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ABSTRACT
Developing measurement tools that can concurrently mon-
itor congested Internet links at a large scale would signifi-
cantly help us understand how the Internet operates. While
congestion at the Internet edge typically arises due to bottle-
necks existent at a connection’s last mile, congestion in the
core could be more complex. This is because it may depend
upon internal network policies and hence can reveal system-
atic problems such as routing pathologies, poorly-engineered
network policies, or non-cooperative inter-AS relationships.
Therefore, enabling the tools to provide deeper insights about
congestion in the core is certainly beneficial.

In this paper, we present the design and implementation
of a large-scale triggered monitoring system that focuses on
monitoring a subset of Internet core links that exhibit rela-
tively strong and persistent congestion,i.e., hot spots. The
system exploits triggered mechanisms to address its scal-
ability; moreover, it automates selection of good vantage
points to handle the common measurement experience that
the much more congested Internet edges could often over-
shadow the observation for congestion in the core. Using the
system, we characterize the properties of concurrently mon-
itored hot spots. Contrary to common belief, we find that
strong time-invariant hot spots reside in the Internet core—
both within and between large backbone networks. More-
over, we find that congestion events at these hot spots can
be highly correlated and such correlated congestion events
can span across up to three neighboring ASes. We provide a
root-cause analysis to explain this phenomenon and discuss
implications of our findings.

1. INTRODUCTION
The common wisdom is that very little to no con-

gestion occurs in the Internet core (e.g., Tier-1 or -2
providers). Given that ISPs are aggressively overpro-
visioning the capacity of their pipes, and that end-to-
end data transfers are typically constrained at Internet
edges, the “lightly-congested core” hypothesis makes a
lot of sense. Indeed, measurements conducted within
Tier-1 providers such as Sprint report almost no packet
losses [26]; likewise, ISPs like Verio advertise SLAs that
guarantee negligible packet-loss rates [8]. As a result,

researchers are focusing on characterizing congestion at
access networks such as DSL and cable [23].

Congestion in the Internet core — why do we
care? While numerous other measurement studies do
confirm that the network edge is more congested than
the core [10], understanding the properties of congestion
events residing in the Internet core is meaningful for (at
least) the following two reasons.

First, despite negligible packet losses in the core, queu-
ing delay, which appears whenever the arrival rate at
a router is larger than its service rate, may be non-
negligible. Variable queuing delay leads to jitter, which
can hurt the performance of delay-based congestion con-
trol algorithms (e.g., [14,17]), or real-time applications
such as VoIP. And whereas it is difficult to route around
congestion in access-network congestion scenarios [23]
unless a client is multihomed [12], congested links in the
core could be effectively avoided in many cases [11,13].
Hence, identifying such congested locations, and char-
acterizing their properties in space (how “big” they are)
and time (the time-scales at which they occur and re-
peat) is valuable for latency-sensitive applications such
as VoIP [7].

Second, the Internet is a complex system composed of
thousands of independently administered ASes. Events
happening at one point in the network can propagate
over inter-AS borders and have repercussions on other
parts of the network (e.g., [35]). Consequently, mea-
surements from each independent AS (e.g., [26]) are in-
herently limited: even when a congestion location is
identified, establishing potential dependencies among
events happening at different ASes, or revealing un-
derlying mechanisms responsible for propagating such
events, is simply infeasible. To achieve such goals, it is
essential to have global views, i.e., to concurrently mon-
itor the Internet congestion locations at a large scale
across the Internet.

Contributions. This paper makes two primary con-
tributions. First, we present the design of a large-scale
triggered monitoring system, the goal of which is to
quantify, locate, track, correlate, and analyze conges-
tion events happening in the Internet core. The system
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focuses on a subset of core links that exhibit relatively
strong and persistent congestion, i.e., hot spots. Second,
we use a PlanetLab [5] implementation of our system to
provide, to the best of our knowledge, the first-of-its-
kind measurement study that characterizes the prop-
erties of concurrently monitored hot spots across the
world.

Methodology. At a high level, our methodology is
as follows. Using about 200 PlanetLab vantage points,
we initially “jumpstart” measurements by collecting un-
derlying IP-level topology. Once sufficient topology in-
formation is revealed, we start light end-to-end probing
from vantage points. Whenever a path experiences ex-
cessive queuing delay over longer time scales, we accu-
rately locate a congested link and designate it a hot
spot. In addition, we trigger large-scale coordinated
measurements to explore the entire area around that
hot spot, both topologically close to and distant from
it. Our system covers close to 30,000 Internet core links
using over 35,000 distinct end-to-end paths. It is capa-
ble of monitoring up to 8,000 links concurrently, 350 of
which could be inspected in depth using a tool recently
proposed in [22].

Designing a system capable of performing coordinated
measurements at such a large scale is itself a challeng-
ing systems engineering problem. Some of the ques-
tions we must address are as follows. How to effec-
tively collect the underlying topology and track routing
changes? How to handle clock skew, routing alterations,
and other anomalies? How to effectively balance the
measurement load across vantage points? How to min-
imize the amount of measurement resources while still
covering a large area? How to select vantage points
that can achieve high measurement quality with high
probability? In this paper, we provide a “from scratch”
system design and answer all these questions.

Applications. Our system has important implica-
tions for emerging protocols and systems, and they open
avenues for future research. For instance, given the very
light overhead on each node in our system (3.9 KBps on
average), it could be easily ported into emerging VoIP
systems to help avoid hot spots in the network. Further,
our monitoring system should be viewed as a rudiment
of a global Internet “debugging” system that we plan to
develop. Such a system would not only track “anoma-
lies” (i.e., hot spots or outages), but would also auto-
mate a root-cause analysis (e.g., automatically detect if
a new policy implemented by an AS causes “trouble”
to its neighbors). Finally, others will be able not just
to leverage our data sets, but to actively use our sys-
tem to gather their own data, performing independent
analysis.

Findings. Our key findings are as follows. (i) Con-
gestion events on some core links can be highly cor-
related. Such correlation can span across up to three

neighboring ASes. (ii) There are a small number of hot
spots between or within large backbone networks ex-
hibiting highly intensive time-independent congestion.
(iii) Both phenomena bear close relationships with the
AS-level traffic aggregation effect, i.e., the effect when
upstream traffic converges to a thin aggregation point
relative to its upstream traffic volume.

Implications. The implications of our findings are
the following. First, the common wisdom is that the di-
versity of traffic and links makes large and long-lasting
spatial link congestion dependence unlikely in real net-
works such as the Internet [19]. In this paper, we show
that this is not the case: not only that correlation be-
tween congestion events could be excessive, but it can
cover a large area. Still, most (if not all) network to-
mography models assume link congestion independence,
e.g., [18,19,24,30,34,40]. This is because deriving these
models without such an assumption is hard or often in-
feasible. Our research suggests that each such model
should be carefully evaluated to understand how link-
level correlations affect its accuracy. Finally, our results
about the typical correlation “spreading” provide guide-
lines for overlay re-routing systems. To avoid an entire
hot spot (not just a part of it), it makes sense to choose
overlay paths that are at least 3 ASes disjoint from the
one experiencing congestion, if such paths are available.

2. BACKGROUND
In the recent work, the authors of [22] proposed a

lightweight measurement tool, Pong, capable of accu-
rately locating and monitoring Internet links that ex-
hibit persistent congestion, i.e., excessive queuing de-
lays, over longer time scales. In this paper, we use Pong
as the main building block of the large-scale congestion
monitoring system. Below, we summarize the main fea-
tures of Pong.

Pong exploits a novel variant of network tomography
approach [18] to achieve: (i) low measurement overhead
(per-path overhead is only 4.4 KBps), (ii) significantly
improved resolution for congestion on non-access links
relative to other delay-based active measurement tools,
and (iii) the capability to quantify its own measurement
quality, which serves as the basis for us to optimize
vantage point selection.

High link congestion-measurement resolution.
Pong deploys its measurement on the two endpoints
of a path. By coordinating active probes (including
end-to-end probes and probes to intermediate routers)
sent from both endpoints, Pong significantly improves
the ability to detect and locate congestion on non-access
links of the measuring path relative to the state of the
art delay-based congestion measurement approaches [22].

Link measurability score. Pong makes a best ef-
fort to minimize the effect of measurement errors caused
by anomalies such as clock skew at end hosts, router
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alteration of the path, ICMP queuing at routers, etc.
In addition, its unique network tomography approach
allows it to be able to quantify such measurement er-
rors rather than just detect them. Pong quantifies its
measurement quality using the link measurability score
(LMS), a measure associated with each of the links on
an end-to-end path. It defines how well we can measure
a specific link from a specific measuring path. The LMS
is the key for us to optimize the measuring path selec-
tion in our large-scale congestion monitoring system, as
we explain later in Section 4.

Congestion event and congestion intensity. Con-
gestion has several manifestations. The most severe one
induces packet losses. By contrast, Pong detects conges-
tion in its early stage, as indicated by increased queuing
delays at links. From a microscopic view, a continuous
queue building-up and draining period typically lasts
from several ms to hundreds of ms [39]. On time scales
of seconds to minutes, queue building-up can repeatedly
happen, as shown in Figure 1.

Pong can report congestion online on-demand at 30-
second intervals when it detects congestion. Each re-
port is associated with a link for a 30-second-long epoch
and we call each report a congestion event. Pong an-
notates each congestion event with two measures: con-
gestion intensity and the corresponding LMS. The con-
gestion intensity quantifies how frequently the link is
congested during the 30-second-long time period. It is
an important measure that we exploit in our system.
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puted every 30 seconds.

Figure 1: Congestion events on a link monitored
by Pong

3. A TRIGGERED MONITORING SYSTEM
In this section, we present T-Pong, a large-scale con-

gestion monitoring system. To accurately measure points
of congestion in the Internet core and to effectively and
scalably allocate measurement resources, T-Pong de-
ploys an on-demand triggered monitoring approach.

3.1 Design Goals
We first summarize our design goals:
Good coverage. The system should have a good cover-

age of links. By “good” we mean: (i) High coverage, low

overhead. The system should be able to monitor a large
percent of network links concurrently while keeping its
traffic overhead low. (ii) Balanced coverage. Measuring
paths should cover different congested links in a bal-
anced way. The system should reduce the chance that
the number of measuring paths that cover two different
links differ significantly; otherwise, it could result in a
non-negligible measurement bias.

High measurement quality. The system should allo-
cate paths that provide the best measurement qualities
when measuring congested links.

Online processing. To support triggering mechanisms,
the system should be capable of processing raw data on-
line. It should provide: (i) Fast algorithms. To operate
in real time, algorithms must be fast enough to keep
up with the data input rate. (ii) Extensible triggering
logic. Triggering logic may be frequently adjusted for
research purposes, the system therefore should provide
a convenient interface to update triggering logic.

Integrity and robustness. To be capable of running
long-term monitoring tasks, the system must guaran-
tee the integrity of critical data and should be able to
quickly recover from errors.

3.2 System Structure
Figure 2 illustrates the structure of T-Pong. It con-

sists of one control node and hundreds of measuring
nodes. The control node performs centralized control
of the entire system. It collects measurement reports
from measuring nodes and adjusts monitoring deploy-
ment based on a set of vantage points selection algo-
rithms. The measuring nodes monitor network conges-
tion from vantage points scattered all around the world.
Each of them runs two measurement processes: TMon
and Pong. TMon performs end-to-end congestion mon-
itoring while Pong performs fine-grained link congestion
measurement upon triggering.

M

M
M

M

M

M

Control
node

Measuring node

Communication channel

MySQL database

Perl
script

Main
program

TMon process

Pong process

TMon path Pong path

Figure 2: T-Pong system structure

Control Node. In our implementation, the control
node is Pentium 4 PC that runs Fedora core 5 Linux. Its
application software includes a main program written
in C++, a MySQL database that stores measurement
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Paths used Path selection algorithm Probing method Probing rate Objective

All paths No selection, full mesh
Low-rate probing
(Section 3.6.2)

Once every 5 minutes
Track topology and
path reachability

TMon paths – a sub-
set of all paths

Greedy TMon path se-
lection (Section 3.5.1)

Fast-rate probing
(Section 3.6.3)

5 probes/sec
Monitor end-to-end
congestion

Pong paths – a subset
of TMon paths upon
triggering

Priority-based Pong
path allocation
(Section 3.5.2)

Pong’s coordi-
nated probing
(Section 2)

10 probes/sec for e2e
probing, 2 probes/sec for
router-targeted probing

Locate and monitor
link-level congestion

Table 1: A summary of T-Pong’s major measurement techniques

data, and an optional Perl script that allows customized
triggering logic. Fault tolerance of the control node is a
concern for the implementation, and we plan to address
it in the future using a failover mechanism to a standby
control node.

Measuring Nodes. The measuring nodes are Planet-
Lab hosts running the TMon and Pong programs. Both
programs are written in C++. TMon keeps track of
path routes and monitors end-to-end congestion events.
Pong measures link-level congestion of hot spots upon
triggering.

3.3 Measurement Procedure Overview
In this section, we introduce the major steps of T-

Pong’s measurement procedure. We summarize tech-
niques associated with these steps in Table 1. (i) Dur-
ing the system bootstrap phase, the control node col-
lects route information from all measuring nodes and
updates its topology database accordingly (Section 3.4).
The topology database stores the whole set of routes. It
does not need to resolve extensive topology information
such as unique nodes and unique links via IP alias ap-
proaches. In our measurement and analysis in Section
4, we do not require such detailed topology estimates.

After that the system keeps track of route changes
and path reachability, and incrementally updates the
topology database. (ii) Once the topology database is
available, the control node starts a greedy algorithm
(Section 3.5.1) to select a subset of paths (called TMon
paths) that can cover a relatively large percent of links.
The TMon processes on measuring nodes associated
with these TMon paths then start fast-rate probing.
The fast-rate probing monitors end-to-end congestion
for each TMon path. (iii) Once end-to-end congestion
on a TMon path is detected, the system uses its de-
fault triggering logic (a priority-based algorithm, Sec-
tion 3.5.2) to decide whether it should start Pong on
that path. It might also decide to start Pong on other
paths based on customized triggering logic (Section 3.5.3).
Measuring nodes associated with these paths then use
Pong (the paths are therefore called Pong paths) to lo-
cate and monitor congestion on these paths at the gran-
ularity of a single link.

The system keeps track of congestion events as well
as anomalies such as route changes, clock skews and

path failures. It responds to such events by (i) process-
ing congestion events and analyzing measurement accu-
racy online, (ii) updating the topology database, (iii)
suppressing measurement on paths affected by anoma-
lies, and (iv) rearranging the deployment of TMon and
Pong paths. In this way, the system gradually transits
into a stable state, in which it collects measurement
reports, processes them, applies triggering logic, and
adjusts measurement deployment.

3.4 Initializing Topology Database
When the system initially starts up, all measuring

nodes are sending topology messages to the control node
(after which, they send incremental reports upon route
changes). The control node therefore experiences a burst
of topology messages during bootstrap.

As we will discuss in Section 3.5.1, updating topology
information to a database is not a cheap operation, since
we have to update additional parameters used for select-
ing TMon paths, which incurs costly database queries.
Database updates therefore would be unable to keep
up with arrival speed of topology messages. To solve
this, we only perform simple pre-processing operations
for each topology message in real time, while buffering
all database updates. In addition, we attach a version
number and an 8-byte path digest value (a fingerprint
of the route) in each topology message. This helps the
control node to easily filter outdated or duplicate up-
dates thereby avoiding unnecessary database updates.

3.5 Path Selection Algorithms

3.5.1 Greedy TMon Path Selection

The control node uses a greedy algorithm to select
TMon paths. The goal of this algorithm is to select
only a small fraction of paths while covering a relatively
large percentage of links1.

Algorithm. This selection algorithm runs online in
an iterative way. During each iteration, it selects a new
TMon path that covers the most remaining links. A
remaining link is a link that has currently been covered

1In [15], the authors show that we can see a large fraction
of the Internet (in particular, the “switching core”) from
its edges when properly deploying a relatively small scale
end-to-end measurement infrastructure.
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1. Initiate 3-packet probing by sending packet 1

2. Capture send_ time(packet 1)

8. Capture
9. Compute and of forward and backward paths

recv_ time(packet 2)
round-trip delay one-way delays

3. Capture
4. Compute based on TTL field in
5. Send to report and

recv_ time(packet 1)
path hop number packet 1

packet 2 recv_ time(packet 1) path hop number

6. Capture
7. Send to r

send_ time(packet 2)
packet 3 eport send_ time(packet 2)

Source Measuring Node Destination Measuring Node

1

3

2

one way delay of the forward path = recv time(packet 1) − send time(packet 1)
one way delay of the backward path = recv time(packet 2) − send time(packet 2)

round-trip delay = one way delay of the forward path + one way delay of the backward path

Figure 3: Three-packet probing procedure

by less than two TMon paths.
In addition, the new TMon path must satisfy the fol-

lowing conditions: (i) Each of the two endpoints of this
path must not participate in more than 20 TMon paths.
Restricting to 20 TMon paths is a good tradeoff between
the link coverage and the measurement overhead as we
show in Section 4.2.1. (ii) The path must be active. A
path becomes inactive when it is unreachable or expe-
riences considerable route alterations. (iii) The path
must not be suppressed. A path is suppressed from be-
ing a TMon path for a short period of time (15 minutes)
when anomalies (e.g., clock skews) are detected. A path
is suppressed for a long period of time (6 hours) when it
shows poor measurement quality while running Pong.

The iterative selection stops when there are no links
currently satisfying the above conditions. Then the al-
gorithm transits into a sleeping state for 5 minutes, after
which it tries the iterative selection again.

Making it online-capable. Enabling this algo-
rithm to run online is a non-trivial task since each itera-
tion involves complex logic. If implemented improperly,
the algorithm could incur formidable database queries.
To address this, we pre-compute per-link, per-path, and
per-node parameters used in this algorithm during other
operations. For example, when we update topology in-
formation of a path, we additionally compute the num-
ber of paths and the number of TMon paths that cover
each link of the path. Although pre-computing adds
some complexity to other operations, our implementa-
tion shows it to be a good tradeoff.

3.5.2 Priority-based Pong Path Allocation

The control node allocates Pong paths using a priority-
based algorithm. In order to minimize the interference
among Pong paths, we restrict each measuring node to
participating in at most one Pong path. Given this con-
straint, the priority-based algorithm selects paths that
provide the best measurement quality and link coverage
when measuring points of congestion. In addition, it ef-
fectively reduces the chance that multiple Pong paths
measure the same congested link, thereby achieving a

balanced measurement coverage.
To achieve these goals, the systems incorporates the

maximum link measurability score (LMS, Section 2) over
all non-edge links on a path, a measure that indicates
the best measurement quality a path can achieve. In
addition, because multiple paths can measure the same
core links concurrently, the system excludes LMSes of
those links currently covered by other Pong paths with
a higher LMS, as we explain below.

Algorithm. To allocate Pong paths, we follow these
rules in sequence: (i) Give priority to a path that shows
higher maximum LMS over non-edge links on a path,
excluding the LMSes of those links that are currently
covered by other Pong paths with a higher LMS. We use
the LMS history of the recent 24 hours for a candidate
path on which we try to start Pong, and we use the
LMS history of the recent 1 hour for a currently running
Pong path that conflicts with the candidate path. (ii)
Give priority to a path that shows higher congestion
intensity (Section 2) unless it is filtered by the triggering
logic. (iii) Do not override a path that has just started
Pong measurement for a short period of time (< 30
minutes). (iv) Suppress paths showing small maximum
LMS over non-edge links of a path (using LMS history
of the recent 24 hours). This priority-based algorithm
allows measurement resources to be effectively allocated
to track hot spots.

3.5.3 Programmable Triggering Logic

The system allows us to customize our triggering strate-
gies on the fly through an add-on Perl script. The inter-
face between the main program and the Perl script is the
database. The main program records each congestion
event to the database. The Perl script, which runs in a
loop, periodically checks new events, selects concerned
ones, and performs its triggering logic. Based on that,
it issues measurement commands and enqueues them to
the database. The main program checks the database
for enqueued commands every minute, and adjusts mea-
surement deployment accordingly.

This feature provides great flexibility for our conges-

5



tion measurement experiments with the T-Pong system.
We can easily change our focused network area and con-
cerned network-wide congestion pattern, and easily test
and verify our research hypotheses.

3.6 TMon’s Active Probing

3.6.1 3-packet Probing

TMon keeps track of path routes using low-rate prob-
ing and measures end-to-end congestion on TMon paths
via fast-rate probing. Both low-rate and fast-rate prob-
ings exploit 3-packet probing, which includes three prob-
ing packets. The 3-packet probing measures: (i) path
reachability, (ii) round-trip delay, (iii) one-way delays
of both forward and backward paths, and (iv) the num-
ber of hops on the forward path. Figure 3 illustrates its
procedure. Note that the measured one-way delays in-
clude the clock offset between the two measuring nodes,
but it is canceled when we compute round-trip delay or
queuing delays.

3.6.2 Low-rate Probing

A measuring node sends low-rate probes to all other
measuring nodes every five minutes. Each low-rate probe
consists of a 3-packet probing and an optional tracer-
oute. The 3-packet probing explores path reachability
and the total hop number of a path. For each reach-
able path, the traceroute is performed. Since we know
the total path hop number in advance, we develop an
efficient version of traceroute, which sends TTL limited
probes to all hops along the path concurrently.

Low-rate probes to different nodes are paced evenly
during each 5-minute period to smooth the traffic and
to avoid interference between traceroutes. For paths
which are temporarily unreachable, we back off probing
rate up to 1/16 of the normal rate (i.e., one probe every
80 minutes) to reduce unnecessary overhead.

3.6.3 Fast-rate Probing

A node sends fast-rate probes (5 times per second)
on each TMon path sourced from it. Each fast-rate
probing is a 3-packet probing. To measure congestion,
the source node keeps track of round-trip and one-way
delays. Based on that, it computes the corresponding
queuing delays and infers congestion. Fast-rate probing
backs off up to 1/64 of its normal rate when a path
becomes unreachable.

4. EVALUATION AND MEASUREMENTS

4.1 Experimental Setup
We conducted six PlanetLab based experiments us-

ing our congestion monitoring system in a two-month
period. Each experiment lasts for 4 ∼ 7 days, and we
therefore collected a set of one month-long measure-

ment data altogether. We intentionally collected data
in different time intervals in order to verify that our re-
sults are time-invariant. Indeed, all our findings hold
for all the distinct traces we took. We use a total of 191
PlanetLab nodes in our experiments. Table 2 shows a
summary of these nodes classified by continents.

Continent Number of nodes
North America, South America 110

Europe 63
Asia, Australia 18

Table 2: PlanetLab nodes used in our experiments

4.2 Evaluation

4.2.1 Coverage and Overhead

Here, we provide statistics about the network cover-
age, i.e., how many end-to-end paths and internal links
our system has covered. Also, we quantify the measure-
ment overhead imposed by our system.
Total paths and links. We observe about 36,000
paths (N2, where N=191 PlanetLab nodes), which ex-
pose about 12,100 distinct links at a time. In addition,
due to routing changes, we are able to observe about
29,000 distinct links totally.
Coverage and overhead of TMon paths. Our mea-
surement log shows that there are 1,500 ∼ 2,000 paths
running TMon concurrently. These paths cover about
7,600 ∼ 8,000 distinct links concurrently. Comparing
with the number of total paths and links, it shows that
we manage to use 4.9% of total paths to cover 65%
of total links. The discrepancy between the percent of
paths and links is not a surprise, since this effect has
been observed previously (e.g., [15, 20]).

Each PlanetLab node that we use participates in 9.2
TMon paths on average, which corresponds to an av-
erage per-node traffic overhead of 3.9 KBps, while the
peak per-node traffic overhead is 8.4 KBps. This is be-
cause we restrict each node to participate in at most
20 TMon paths (Section 3.5.1). Our experiments show
that we can still improve the coverage of links consid-
erably if we relax this restriction to some extent, e.g.,
to allow each node to participate in up to 40 TMon
paths. However, this would come at the cost of a higher
overhead. The overhead of TMon paths constitutes the
major component of the total overhead. By contrast,
the overhead of Pong paths and of the communication
channels between the control node and all measuring
nodes only accounts for a very small fraction. There-
fore, we can roughly treat the overhead of TMon paths
as the total overhead of the system.
Coverage of Pong paths. Our measurement log shows
that there are 25 ∼ 30 paths running Pong concurrently.
This means that there are 50 ∼ 60 PlanetLab nodes run-
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ning Pong at a moment. These paths cover 250 ∼ 350
distinct links concurrently.

4.2.2 Measurement Quality

One important principle of our system design is to
select measuring paths (or vantage points) that provide
the best measurement quality on link congestion. Here
we evaluate the measurement quality that we achieve in
our experiments. We use the link measurability score
(LMS, Section 2) annotated with each link congestion
event as the evaluation measure. According to [22], the
value of LMS is a float number between 0 and 6. And
it has the following major levels:

“LMS=0” means undesirable path conditions for the
congestion measurement using Pong. We have observed
end-to-end congestion on the path at a moment, but
Pong is unable to accurately locate this congestion. The
conclusion that the reported link is congested may not
be reliable. “LMS=1” implies that a desirable path
condition for Pong has been satisfied. This is the lowest
level that a link congestion event report is considered ac-
ceptable. “LMS=2” implies that a desirable path condi-
tion has been satisfied and indicates moderate measure-
ment quality. “LMS=3” implies desirable path condi-
tions for Pong and indicates good measurement quality.
“LMS≥4” indicates very good measurement quality.
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Figure 4: Link measurability score distribution

We use measurement data of a one week long experi-
ment to exemplify our result. During this week, we col-
lected a total of 54,991 link congestion events. 35,728
(65%) of them have a non-zero LMS. Figure 4 shows
the cumulative distribution function (CDF) of LMS for
these 35,728 events. As we can see, (i) 96% of these con-
gestion events have an acceptable measurement quality
(LMS≥1), (ii) 77% of them have a better-than-fair mea-
surement quality (LMS≥2), (iii) 63% of them have a
good measurement quality (LMS≥3), and (iv) 40% of
them have an excellent measurement quality (LMS≥4).

4.3 Link-level vs. End-to-end Congestion
In this section, we study the properties of end-to-end

congestion events (observed by our TMon system), and
link-level congestion events (observed by the triggered
Pong-based measurements) and emphasize fundamen-
tal differences between the two. Throughout the sec-
tion, we leverage the fact that traffic loads exhibit a

well-known time-of-day pattern. As a result, network
congestion also exhibits a similar pattern, which our
system successfully captures.

The Y axis in each of the following sub-figures is nor-
malized using the peak value of the curve in sub-figure
(a).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

12:00
Tue

00:00
Wed

12:00
Wed

00:00
Thu

12:00
Thu

00:00
Fri

12:00
Fri

00:00
Sat

12:00
Sat

N
um

be
r 

of
 c

on
ge

st
io

n 
ev

en
ts

(a) All paths

 0

 0.1

 0.2

 0.3

 0.4

 0.5

12:00
Tue

00:00
Wed

12:00
Wed

00:00
Thu

12:00
Thu

00:00
Fri

12:00
Fri

00:00
Sat

12:00
Sat

N
um

be
r 

of
 c

on
ge

st
io

n 
ev

en
ts

American peak

(b) Paths with both endpoints in South, North America

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

12:00
Tue

00:00
Wed

12:00
Wed

00:00
Thu

12:00
Thu

00:00
Fri

12:00
Fri

00:00
Sat

12:00
Sat

N
um

be
r 

of
 c

on
ge

st
io

n 
ev

en
ts

European peak

(c) Paths with at least one endpoint in Europe

 0

 0.1

 0.2

12:00
Tue

00:00
Wed

12:00
Wed

00:00
Thu

12:00
Thu

00:00
Fri

12:00
Fri

00:00
Sat

12:00
SatN

um
be

r 
of

 c
on

ge
st

io
n 

ev
en

ts

Asian peak

American peak
European peak

(d) Paths with at least one endpoint in Asia

Figure 5: Time of day effect of end-to-end con-
gestion observation

4.3.1 End-to-end Congestion Properties

Here, we evaluate properties of the end-to-end con-
gestion captured by TMon paths. These results pro-
vide a basis for understanding properties of the link-
level congestion that we describe in the next section.
We use a 4.5-day-long measurement data set to exem-
plify our result of end-to-end congestion events on all
paths. To quantify the congestion scale, in Figure 5(a)
we show the (normalized) number of congestion events
computed at 30-minute-long time intervals.

Figure 5(a) shows a typical time-of-day effect in end-
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to-end congestion. The measures show consistent time-
of-day pattern with a daily peak at 12:00∼21:00 GMT.
However, this is a mixed time-of-day pattern for traffic
generated by users all over the world. To get a clearer
picture, we decompose it into different user time zones
and compare each component with its local time.

To this end, we classify paths according to the conti-
nent that their endpoints reside in. Since each path has
two endpoints that can reside at different continents,
we make an approximation by dividing paths into the
following three groups: (i) paths with both endpoints
in North or South America, (ii) paths with at least
one endpoint in Europe, and (iii) paths with at least
one endpoint in Asia. Figures 5(b)-(d) plot congestion
events captured by the three path groups respectively.

From the three figures we can resolve three different
daily peaks which can be well mapped to local diur-
nal time of the three continents. We denote them by
“American peak”, “European peak”, and “Asian peak”
respectively as summarized in the following table.

Peak GMT time Local time
American peak 16:00–22:00 10:00–16:00 (GMT-6)
European peak 11:00–17:00 12:00–18:00 (GMT+1)

Asian peak 02:00–06:00 10:00–14:00 (GMT+8)

Now we explain the above observations. First, it is
well-known that links at network edges are more con-
gested than that in the core [10]. As a result, the main
component of end-to-end congestion is the congestion at
edges, i.e., congestion close to measuring endpoints. In
Figure 5(b), since both endpoints of a measuring path
locate in the American continent, the figure shows a
clear “American peak” in the sense that it matches the
local diurnal time.

Figures 5(c) and 5(d) expose the same causality, which
captures the “European peak” and “Asian peak,” re-
spectively. However, since we only apply the geographic
constraint for one endpoint, these two figures capture
more than one daily peak. This is most apparent in
figure 5(d). In addition to the “Asian peak,” this fig-
ure captures the “European peak” and the “American
peak” as well. This is because only one endpoint of
each path is required to be in Asia. The other endpoint
could reside in America or Europe.

4.3.2 Link-level Monitoring

Here, we evaluate the properties of link-level con-
gestion monitored via Pong by comparing them with
properties of the end-to-end congestion monitored via
TMon. We emphasize the following two fundamental
differences between the two approaches and reveal ad-
vantages of the link-level congestion monitoring.

First, link-level congestion monitoring allows us to fo-
cus on congestion events at a specific location in the In-
ternet core, which could show different properties than
the congestion at edges. By contrast, the end-to-end

congestion monitoring inevitably multiplexes congestion
from all locations on a path and such congestion is usu-
ally dominated by the congestion at edges.

Second, when monitoring a wide network area, our
link-level congestion monitoring approach makes it pos-
sible to cover the area in a balanced way (Section 3.5.2).
By contrast, the location-unaware end-to-end monitor-
ing would inevitably lead to big discrepancy on the
numbers of measuring paths that cover different links.
Such unbalanced coverage will lead to biased measure-
ment results because congestion on some links could be
repeatedly counted for much more times than conges-
tion on other links.

Figure 6(a) shows results of the link-level congestion
monitored via Pong. Since we know the congestion loca-
tion, we can filter out congestion events at edge links.
As a result, the figure actually shows aggregate link-
level congestion on core links. Similarly to the way we
analyze end-to-end congestion, we use the normalized
number of congestion events as the representative mea-
sure and the measure is computed at 30-minute-long
intervals.

Figure 6(b) shows results of the end-to-end conges-
tion monitored via TMon during the same week. The
two figures reveal important differences in link-level and
end-to-end congestion dynamics. In particular, Figure
6(a) shows a clearer time-of-day pattern — peaks are
higher and valleys are deeper. Daily peaks in Figure
6(a) do not necessarily correspond to daily peaks in
Figure 6(b), but it still corresponds to some of its mi-
nor peaks. This is because congestion on core links will
definitely lead to end-to-end congestion, but it does not
dominantly affect the end-to-end congestion. For the
valleys, the two figures show an even larger mismatch.
For example, the valleys in Figure 6(a) could correspond
to epochs in Figure 6(b) at which there is high conges-
tion. This happens because the end-to-end congestion
is dominated by congestion at edges.

In addition to the daily differences, the two figures
also show a significant weekly difference. As summa-
rized in Table 3, Figure 6(a) shows much fewer con-
gestion events per hour during the weekend than the
weekdays. On the contrary, Figure 6(b) shows slightly
more congestion events per hour during the weekend
than the weekdays.

Figure 6(a) Figure 6(b)
Weekend 10,060 (279/hour) 5,684 (158/hour)
Weekdays 44,931 (365/hour) 17,552 (143/hour)

Total 54,991 (346/hour) 23,236 (146/hour)

Table 3: Number of congestion events corre-
sponding to data in Figure 6

Overall, we find that congestion in the core tends to
behave very differently from end-to-end congestion; our
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The Y axis is normalized using the curve’s peak value.
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Figure 6: Comparison between link congestion and end-to-end congestion observations

link-level monitoring approach therefore makes possi-
ble a much more accurate insight about the congestion
in the core. In addition, the clearer time-of-day effect
observed in Figure 6(a) is also result from the unbi-
ased coverage achieved by our algorithm. In particu-
lar, the link coverage of Pong paths is optimized to be
uniform because our triggering logic effectively reduces
the chance that multiple Pong paths repeatedly mea-
sure the same congested link.

4.4 Link-level Congestion Correlation
In this section, we analyze the congestion correlation

across core links and describe our basic findings. We
present an in-depth analysis about underlying correla-
tion causes in the next section.

To quantify the congestion correlation, we define ob-
served correlation. It approximates the pairwise con-
gestion correlation between two links. To compute it,
we first search concurrent link congestion events during
each 30-second time period and update a matrix that
records the times each link pair being concurrently con-
gested (we call this measure overlap count). Then, we
divide the overlap count by the smaller total congestion
event number of the two links in the pair. The quotient
is the observed correlation. We do not use the classical

statistical measure of correlation due to the difficulty
to acquire the overlapped measurement period of two
links in our trigger-based measurement context. This is
because we only know the overlapped measurement pe-
riod of paths and it is hard to resolve whether a specific
path measurement period is ascribed to a specific link
or not.

In addition, to prevent scenarios in which the smaller
total congestion event number is too small, such that it
might lead to an unreasonably high correlation, we re-
quire the overlap count to be at least 10; otherwise, we
filter this link pair. We put a requirement on the over-
lap count instead of the smaller total congestion event
number because we also want to filter the cases when
two links do not share many concurrent measurement
periods, hence an unreasonably low correlation. Indeed,
because concurrent measurements might not always be
available, the observed correlation may slightly under-
estimate congestion correlation between links.

To present the results, we use the data corresponding
to Figure 6(a), which are data of link-level congestion on
the core links in a one-week-long experiment. We plot
the CDF of observed correlations for the weekend and
weekdays separately as shown in Figure 7. The figure
shows that (i) congestion correlation across core links
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is not rare and there are quite a number of repetitively
congested links that bear relatively high correlations;
(ii) the observed correlations are much higher during
the weekend than during the weekdays.

The second phenomenon implies a relationship be-
tween the observed correlations and overall congestion
scale on the core links. Recall that in Figure 6(a) we
observe a much lower overall congestion scale on the
core links during the weekend than during the week-
days. We infer that the reason we observe higher corre-
lations during the weekend is that a pairwise correlation
is much easier to observe when the overall congestion
scale is low. We hypothesize that we observe a lower
correlation during weekdays not because the same pair-
wise correlation does not exist, but because it is blurred
as a result of the interference among multiple pairwise
correlations when the overall congestion scale is high.

To understand how far a pair of correlated links can
separate from each other, we select the top 25% (in
terms of observed correlation) link pairs in the weekdays
and weekend respectively. We approximately estimate
the shortest distance between the two links in each pair
based on our topology database. We represent the dis-
tance by two measures: AS distance and hop distance.
The former quantifies the AS level distance, the latter
quantifies the router level distance. We summarize the
average and standard deviation of estimated distances
in Table 4. In addition, our result shows that the cor-
related links can span across up to three neighboring
ASes (i.e., AS distance ≤ 3).

AS Distance Hop Distance

Weekdays Weekend Weekdays Weekend
Avg Dev Avg Dev Avg Dev Avg Dev
0.82 0.76 0.85 0.77 3.1 1.9 3.7 1.9

Avg: Average distance; Dev: Standard deviation of dis-
tance.

Table 4: Distance between correlated links

4.5 Aggregation Effect Hypothesis
One important finding from our experiments is that

the traffic aggregation effect tends to play an important

role on congestion behavior at core links. Here, traffic
aggregation means the situation that traffic from a num-
ber of upstream links converges at a downstream AS-
level aggregation link. We make this hypothesis based
on two phenomena that we observed: (i) The spatial
distribution of correlated links tends to result from the
aggregation effect (Section 4.5.1). (ii) There are some
hot spots in the core exhibiting time-independent high
congestion, which also tend to result from the aggrega-
tion effect (Section 4.5.2). A comparison between con-
gestion locations related to these two phenomena and
locations that the aggregation effect is most likely to
happen fortifies our hypothesis (Section 4.5.3).

4.5.1 Spatial Distribution of Correlated Links

To perform an in-depth analysis about congestion
correlation, we select top 20 links in terms that they are
commonly correlated with the largest number of other
links. We call them the “causal links.” Note that these
links are not necessarily the real cause, but they tend to
be the most sensitive indicators for underlying causes;
hence, we can roughly treat them as the cause.

We analyze the locations of each “causal link” and
of the links highly correlated with it. To represent the
location, we classify links into intra-AS links and inter-
AS links. Classifying intra- and inter-AS links is a non-
trivial task. To do this, we use a best-effort algorithm
that is based on IP ownerships of the two nodes of each
link. We find that the above links can reside at diversi-
fied locations, including (i) intra-AS links within large
ISPs (including Tier-1, Tier-2 and other backbone net-
works); (ii) inter-AS links between large ISPs; and (iii)
inter-AS links from a lower tier to a higher tier.

To describe our in-depth analysis results about corre-
lated links, we use the top “causal link” as the example.
It is an inter-AS link between AS 11537 (Abilene) and
AS 237 (Merit). This link shows high correlation with
25 other links. Figure 8 illustrates AS-level locations for
23 of these links that we can resolve. The 23 links cover
an area that consists of as much as 24 distinct ASes. All
of them are no more than 3 ASes away from the “causal
link”. As we can see from Figure 8, most links reside
upstream from the “causal link”. Examples are: (i) an
intra-AS link within AS 11537. (ii) Inter-AS links from
seven universities that directly or indirectly access AS
11537. (iii) Intra-AS links within Tier-1, Tier-2 ISPs,
and backbone networks that are close to AS 11537.

Analysis on other “causal links” shows a similar con-
gestion spatial distribution pattern. Such distribution
pattern fortifies our hypothesis that the congestion cor-
relation could result from the aggregation effect: When
upstream traffic converges to a relatively thin aggrega-
tion point, upstream traffic surges can cause congestion
at the aggregation point, hence a high probability that
congestion at the two places (the upstream network and
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Figure 8: In-depth analysis on spatial distribution of correlated links

the aggregation point) is correlated. Take Abilene for
example. Its cross-country backbone is 10 Gbps, while
the two aggregation points (one in Chicago, the other
in Michigan) from Abilene to Merit tend to have less
provisioned bandwidths, e.g., the one in Chicago still
uses the OC-12 (622 Mbps) connection [4]. In addition,
Abilene aggregate network statistics in 2007 [1] shows
that aggregate traffic from Abilene to Merit is usually
about twice as much as that in the reverse direction.
This matches the congestion direction that we observe
in Figure 8.

4.5.2 Locations of Time-Independent Hot Spots

In addition to the spatial distribution of correlated
links, we observe another phenomenon that fortifies our
aggregation hypothesis. This phenomenon is that there
are a number of hot spots exhibiting time-independent
high congestion. By analyzing locations of such hot
spots, we find a high likelihood that such hot spots could
result from the aggregation effect.

To understand properties of such time-independent
hot spots, we illustrate their effect on end-to-end con-
gestion observation as shown in Figure 9. The figure
plots dynamics of two measures: number of congestion
events and average per-event congestion intensity. Both
measures are computed at 30-minute-long time intervals
and are normalized by their peak values. The figure
shows that the number of congestion events exhibits a
clear time-of-day pattern. On the contrary, the average
congestion intensity exhibits a very different dynamics.
It is largely independent on the time-of-day effect, and
even shows its peaks at the valleys of the number of
congested events curve, and vice versa.

Through investigation, we find the above phenomenon
results from the following properties of time-independent
hot spots: Although such hot spots exhibit the time-off-
day effect in terms of the number of congestion events
(fewer events when overall network congestion is low),
their per-event congestion intensities always remain high.
This is why we can often observe much higher average
congestion intensity when the total number of conges-
tion events is small.

We find that such time-independent hot spots are
inter-AS links between large backbone networks all over
the world as well as intra-AS links within these net-
works. The former ones are about 1.5 times as many
as the latter ones. Most of these links are not inter-
continental links as we initially hypothesized. Table 5
shows the top ten ASes that host the most of such time-
independent hot spots. We list them in descending or-
der of the maximum congestion intensity measured on
the hot spots they host, i.e., AS 174 shows the largest
maximum congestion intensity. In the next section, we
show that these locations are the places where the ag-
gregation effect is most likely to happen.

4.5.3 AS-level Traffic Aggregation Effect

To analyze the aggregate effect hypothesis, we com-
pare the top 20 correlated links (that are commonly
correlated with the largest number of links) mentioned
in Section 4.5.1 and locations of the time-independent
hot spots mentioned in the previous section with loca-
tions where the aggregation effect is most likely to take
place.

The aggregation effect could happen most probably
at (i) networks that have the largest number of peers,
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The Y axis is normalized using each curve’s peak value.
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Figure 9: Effect of time-independent hot spots

AS# Description

174 Cogent Communications, a large Tier-2 ISP.

1299 TeliaNet Global Network, a large Tier-2 ISP.

20965

GEANT, a main European multi-gigabit
computer network for research and education
purposes, Tier-2.

4323 Time Warner Telecom, a Tier-2 ISP in US.

3356 Level 3 Communications, a Tier-1 ISPs.

237 Merit, a Tier-2 network in US.

6461
Abovenet Communications, a large Tier-2
ISP.

27750

RedCLARA, a backbone connects the Latin-
American National Research and Education
Networks to Europe.

6453 Teleglobe, a Tier-2 ISP.

2914 NTT America, a Tier-1 ISPs.

3549 Global Crossing, a Tier-1 ISPs.

11537
Abilene, an Internet2 backbone network in
US.

4538 China Education and Research Network.

Table 5: Backbone networks with strong hot
spots

and (ii) ISPs that are most aggressively promoting cus-
tomer access. Table 6 shows the networks within the
top ten of both categories that match locations of the
top 20 correlated links and the time-independent hot
spots that we measured. For the top ten networks with
the largest number of peers, we use ranks provided by
FixedOrbit [3]. For the top ten networks most aggres-
sively promoting customer access, we use the ranks in
terms of the Renesys customer base index [6] of three
continents. The definition of the Renesys customer base
index is highlighted in the table.

Table 6 shows a remarkable location match among
our results and statistics collected by others. Indeed,
Table 6 reveals that almost all the hot spots shown in
Table 5 and Figure 8 locate at (i) networks that have

the largest number of peers [3], or (ii) ISPs that are
aggressively promoting customer access. Therefore, we
infer that the phenomena of both the congestion corre-
lation and time-independent hot spots could be closely
related to the AS-level traffic aggregation effect. First,
an upstream link could bear congestion correlation with
a downstream AS-level aggregation link. Second, time-
independent hot spots usually take place at AS-level
aggregation points.

5. RELATED WORK
Our system and findings relate to other network mon-

itoring systems, Internet tomography, root-cause- and
performance-modeling analysis that we outline below.

Triggered-based Monitoring. One of the key fea-
tures of our monitoring system is its triggered mea-
surement nature. In this context, Zhang et al.’s Plan-
etSeer [38] monitoring system is closest to ours, both
in spirit and design. PlanetSeer detects network path
anomalies such as outages or loops using passive ob-
servations of the CoDeeN CDN [2], and then initiates
active probing. Contrary to PlanetSeer, in absence of
passive traffic monitoring, we use a mesh-like light ac-
tive monitoring subsystem TMon. Also, instead of mon-
itoring loops and outages, we focus on congestion hot-
spots. Understanding if and how loops or outages affect
congestion is a part of our intended future work.

Other systems that apply a triggered-measurement
approach include Boschi et al.’s SLA-validation system
[16] and Wen et al.’s on-demand monitoring system [36].
In addition to the fact that our system’s goals are fun-
damentally different from all the above, it also requires
measuring entire network areas, and hence triggering a
large number of vantage points, concurrently.

Information Plane. Our congestion monitoring sys-
tem relates to information dissemination systems that
monitor and propagate important network performance
inferences to end-points, (e.g., [13, 21, 28, 37]). In gen-
eral, such systems could be divided into two types. The
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Rank Network Peers
1 UUNET 2,346
2 AT&T WorldNet 2,092
3 Level 3 Comm. 1,742
5 Cogent Comm. 1,642
7 Global Crossing 1,041
8 Time Warner 918
9 Abovenet 798

(a) Matched locations in the top ten networks defined by the number of peers

North America

Rank ISP
1 Level 3 Comm.
2 UUNET
3 AT&T WorldNet
6 Cogent Comm.
9 Global Crossing

Europe

Rank ISP
1 Level 3 Comm.
2 TeliaNet Global Network
4 Global Crossing
8 Teleglobe

Asia

Rank ISP
2 NTT America
6 UUNET
8 AT&T WorldNet
9 Level 3 Comm.
10 Teleglobe

(b) Matched locations in the top ten ISPs defined by the Renesys customer base index across
three continents 02/2006

The Renesys Customer Base Index [6] is defined based on the following five criteria: (1) Which service providers
have the most customer networks? (2) Which service providers are acquiring customer networks at the fastest
rate? (3) Which service providers are experiencing the least customer churn? (4) Which service providers
have the most customers with only one link to the Internet? (5) Which service providers connect to the most
customer networks, both directly and through peering relationships?

Table 6: Matched locations in top ten networks/ISPs defined by the number of peers and the Renesys
Customer Base Index

first manages information about network or nodes under
control of the information plane, (e.g. RON [13]), while
the second type predicts path performance at Internet-
scale, (e.g., iPlane [28]). As a result, the first type
provides information over short time-scales, while the
second one does it over much longer time scales, e.g., 6
hours [28].

Our system takes the best of the two worlds: its
light mesh-like monitoring approach enables covering
Internet-wide areas, yet its triggered-based approach
helps effectively focus on a smaller number of important
events [32], and consequently disseminate the informa-
tion about the same over shorter time scales.

Locating Internet Bottlenecks. A number of tools
have been designed to detect and locate Internet bottle-
necks and their properties, e.g., [10,27,29,31]. Common
to most of these tools is that they are designed for mon-
itoring a single end-to-end path, and hence may not be
suitable for large-scale Internet-scale monitoring due to
large measurement overhead. Because we depend upon
a lightweight measurement tool [22], we are capable of
generating concurrent measurements over a larger In-
ternet area and reveal correlation among concurrently
congested hot spots, yet without overloading either the

network or the monitoring vantage points.
Internet Correlations. The Internet is a complex

system composed of thousands of ASes. Necessarily,
events happening in one part of the network can have
repercussions on other network parts. For example,
Sridharan et al. [33] find correlation between route dy-
namics and routing loops; Feamster et al. [25] show
that there exists correlation between link failures and
BGP routing messages; Teixeira et al. [35] find that hot-
potato routing can trigger BGP events; on the other
side, Agarwal et al. [9] show that BGP routing changes
can cause traffic shifts in a single backbone network.

6. CONCLUSIONS
In this paper, we performed an in-depth study on In-

ternet congestion behavior with a focus on the Internet
core. We developed a large-scale triggered monitoring
system which integrates the following unique proper-
ties: (i) it is able to locate and track congestion events
concurrently at a large fraction of Internet links; (ii)
it exploits triggering mechanisms to effectively allocate
measurement resources to hot spots; (iii) it deploys a
set of novel online path-selection algorithms that deliver
highly-accurate observations about the underlying con-
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gestion. Our system’s ability to directly observe distinct
link-level congestion events concurrently allows a much
deeper understanding of Internet-wide congestion.

Our major findings from experiments using this sys-
tem are as follows: (i) Congestion events in the core can
be highly correlated. Such correlation can span across
up to three neighboring ASes. (ii) There are a small
number of hot spots between or within large backbone
networks exhibiting highly intensive time-independent
congestion. (iii) The phenomena of both the congestion
correlation and the time-independent hot spots could be
closely related to the AS-level traffic aggregation effect.
(iv) Congestion dynamics in the core is quite different
from that at edges.
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