunking

objects have been identified in the slice, all the pages tHEgnsfer mode [18]. Indeed, when a server does not know

contain them are selected (Table I, selection phase, Step|E)advance the total size of the content that it is send.ing,
Indeed, because multiple web pages might be present in g Sender breaks the message body into chunks of arbitrary
length, and each chunk is sent with its length prepended [18]

Jjence, the complete size of the object depends on the number
of chunks used and their own size. As a result, it can happen

that no unique root files or objects are identified, we make!32t subsequent requests to the same non-cacheable abjects

best effort to minimize false positives; hence, our goalas € same site can generate different HTTP header sizes.

identify a single page in the slice. 2) Other Sources of ErrorHere, we outline other factors
that can lead to detection inaccuracies.

We apply the following strategy. First, we consider only Dynamic website behavior Websites can change over time.
those pages, if any, that are present in bBthand Py; that For example, a site administrator can modify the content
is, Pr N Po. Indeed, if there is an overlap between the tw8f @ given page. The relevant question thus becomes: How
sets, it is likely that a page from the overlap has been aedesdrequently do root files or objects at a website change, and
However, if there is no overlap, we are unable to reduce thew does that affect the ability of the algorithm to deteattsu
set, and hence we consider all the pages in bothBetsP,. Pages? We explore this issue in depth in Section 11I-D below.
The resulting set isP}, (Table |, selection phase, step 3). If Pipelining. HTTP1.1 proposes pipelininge., send subse-
more than a single page still remain, we filf, and extract quent HTTP requests within a single TCP connection without

only page(s) with the highest percentage of identified abjecwaiting for the corresponding HTTP responses. This apgroac
i.e, setPy, (Table I, selection phase, step 4). blurs the visibility of object boundaries at the TCP level

and complicates the corresponding web object size estmati

If several candidates still remain, we consider the us¥Yhile pipelining is not widely spread in the Internet, as we
navigation pattern. In particular, we use the simple hégris demonstrate later in the paper, a relevant question is how ou
that if a user accesses more than a single page at a webisite, algorithm performs when pipelining is enabled. We explore
likely that there exist links from one page (hence one slioe) this issue in Section IlI-E1.
the next page (hence next slice) accessed by the client, ThusCaching. All objects belonging to a page are not always
among the remaining candidatesith slice, we only choose downloaded from the server. While we explicitly address thi
those that are linked from the pages in tRg set obtained issue in the algorithm, the question is how does this mecha-
for the previous{— 1)th slice. The resulting set i/}, (Table nism affect its accuracy We explore this issue in SectioftRI
[, selection phase, step 5). During steps 3-5, if anyRgt Overlapping page downloads Several factors can generate
P}, or P} contains only one page, it is selected as the finab-called overlapping page downloads to appear in a single
decision Pp (Table 1, selection phase, steps 3(a), 4(a), arrhce slice. First, inter-click estimation might not alvgape
5(a)). Otherwise, if several candidates still remain, tlaeg fully accurate. Hence, it can happen that two or more web
all discarded in order to minimize the false positives. page downloads from the same website can end up in the

Selection phaseThe selection phase takes the set of pag

slice (Section 11-B2), selecting pages with unique chamast
tics leads to high detection rates in such scenarios, as We
demonstrate in Section IlI-E3 belowii However, in case



same trace slice. Second, when Network Address Translation
(NAT) boxes are used, a number of clients behind the NAT
will have the same source IP address visible at the tapping
point. While accurate per-client trace slicing is still $#zle
using destination (server) IP addresses, it is possible gha
given time intervals, one or more clients behind the NAT
concurrently access the same website. Third, a single aser ¢
(nearly) concurrently access several pages at a singleiteebs af
All these issues lead to the overlapping page downloadsteffe
We explore our algorithm’s performance in such scenarios in
SeCtion ”I-E3 ytimes ~ Barcelona KEA Toyota Univ 1 Univ 2
Spurious requests.During the navigation process, certain Fig. 1. Sites statistics
spurious HTTP requests that do not correspond with a page
download can be generated. These are mainly caused by

client web-based applic_ations,g, Goog'? toolbar, live search how our algorithm performs when either a web profile or a
toolbar, or by AJAX scripts embedded in web pages. In Som@y o1k trace is outdated, an issue that we explore in depth
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the size of a website impacts the results, we crawl one of the
the other hand, are a well-known challenge even for thetlat%ebsites in full in Section IlI-E

commermgl crawlers. Hence, these request;_wﬂl interfett: TCP-level traces.To obtain TCP-level traces (using the
the detection process generating false positives. Wireshark tool [22]), we emulate user behavior by creating
I11. EVALUATION qguasi-random walks over 100 out of the 2,000 pages at a
Here, we evaluate our approach in a number of challenginwebS'tE; we call these 100 pagésst pagesin particular,
' We at random select a page out of the 2,000 pages; then, we

yet reahstm_scenarlos. I_n particular, we _explore thelrersce randomly select the next page from the set of pages that the
of our algorithm when either a web profile or a network tracgiven page links to. When no links exist from a given page

is outdated. Then, we explore the issues of pipelining, icach doml | h f h d ;
overlapping page downloads, and the browser diversity. we randomly select another page from the set, and continue
' the quasi-random walk until we collect 100 pages. Finally,

A. Experimental Setup we compute detection statistics as we explain in Section

Before presenting the performance evaluation, we first e I-C below. For all experiments, we collect ten mdeperiqen .
plain how we obtained two necessary datasets — crawl gt sets, and show averages. We move beyond emulation in
website logs and TCP-level traces. To emulate a realistipse ection IV and deal with real user browsing traces.
in which the two datasets are typically obtained from tw
different points in the networkj.e., TCP-level traces collected
from an ISP network, and crawled logs by a different set Here, we show the statistics for unique-size root file and
of machines). In all scenarios, we use a crawling spider v@dject in the six websites. Such files are invaluable in the
designed to profile the websites; we generate network tragigfection process since their presence in a trace uniquely
using theFi r ef ox 3. 0. 5 browser, with default parameters,identify a web page.

i.e., caching enabled and pipelining disabled. We explore otherFigure 1 shows the percentage of pages with unique objects,
browsers and parameter settings in Section IlI-E4 below. unique root files, and with either unique objects or unique

Website profiling.We select six representative websitegoot files. The figure shows that the percentage of pages with
which are The New York Times (www.nytimes.com), FQunique objects is high, except for the two universities.sTiBi
Barcelona (www.fcbarcelona.com), IKEA (www.ikea.com)pecause commercial or news websites are usually rich with
Toyota  (www.toyota.com),  Northwestern  Universitypictures and other objects, which dramatically increase th
(www.northwestern.edu, Univl), and University of Granadpage diversity. For example, in the IKEA website, many pages
(ceres.ugr.es, Univ2). Some of them adopt CDN techniquégve a unique picture showing different products.

e.g., Nytimes, IKEA, and Toyota; while others host their The figure shows that the percentage of pages with unique
content by themselves. While this is certainly a smaitbot files is enormous in all web sites. Indeed, even when the
fraction of the Web, our key goal is to understand in-deptveb pages share the same template, they still have different
performance of our algorithm in diverse scenarios in whictext resulting in different root file sizes. Moreover, therpe
either CDN is involved, or web profiles are outdated, or TCPentage of pages that either have unique size objects oneniq
traces are stale (See details in Section 1lI-D). In the nesaot files is necessarily even higher. These high percestage
section, we perform experiments in the 'wild’ and evaluatidicate that the use of unique-size objects or root files is a
our algorithm by crawling a larger number of websites. powerful feature.

In each of the sites, we crawl a subset of pages, 2,000 We use these statistics to explain the basic performance of
web pages (except for Univ2 which has less than 2,000 pages)r algorithm. In particular, from the statistical pointagw,

We select this threshold because it enables us to crawball sie percent of pages with unique objects could be considered
websites within a 24 hours interval. This helps us to undexst as the (loose) lower bound of the expected success rate, and

B. site Uniqueness
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Fig. 2. Basic performance of the detection algorithm we obtain are not always the same. As a result, the initial tes
set also reduces in some cases. Although the pages crawled
(]I()Jléthe first day typically still exist on the website, our lted
crawling process does not manage to download these pages.
Hence, we proceed in two steps. First, we determine the pages
C. Basic Performance that exist during the entire period and consider them fised

Here, we explore the performance of our algorithm for thiest setSecond, we explore how the pages in the final test set

six websites. We apply the methodology explained in SectiGRande over time. _ _
II-A above, i.e. use 100-page long test sets to compute theFigure 3 illustrates that, during the seven day period, the
success rate, false positives and negatives. In the figeres flumber of overlapping pages stays the same in Toyota and
and in the rest of the paper we show the success rate &ttversities, suddenly dives a bit in Nytimes and Barcelona
false positives. (False negatives could be computed as 10894 gradually decreases in IKEA. Again, all the web pages
- success rate (%)). from the first day are typically available on the web site, the
Figure 2 shows the results. We make several observatiof¥erap decrease is due to the limited number of crawled page
First, the success rate is around 86% on average over #id the addition of new pages. More specifically, Toyota's
websites, and false positives are below 5%. In all cases, {fdates are relatively the slowest as its products are lysual
success rate is above the lower expected bound, as we §@Ting outover longer time scales. On the other side, Nydime
dicted above. Moreover, in certain scenarios (IKEA, Toyot&1@y add many pages in its website in one day, which leads
Univl, and Univ2), the performance is even above the upplé & huge shrink in the overlapping size. IKEA, as an in-
expected bound. This is because we made expectations een case, slowly updates its website and hence the mumbe
based on the site uniqueness. Still, other issues, sucheashOverlapping pages decreases at the same pace. As a resul,
use of link information, can further improve the results evefor Nytimes, Barcelona, and IKEA cases, the size of the final
in scenarios when no unique items are detected at a websigSt Set is 81, 76, and 98 pages respectively, while for Foyot
The performance for Barcelona and Nytimes is appro@nd universities cases, the size is 100 pages.
imately between upper and lower bounds. In both casesFinally, we divide the six websites in two categories. The
the reason for not reaching the upper-bound performancefiist one includes sites that have the final test set less than
due to effects explained in Section II-C1. In particular, wd00 pages (Nytimes, Barcelona, and IKEA). For this set, we
experienced increased chunking-mode transfers in themegti capture the TCP-level trace at the last day of the experiment
case for root files. Nevertheless, other factors, such agueni (day 7 in Figure 3). The second set includes sites that have
objects, the percent of identified objects and link relathips, the final test set equal to 100 pages (Toyota and univeisities
keep the performance above the lower expected bound. AsF@ this set, we capture the TCP-level trace at the first day of
example, in the Nytimes case, success rate of 84% (Figureti?§ experiment (day 1 in Figure 3). In the former scenarios,

surpasses the lower expected bound of 71% (Figure 1) the website prOﬁles are out of date. In the latter Scenatﬁ'ms,
TCP-level traces are stale. In the experiment, we compare th

D. The Role of Time Scales TCP-level traces with web profiles taken during the seven day

Both network traces and web profiles could be outdatdriod.
for a number of reasons. For example, several days mightPerformance. Figures 4(a) and 4(b) show the success and
pass until an ISP ships its traces to an advertising compatfie false positive rates (computed over the final test) as a
Likewise, crawling the Web is an exhaustive process. Hendepction of time. The reference point in each figure (day 0)
several days or more can pass until a crawler revisits a sile ecorresponds to the time when TCP-level traces are obtained.
updates its profile. Here, we evaluate how these issues impAg a result, day 0 in Figure 4(a) corresponds to day 1 in
the accuracy of our algorithm. Figure 3. Likewise, day 0 in Figure 4(b) corresponds to day
Methodology. We select 100 pages as theeliminary test 7 in Figure 3.
setfor each website in the first day of the experiment. Then, Figure 4 provides three insights. First, in Toyota and the
we crawl the given sites once a day for one week, and collecuniversities (Figure 4(a)), the success rate stays almust ¢
new 2,000 pages profile each day for each of the sites. Becastat; in other scenarios (Figure 4(b)), the success ratagss
some of the websites change over time, the 2,000 pages timatrginally. For example, the success rate of Barcelonasdrop

the percentage of pages with unique size objects or uni
root files is considered as the (loose) upper bound.
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from 88% to 87%. Second, in all cases, the success rates readhinally, in all cases, the change rate of root files is higher
the peak on the day when the test TCP-level trace is collectibdin the objects size change rate. For example, In Nytimes
because the properties of root files and objects in the cthwlease, the root files change rate of 60% highlights the abate fa
profiles are more likely to be the same as those in the TC®at news web pages, particularly the text part, are fretipen
level trace on the same day. Third, besides the success ratpslated. At the same time, the change rate for objects is
false positives are also resilient with time. In Figure 4tz less than 3% at day -6. Thus, despite a highly dynamic site
change rate of false positives remains same; In Figure 4@®havior, our algorithm is capable of accurately detectirey

the false positives change smoothly; for example, in theAKEgiven web pages with high accuracy, as we demonstrated in
case, the minimum is 5% and the maximum is 6%. Figure 4. This is because a subset of web pages’ unique

Change rates. To understand the causes of the abowroperties remain consistent over time.
observations, we explore the change rates of root files and
objects size. In the experiment, we compare the root files afd Different Browsing Scenarios
objects size of pages in the final test set with web profilesHere, we explore different browsing scenarios. Thus, we
taken during the seven day period. We define the change raggaluate how i) pipelining, (i) caching, {ii) overlapping
as the percentage of inconsistency of root files or objeets spage downloads, and«) different browsers affect the per-
between the final test set and web profiles. We also considemance. The first three experiments thus far are conducted
the objects that are permanently removed from the givengpagesing theFi r ef ox 3. 0. 5 browser with its default settings,
as changed,e., their size becomes zero. i.e,, caching enabled and pipeli-ning disabled by default. We

Figure 5 shows the root file and object change rate ascanduct all experiments on the Toyota server, using the @bov
function of time. The first finding is that the change rate ahethodology. To avoid dynamic effects explored above, we
both root files and objects is much smaller in Figure 5(a&pllect all traces on the same day.
than in Figure 5(b). This is caused by the same reasonsl) Pipelining: We first explore how widely pipelining is
discussed with respect to Figure 3 above. For example, dpread in the Internet by analyzing a Tier-2 network trace
the Toyota case, the web administrators update their welith 153,583 HTTP requests. We identify the existence of
news if some new products are available in the market, whiskveral HTTP requests in a same TCP segment as a pipelining
typically happens over longer time scales. On the contrasignature. Our results show that the percentage of pipline
the websites are updated much more frequently for news asebments is smaller than 1%, while the percent of users that
other commercial websites such as Nytimes, Barcelona, amgk browsers with pipelining enabled is around 2% of thd tota
IKEA. number of users (in terms of source IP addresses).

Second, the change rate increment is the largest within onéDespite low usage of pipelining, clients might be temp-
day from when the traces are takée,, day +1 in Figure 5(a) ted to enable this feature in order to prevent ISP-based ad
and day -1 in Figure 5(b). After that, there is almost ntargeting. We explore whether such an attempt would be
changej.e, for days 2 — 6 in Figure 5(a) and days -2 — -6 irsuccessful.

Figure 5(b). This is because a part of pages, like main pagesTable Il shows the results. We can see that there is only
updating the top-line news or the latest product promoteinsa slight difference in the results, as the success rate degra
commercial websites is typically updated frequently, nibt ay 1% only. The reasons are the following. First, the fact tha
the pages. a browser enables pipelining does not imply that all HTTP



TABLE Il . .. . ..
PERFORMANCE EVALUATION FOR DIFFERENT BROWSING sCENARIos  Obtained. This implies that our approach is independemh fro

different browser types.

\ Scenario [ Success rates| False positives |

[ Pipelining disabled] 89% [ 4% |

| Pipelining enabled| 88% | 4% | F. Scaling the Website Profile

[ Cache disabled ]| 90% [ 4% | o

|_Cache enabled | 89% | % | To evaluate how our approach behaves with increased

Psaerglllj:Intt\:\?ol ?ZZ//O 1712;0 website profile, we crawl the entire Toyo'_[a site and dowr_1|oad
Parallelfour - - 9,211 pages. Then, we repeat the experiment by repeating the
procedure explained above.

requests will be pipelined (for performance reasons), miy o Our results show that the success rate is resilient with the
a subset of them. Indeed, only 12% of the TCP segmemisrease of the website profile. More specifically, the sesce
containing HTTP requests are really pipelined by the browsé¢ate of Toyota reduces from 89% to 81%. At the same time,
As aresult, the bulk of the objects sizes are correctly ifiedt the false positives increase from 4% to 7%. We investigage th
Second, even if larger percents of objects would be pipéjingesult in more depth, and find that 78% of pages have either
the requests for root files cannot be pipelined. This is bsgawnique size objects or unique root files, while this percgata
a browser does not know in advance which objects to fete¥as about 88% when the website profile was 2,000 pages long
before it downloads the root file. Hence, high detectiongatéFigure 1). Additionally, each page in Toyota site has 97.3
are still feasible. links on average which reduces the ability of our algoritlom t

2) Caching: In this experiment we evaluate the effects o$weep out many incorrect results.
browser caching mechanisms. We consider two scenatips: (

navigation without caching, in which we disable the cache in IV. PERFORMANCE IN THEWILD
the browser andif) navigation with caching, in which we ) )
enable the cache in the browser. Here, we move away from the controlled environment in

Table 1l shows the results for the two scenarios. As eXthich we generate the test pages using quasi-random walks
pected, we can see that results when cache is disabled Q@' the six websites. We evaluate our approach by using real
better, i.e, the success rate increases to 90%, while falsser browsing patterns at websites of their own choice.
positives remain unchanged relative to the caching saenari We collect URI-level traces from 17 volunteers (with their
The slight improvement in the performance is due to the fagensent) from USA, Europe and Asia during 1 month. These
that the existing non-cacheable elements (typically atit rotraces contain users’ anonymized identifications, as vegthe
files and a subset of objects) already create a strong imige-p Visited URIs and their corresponding timestamps. From this
diversity. Nevertheless, more information in the non-gagh information, we select 41 different websites with the higthe
scenario produces a better result. number of requests. For each website we build its profile by

3) Overlapping Page Download®verlapping page down- crawling up to 2,000 pages. Then, we choose the list of URIs
loads means that more than one web page might end &fpthe test set in our experiment. A TCP level trace is obtaine
in a single trace slice. For example, this can happen eitH®t replaying the user navigation patterns (visited URIs and
due to NAT-induced effects or inaccurate inter-click timémestamps) within these sités.
estimation. While we show in the next section that none of In this experiment we obtain a success rate of 85%. This
the two effects are likely to happen, we nevertheless egpldesult demonstrates that our approach indeed works well in
our algorithm’s performance in this case. For this, we havbe wild. Besides, the false positive ratio is 9%, slightlgne
emulated the download of a test set of pages with thrg&an the result obtained in the controlled environment.
different navigation patternsi)(pages have been downloaded NAT behavior. To understand NAT-like behavior, we further
without overlapping gequential browsinyg (:7) two different explore URI-level traces from ten people from the same local
pages are downloaded simultaneousglgr@llel-two browsing, network. We study the requests sent to the most popular
and ¢i:) four different pages are downloaded simultaneousiyebsite (a total of 16,756 requests) to discover the number
(parallel-four browsing. of simultaneous accesses based on their timestamp. These

Table 1l shows the results. As expected, the performancesisnultaneous petitions generate what we have called qverla
the best in the sequential case, when there is only a singke paing pages downloads (Section IlI-E3). Considering thég th
in a slice. While the success rate necessarily degradestiihenhappens when more than one user accesses the most popular
number of pages increases per slice, it is still quite realslen site within the same second, we find that only 0.44% of
(74% in parallel-two and 63% in parallel-four). These résulthe accesses are simultaneous. In summary, the presence of
are mainly due to the step 2 of the selection phase (Table NAT boxes will not degrade the performance of our detection
which takes advantage of unique root files and objects framethod since its impact is small.
multiple pages. Inter-click time. Finally, we verify the inter-click time

4) Different Browsers: We experiment with different statistics in order to validate our choice of 1 second faniistj
browsers. In particular, we obtain different traces ushe trace (Section 1I-B2). We process 297,885 timestamps in
ing Firefox 3.0.5, Internet Explorer 7.0, and total and 94.53% of them have the inter-click time largentha
Googl e Chrone. All the browsers disable pipelining and1 second.
enable caching. We have not found any differences in the
performance of the algorithm when using the three traces'we compress all inter-access times longer than one minuweeaninute.



V. RELATED WORK browser types, and it effectively scalesv) Endpoint-based

Our work relates to the security research efforts aimegpuntermeasures are highly limited; not only because it is
towards analyzing and inferring encrypted web browsingrd to comprehensively cover rich inter-page diversityt b
traffic [23], [24], [25], [26]. The authors of these paper@ecause We_bsnes have no incentives to apply suc_h_co_unter-
have demonstrated that it is feasible to reveal the sourdB§asures since they are one of the primary beneficiaries of
of encrypted web traffic despite encryption. In light of thi$he advertising business. _ _
finding, they further analyze additional mechanisms that ca !N the broader context, we hope that this paper will open
help secure such communication. The key differences betwelscussion in at least some of the topics beloi:I(ternet

our work and this thread of papers are three-foli. (Ve @advertising business needs more fairness, and our work here

have shown that there are strong incentives to reveal uerd Step in that directioni.e, it enables fair competition
browsing patterns even when they are not encrypted. As2giong different providers, independently from the type of
result, the scope of the problem changes from the one cayeriiffvice they are providing or their location on an end-td-en
a small fraction of encrypted web pages on the Web to tR&th. ¢¢) Consumer rights must be protected, and we argue
entire Web 'landscape’. This dramatic change of scope in tutfiat this can only be done via a modern legislative reform.

fundamentally impacts bothi] our methodology andi{i) the

(4¢7) The networking research community should not become

range of potential counter mechanisms, as we elaboratevbeld ‘collateral damage’ of such a reform; on the contrary, this
Regarding methodology, our approach differs from theould be an opportunity to specify data sharing practices fo
security-oriented related work in three aspects. Firstabge academic research in a more liberal way.

we operate in the 'wild’, unlike previous work, we consider
multiple web features characteristic for 'open’ web cominun
cation. This includes object location, uniqueness, cduliga
link information, different transfer modes, distinctioetiveen
root files and objectstc, to characterize web pages. Second[2]
we add mechanisms that consider possible sources of eator tlﬁ}
are inevitably created by the state-of-the art web prast{see
Section 1I-C). Finally, contrary to previous worle.g, [26])

that has severe scalability issues, our approach can igéigct  [5]
scale. Indeed, we have demonstrated that it is feasiblerfor
ISP to successfully collect TCP headers (and recover use
browsing behavior) anywhere in the network, even behind
a proxy or a NAT (Section IV). In addition, because thel®
destination IP address is known in the advertising case, g
effectively reduce the scalability problem from the entireb
space to asingle web serverMoreover, because we arelll]
capable of statistically characterizing a website in a moyfgy
comprehensive way, we effectively scale the detectiongsec

(1]

[13]
VI. CONCLUSIONS [14]
In this paper, we showed that it is possible to recovér’!
user web browsing patterngithout inspecting the packet [16]
payload. By extracting HTTP-level 'reflections’ availakde
the transport layer, and by profiling web sites in a comprélj]
hensive way using root files, objects, different transfede® [1g)
linking information, cacheability, and locality, we desgp
an algorithm capable of effectively merging the two dat
sources and discovering web pages accessed by clients.
extensively evaluated our methodology on the Internetgisin
both emulation and real user browsing patterns. [20]
Our key insights are the followingiX The development of
the Web in recent years, g, rich image mixtures and the usep1)
of CDNs, has created a significant statistical diversity agno
web pages at a website, making them highly identifiallg. ([gg}
The page identifiability remains high even when a trace fran
an ISP is outdated, or when the web profile is not fresh dig]
to crawling limitations. Even though the page features c
dramatically change over time, we showed that a sufficie ]
subset of identifiable features does stay availablg) The [26]
detection process is resilient to a number of challenges, in
cluding pipelining, caching, NAT-level multiplexing, @#rent
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