

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-09-12
January 30, 2009

A Feeder-Carrier-Based Internet User Accountability Service

Leiwen Deng and Aleksandar Kuzmanovic

Abstract

This paper presents IDnet mesh, a general-purpose user identity architecture for the
Internet, which provides a scalable common identity validation service to the public. This
common service can enable diversified new Internet services as well as new features for
existing ones. It builds upon a novel feeder-carrier identity architecture which increases
resilience to rising provider-initiated surveillance attempts. It offers a regular approach to
connect a user’s online identity with the user’s real identity and meanwhile fully
preserves the user’s privacy on the public Internet. Our system adopts a practical trust
model such that it yields high system evolvability towards global deployment; it requires
no change to the current Internet infrastructure and protocols, and therefore is completely
incrementally deployable.

We use a Linux-based implementation of IDnet mesh algorithm and protocols at a cluster
of servers in Emulab to perform benchmarks for the core algorithm and to test the
functional integrity of the protocol implementation. We perform extensive evaluation of
IDnet mesh’s scalability, security, efficiency, and reliability. Finally, we assess the
overhead induced by our system in the cases of Email and Web services and demonstrate
that IDnet mesh can be scalably integrated with these services.

Keywords: IDnet mesh, feeder, carrier, user accountability, identity validation

A Feeder-Carrier-Based Internet User Accountability Service

Leiwen Deng Aleksandar Kuzmanovic
Northwestern University Northwestern University

Evanston, IL, USA Evanston, IL, USA
karldeng@cs.northwestern.edu akuzma@cs.northwestern.edu

ABSTRACT
This paper presentsIDnet mesh, a general-purpose user
identity architecture for the Internet, which provides a scal-
able commonidentity validation service to the public. This
common service can enable diversified new Internet services
as well as new features for existing ones. It builds upon a
novel feeder-carrier identity architecture which increases
resilience to rising provider-initiated surveillance attempts.
It offers a regular approach to connect a user’s online iden-
tity with the user’s real identity and meanwhile fully pre-
serves the user’s privacy on the public Internet. Our system
adopts a practical trust model such that it yields high sys-
tem evolvability towards global deployment; it requires no
change to the current Internet infrastructure and protocols,
and therefore is completely incrementally deployable.

We use a Linux-based implementation of IDnet mesh al-
gorithm and protocols at a cluster of servers in Emulab to
perform benchmarks for the core algorithm and to test the
functional integrity of the protocol implementation. We per-
form extensive evaluation of IDnet mesh’s scalability, secu-
rity, efficiency, and reliability. Finally, we assess the over-
head induced by our system in the cases of Email and Web
services and demonstrate that IDnet mesh can be scalably
integrated with these services.

1. INTRODUCTION
Problem. “On the Internet, nobody knows you’re

a dog,” states Peter Steiner’s famous New Yorker car-
toon [13]. Fifteen years have passed since this cartoon
was first published, and things have not changed. In-
deed, the Internet architecture hides a user’s real iden-
tity by design, which causes tremendous problems on a
daily basis, simply because there are no effective means
to enable user accountability. Here, the user account-
ability means a regular traceability (or auditability) to
a user’s real identity based on the user’s online identity.

The fundamental question we attempt to answer in
this paper is the following: If we want to enable user
accountability globally on the Internet today, how can
we achieve that? To motivate this approach, and to
demonstrate limitations of the current user identity prac-
tices, consider the following examples.

Examples. Email address is a typical example of a
user’s online identity. Using a security option such as
OpenPGP [28], we can well verify the association be-
tween a user’s Email address and the messages that he
sends. However, even with OpenPGP, we have no effec-
tive way to counter SPAMs because the Email address
carries no meaning about the user who sent us the email

if we do not know him in advance. We can hardly tell
whether he is a spammer or not. Without the ability
to identify who sent it, we accept all Emails sent to us,
the majority of which are typically unwanted.

Web account is another example of a user’s online
identity. However, except for accounts at a small frac-
tion of Web sites that require a user’s real name infor-
mation (e.g., credit card number) for registration, the
rest usually carry little meaning about a user’s real iden-
tity. As a result, they are helpless to counter vandals
or spammers. Vandals and spammers are posing signifi-
cant threats to the rising Web 2.0 applications [40] that
are designed to enhance information sharing, collabo-
ration, creativity, and functionality of the Web. More
fundamentally, it has become impossible to understand
if comments at a site are biased or not. For example,
enterprises such as Sony or Wal-Mart have already been
caught creating fake blogs [25] to bias customers.

Social-networking sites such as MySpace and Face-
book have grown exponentially in recent years, with
teenagers making up a large part of their membership.
This has created a new venue for sexual predators who
lie about their age to lure young victims and for cy-
ber bullies who send threatening and anonymous mes-
sages. Under mounting pressure from law enforcement
and parents, MySpace agreed in January 2008 to take
steps to protect youngsters from online sexual preda-
tors and bullies, including to search for ways to better
verify users’ age [2, 12]. MySpace acknowledged in the
agreement that it would develop online identity authen-
tication tools. Skeptics are doubtful that MySpace and
similar sites can eliminate the problem because such
tools could be difficult to implement and predators are
good at circumventing restrictions [2]. We argue below
that such tools are feasible, and provide the design and
implementation of a solution.

Solution. In this paper, we propose a general pur-
pose user identity architecture for the Internet — ID-
net mesh, which can enable user accountability globally.
Comparing with existing unified identity solutions, e.g.,
OpenID [14], Microsoft Passport [26], and VeriSign uni-
fied authentication [22], the IDnet mesh makes a fun-
damental change in its technical approach by support-
ing feeder-carrier decoupling — it decouples identity
providers into feeders and carriers. Feeders are identity
providers where users register and carriers are identity
providers where users are authenticated. A feeder can
export authentication data to many carriers such that a
user registered at the feeder can be authenticated at any

1

of these carriers independently of the feeder. None of
the existing solutions supports the feeder-carrier decou-
pling. With this new feature, it becomes much easier to
enable user accountability, and to achieve high authenti-
cation scalability, surveillance resiliency, efficiency, and
robustness as we will describe in Section 3.

The IDnet mesh introduces a practical trust model
that enables high system evolvability such that it has
the potential to evolve towards global deployment within
relatively short time. The system ensures user anonymity
to the network without relying on additional encryption
mechanisms (e.g., SSL) and trust systems (e.g., PKI).
It therefore both preserves user privacy and makes the
authentication efficient as we will show in Section 5.
Moreover, we design an inexpensive biometric user de-
vice, Internet passport, which enables strong but conve-
nient user authentication, thereby providing both high
security and improved user experience. We implement
the algorithm and protocols for the IDnet mesh and
test their functional integrity on a testbed. We perform
extensive evaluation of the architecture and show that
it can achieve outstanding performance for scalability,
security, efficiency, reliability, and incremental deploya-
bility at the same time.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the related work and compare it
with our approach. In Section 3, we introduce our ba-
sic design of the IDnet mesh. Then, in Section 4, we
describe detailed system algorithm and protocols imple-
mentation. Next, in Section 5, we evaluate the system
performance in terms of scalability, efficiency, reliability,
security, and incremental deployability. We also show
Email and Web application examples in this section.
Finally, we conclude in Section 6.

2. RELATED WORK
Unified identity solutions. Existing identity so-

lutions such as OpenID (e.g., Google’s single sign-on
API [19]), Microsoft passport, and VeriSign unified au-
thentication enable users to establish a single online
identity to access information and purchase goods on
multiple Web sites. This significantly simplifies a user’s
online experience by eliminating the need for maintain-
ing multiple user accounts across different sites. The
IDnet mesh inherits this property. Meanwhile, it makes
a fundamental improvement by additionally supporting
the feeder-carrier decoupling. By contrast, all the above
solutions inevitably bind the roles of a feeder and a car-
rier together at each identity provider — where a user
registers is where the user can be authenticated. With
the feeder-carrier decoupling, the IDnet mesh makes it
easier to support user accountability, high authentica-
tion scalability, surveillance resiliency, efficiency, and
robustness as we will show in Section 3.1.

Host accountability vs. user accountability.
Accountable Internet protocol (AIP) [29] proposes a net-
work architecture that provides accountability as a first-
order property; host identity protocol [16] (HIP) pro-
vides a network solution that decouples a host’s identity

from its topological location. Both solutions enable host
accountability. However, host accountability is funda-
mentally different from the user accountability that our
architecture can provide. Indeed, the key to solving
those problems that we introduced in Section 1 is to
enable a regular approach to apply liability. The liabil-
ity is always applied to users, not hosts. Therefore, host
accountability is insufficient. In addition, both HIP and
AIP require fundamental changes to the current Inter-
net infrastructure and protocols, and therefore are not
incrementally deployable and readily available as our
architecture is.

Trust model comparison. The trust model of
IDnet mesh shares a flavor of web of trust [42] (a.k.a
OpenPGP’s PKI (public key infrastructure)) in that
both of them exploit a bottom-up trust propagation
process and use decentralized trusts, which is realistic
in terms of the trust evolution nature. On the contrary,
the X.509 PKI [10] assumes a strict top-down hierarchy
of trust which relies on a single “self-signed” root that
is trusted by everyone. The unreality of such a central-
ized trust structure at a global scale impedes the X.509
PKI from evolving to a global solution. Currently most
X.509 PKI systems stay at enterprise scale.

The trust model of IDnet mesh differs from the web of
trust in that it requires each identity provider to explic-
itly express its trust and prohibits the implicit transitive
trust (i.e., if a trusts b and b trusts c, we conclude that
a trust c as well). Therefore, it prevents the uncertainty
of trust caused by the implicit transitive trust during
trust revocations. By contrast, the web of trust funda-
mentally depends upon the implicit transitive trust for
trust propagation, hence it suffers from the uncertainty
of trust problem.

Finally, IDnet mesh’s trust model is much more prac-
tical than social-networking based solutions (e.g., [39]),
because it removes the trust “burden” from individual
users and delegates this job to identity providers.

Digital certificate. Digital certificate (or public
key) is an important technique to address user iden-
tity issues. However, as pointed out in [34], it is hard
to design an effective user identity solution based on the
digital certificate itself. The key difficulty lies in that
digital certificate is hard to preserve user privacy on the
public Internet because the public key is a fixed value,
which enables others to easily track the user and infer
his private information. We can think a user identity
solution as the answer to the question “Who are you?”
There are two different ways to answer it:

• Answer 1: “I’m an accountable user. My name is · · · ”
• Answer 2: “I’m an accountable user.”

The digital certificate based solutions answer the ques-
tion in the first way, which exposes a user’s privacy.
While the IDnet mesh answers it in the second way. In-
deed, in many cases when Internet users are asking the
question “who are you”, what they want to know is just
whether you are accountable or not. They do not care
much about what your real name (or real identity) is.

2

So the second way can both well answer this question
and preserve user privacy.

In most cases, before a digital certificate can be use-
ful, we must first bind the digital certificate to the
owner’s identity [34]. But the question is what an effec-
tive representation of the owner’s identity is. Indeed,
the IDnet mesh is answering this question.

Anonymous authentication protocol. An anony-
mous authentication protocol such as IBM idemix [31]
can authenticate a user while retaining user anonymity
at the same time. Its central technology is based on
the group signature cryptography [30]. A user can ap-
pear anonymous not only to the network, but to the
identity provider as well. This provides a desirable fea-
ture to retain user privacy during the authentication.
However, we do not adopt this technique in our sys-
tem for two reasons: (i) Efficient membership revoca-
tion for large groups still remains an open question for
group signatures [41]. The technique therefore is not
suitable for a large scale system that we design. (ii)
When the feeder-carrier decoupling is enabled, making
users anonymous to the network is sufficient to retain
user privacy. To additionally make them anonymous to
the identity provider is unnecessary. We will explain
this in detail in Section 3.1 and Section 5.5.2.

Kerberos. Kerberos [11] is a user authentication
protocol originally designed to be used for a network
administered by a single authority. The newest ver-
sion of Kerberos introduces a cross realm authentica-
tion feature to make it feasible to scale to larger sets of
networks. Our system design is similar in spirit to the
Kerberos cross realm authentication. However, since
our system is designed for a much larger network do-
main — the Internet, we focus on solving far more de-
manding scalability and security challenges.

In particular, like the digital certificate, Kerberos was
never designed to preserve user privacy, e.g., it exposes
to the network a username in cleartext. Moreover, Ker-
beros cross realm authentication approach relies on a
PKI to distribute its inter-realm shared keys and to re-
solve trust relationships, which make it challenging to
be deployed at a global scale. This is not only because
a global scale PKI does not exist, but also because it in-
evitably inherits all PKI’s problems [34], some of which
we discussed above.

3. BASIC DESIGN
3.1 Highlights

Design goal. Our goal is to find a best effort solu-
tion that can enable user accountability globally on the
current Internet. This includes the following challenges:

• Supporting user accountability. It must be able
to connect a user’s online identity with the user’s
identity in the real world.

• Preserving user privacy. At the same time when it
provides user accountability, it should retain user
privacy and be resilient against surveillance.

• Feasibility to deploy globally. It must support high

system scalability, DDoS resiliency, security, and
robustness. It should minimize the technical com-
plexity and trust thresholds when it evolve towards
global deployment.

• Incremental deployability. We need it now. We
therefore can not afford a clean-slate solution.

Feeder-carrier decoupling. To meet our goal, a
novel technique that we devise and adopt is to decouple
identity providers into feeders and carriers as shown in
Figure 1(a). Feeders (or identity feeders) are identity
providers where users register and carriers (or authen-
tication carriers) are identity providers where users are
authenticated. A feeder can export authentication data
to many carriers such that a user registers at the feeder
can be authenticated at any of these carriers indepen-
dently of the feeder. To support user accountability,
users should register at feeders with their real identi-
ties. (The real identities are never exported to carriers.)
Therefore, when a dispute arises, there is a regular way
to audit a user’s real identity through the feeder.

Why feeder-carrier decoupling makes a funda-
mental change. The feeder-carrier decoupling funda-
mentally changes the following aspects:

1. Much easier to enable user accountability using
things we already have. There are already many feeders
that have users’ real identities registered. For exam-
ple, a school has the real identities of all its students;
a bank has the real identities of all its customers; and
a company has the real identities of all its employees.
However, most of them are not likely to become carri-
ers as well. With the feeder-carrier decoupling, we can
create authentication data at these feeders and export
the data to carriers to enable user accountability.

2. Respecting user privacy. An identity provider does
not spontaneously respect user privacy unless it is forced
to do so (e.g., Google was caught disregarding user pri-
vacy in its Gmail service [3]). With the feeder and car-
rier decoupled, users can easily change carriers with-
out taking pains to change the feeders where they reg-
istered if they feel some carriers do not respect their
privacy. This enables an effective competition among
carriers to respect user privacy. On the other hand,
feeders can pose no threat on user privacy during au-
thentication services. This is because the authentica-
tion processes only involve the carriers, but no feeders.
No other solutions (including OpenID, Microsoft pass-
port, and VeriSign unified authentication, etc) support
such surveillance resiliency.

3. Scalability and DDoS resiliency. With the feeder
and carrier decoupled, a carrier is relieved from user
management burdens and it therefore can focus on pro-
viding scalable authentication services. Users and feed-
ers can choose carriers that provide the best services.
Moreover, a feeder can export authentication data to
many carriers to further improve the scalability and
DDoS resiliency for authentication services of its users.
By contrast, the current practice is that the scalability
relies solely on the single identity provider that users

3

IDnet authority

a) Feeder-carrier decoupling b) IDnet implemention of the feeder and carrier

Feeder

An IDnet with both IDnet authority and
a scalable authentication infrastructure

Level-1 IDnet agent Level-2 IDnet agent

Propagate a hashed version of authentication data

User

User

User

Register

Authenticate
Carrier

Identity validation

1

2

3

4

5

9

8

6

7

10

11

12
13

h
3

h
4

h
1

h
2

h
5

h
6

h
7

h
8

h9

h10

h11

h12
h13

Carrier

h
E

Feeder

An IDnet with only IDnet authority

Figure 1: Feeder-carrier decoupling and its IDnet implementation

register to and users have no effective means to moti-
vate a provider to optimize the scalability aggressively.

4. Reliability. A feeder can export its authentication
data to many carriers and any of these carriers can pro-
vide authentication services for the feeder’s users inde-
pendently of the feeder. Such redundancy significantly
raises the reliability of the authentication services. By
contrast, nowadays, service outages can be caused by
the single point of failure of the identity provider.

5. Efficiency. Suppose user b wants to authenticate
user a and a’s feeder has exported authentication data
to many carriers around the world. User b can choose
to use a carrier that is most close to it (to reduce de-
lays) or that is most frequently used (to exploit caching)
to improve authentication efficiency. By contrast, the
current practice does not provide users such choices.

6. Global level trust issue. Suppose user b wants to
authenticate user a and a’s feeder has exported authen-
tication data to many carriers around the world. User b
can choose a carrier that it trusts most even though it
might not trust a’s feeder much. The carrier should be
responsible for b to trust a’s feeder (otherwise b would
not trust this carrier). By contrast, the current practice
provides no guarantee for such a trust.

3.2 IDnet Mesh Framework
IDnet. In our framework, we generalized each iden-

tity provider as an IDnet, with the feeder and carrier
being implemented as two typical cases of the IDnet.
IDnets provide a common service to the public — iden-
tity validation, i.e., to authenticate whether a user is
accountable. Each IDnet consists of two basic compo-
nents: IDnet authority and IDnet agents. The IDnet
authority is the authority that administers an IDnet.
It maintains a central database that stores users’ au-
thentication data. IDnet agents are designed to provide
high scalability for the identity validation service via
large scale replication. Each agent is propagated with
a hashed copy of authentication data from the central
database. We use the hashed copy instead of the orig-
inal version of authentication data to ensure security.
Each agent stores a different hashed copy to effectively
localize security threats.

As shown in Figure 1(b), a feeder is implemented as
an IDnet with only the IDnet authority, but no agents.

While a carrier is implemented as a regular IDnet. Users
register to a feeder and the feeder creates authentica-
tion data for them. The feeder then propagates hashed
versions of authentication data to carriers. Each carrier
is propagated with a different hashed copy. Such a de-
sign not only localizes security threats, but also makes
users anonymous across carriers. Two different carri-
ers are unable to infer whether two authentication data
entries across their databases are associated with the
same user.

Authentication data and Internet passport. In
our design, each user should register to a feeder with
his real identity. In return, the IDnet issues him a
unique 160-bit permanent identity (PID) and a 160-
bit secret code (SEC). Both data are stored in an In-
ternet passport, which is a small and cheap device that
can be plugged into the user’s computer via a USB port.
The Internet passport is designed to support strong but
convenient user authentication. It uses a built-in clock
to generate a time-changing passcode used for the au-
thentication based on the SEC. The generation of the
passcode is unlocked by the user’s biometric property,
i.e., fingerprint. The Internet passport is designed to
be tamper-resistant [17, 37] such that it effectively de-
ters any attempts to steal the SEC. We explain and
evaluate the implementation of the Internet passport in
Sections 4 and 5, and show that its cost can be made
around $10 or less, hence it can be widely used.

The PID and SEC constitutes a user’s authentica-
tion data. A feeder propagates to carriers the hashed
versions of PID and SEC, with which the carriers can
perform identity validation for the user independently
of the feeder.

Identity validation. A carrier organizes its IDnet
agents in a tree structure and provides the identity val-
idation service at the edge agents (i.e., leaf nodes of the
tree). As shown in Figure 1(b), each edge agent is prop-
agated with a hashed copy of authentication data by fol-
lowing the tree structure and the data at each agent is
associated with a different hash function sequence (e.g.,
h7h1(·) for agent 7). In addition, the carrier issues each
edge agent a pair of public and private keys. The edge
agent announces to the public an agent entry which
contains its public key and hash function sequence. In

4

practice, an edge agent can be a datacenter.
The identity validation process can be formulated by

Equations (1)-(4). Below we introduce its main idea,
and provide details later in Section 4.

HPIDi = Hi(PID), HSECi = Hi(SEC) (1)

passcode = P (HSECi, time) (2)

TID = f(HPIDi, time, context, PubKeyi) (3)

(HPIDi, time, context) = g(TID, PriKeyi) (4)

Hi – the full hash function sequence at agent i, equiva-
lent to a composite hash function. P – a cryptographic
hash function. time – the time provided by the Inter-
net passport’s built-in clock. f – a function to generate
TID from HPIDi. g – a function to recover HPIDi

from TID. PubKeyi and PriKeyi – the public, private
key pair of agent i. Hi and P are implemented based on
SHA-1. f and g are implemented based on RSA.

First, the user chooses an edge agent (denoted by i)
of a specific carrier and computes a full hash function
sequence. To do this, he appends agent i’s hash function
sequence to the hash function that his feeder uses to
propagate authentication data to the carrier, e.g., in
Figure 1(b), the full hash function sequence at agent 7
of the carrier for the feeder’s users is h7h1hE(·).

With the full hash function sequence, the user com-
putes his hashed PID and SEC (denoted by HPIDi

and HSECi) stored at agent i (using Equation (1)).
Then he generates a passcode via the Internet passport
(using Equation (2)). After that, he computes a tempo-
rary identity TID based on HPIDi, the time same as
the one used to generate passcode, a 160-bit service con-
text, and the agent’s public key (using Equation (3)).

Next, the TID and passcode are sent to agent i.
From the TID, the agent recovers the user’s HPIDi

(using Equation (4)), which in turn helps to retrieve
the user’s HSECi (by querying the database). The
agent also recovers the time from TID and checks its
validity. In our implementation, valid time should dif-
fer no more than 30 seconds from the agent’s system
clock, which is loosely synchronized with the Internet
passport’s built-in clock. Then the agent verifies the
passcode by regenerating it the same way as the user
does (Equation (2)).

The identity validation process fully preserves a user’s
privacy to the public Internet. The user does not reveal
his PID to the network and what others can see is just
the TID, which makes him anonymous.

Forming the IDnet mesh. An IDnet mesh can be
formed by gradually merging IDnets. The first type of
merging is forming a customer-provider relationship as
we have already seen between the feeder and carrier.
Nevertheless, it can also happen between two carriers.
In such cases, a customer IDnet propagates hashed au-
thentication data to a provider IDnet. The second type
of merging is forming a peering relationship. It only
happens between two carriers. Both carriers propagate
hashed authenticate data to each other under requests
of feeders.

Since only hashed versions of data are propagated,

we minimize the risks of merging. A system fault or a
compromised agent that occurs in the other IDnet will
not cause security threats on an IDnet’s own infrastruc-
ture. This ensures a low trust threshold of merging,
thereby facilitating the IDnet mesh to evolve towards
global deployment. In addition, the merging requires
no additional hardware deployment or software installa-
tion; only changes in software configuration are needed.
Therefore, it also minimizes the technical complexity
for the IDnet mesh to evolve.

IDnet forwarding. A feeder can ask a carrier C
to further relay its hashed authentication data to other
carriers that C peers with (if related service agreements
allow this), instead of establishing direct customer-provider
relationships with those carriers. We call such a relay an
IDnet forwarding. In such cases, the full hash function
sequence used in identity validation should also include
a series of hash functions associated with IDnet for-
wardings. Each hash function associated with an IDnet
forwarding is specified by the feeder. Therefore, hash
functions used between the same pair of carriers for dif-
ferent feeders can be different.

3.3 IDnet Mesh’s Trust Model
In this section, we explain the solution model for an

underlying but fundamental question: How can we trust
an IDnet that we previously do not know?, i.e., the ID-
net mesh’s trust model.

Home CarrierCarrierFeeder

Authentication data propagation (forming the A’s trustee area)spanning tree of

B’s explicit trust User

Trust area
of B

Trustee area
of A

Validation area
of A for B: {C, D, F}

Register

a b

A

G
FD

C

E B

Figure 2: The trust model of IDnet mesh

Trustee area. Figure 2 depicts our entire trust
model. First, we define the trustee area of a feeder. The
trustee area of a feeder consists of all carriers that trust
this feeder. For example, in Figure 2, the trustee area
of A consists of carrier C, D, E, and F . These carriers
trust A by allowing A to propagate its hashed authenti-
cation data to their central databases. The propagation
structure can be represented by a spanning tree rooted
at A to all carriers in the trustee area, i.e., there is a
unique propagation route from A to each carrier.

Trust area. Secondly, we define the trust area of a
carrier. This area consists of all IDnets (both feeders
and carriers) that this carrier trusts. The carrier ex-
plicitly expresses its trust by endorsing the public keys
of these IDnets. In Figure 2, carrier B explicitly trusts
feeder A and carriers C, D, F , and G thereby defining
its trust area. The trust area is defined on a per service
basis and therefore it specifies not only who to trust
but what to trust as well. For example, a carrier can
define very different trust areas for Web, Email, P2P,

5

and VPN services. In practice, a user will select a home
carrier — the carrier that he trusts most. And he will
trust all IDnets within the home carrier’s trust area.

Validation area. Next, we define validation area,
which is associated with a pair of feeder and carrier.
Referring to Figure 2, the validation area of A for B is
the overlapped area between A’s trustee area and B’s
trust area, but with feeders excluded. This area consists
of all carriers through which users (denoted by b) who
select B as the home carrier can validate identities of
feeder A’s users. Users b admit the identity validation
results because these carriers are within B’s trust area.
The identity validation for A’s users can be performed
because these carriers have imported the hashed copies
of A’s authentication data.

One exception is that if B’s trust area does not in-
cludes feeder A, the validation area of A for B will be
set to empty to indicate the distrust on the feeder. This
reflects our design choice to prohibit implicit transitive
trust that we previously mentioned as a key difference
from the web of trust. Even if carriers within B’s trust
area trust A, it does not necessarily lead to that B also
trusts A. B must explicitly express its trust on feeders.
However, we may use transitive trust as an external
mechanism to establish the explicit trust.

Validation agent. Finally, we define validation agent,
which is associated with two users. Suppose that user
a’s feeder is A and user b’s home carrier is B. A valida-
tion agent of a for b is defined as any IDnet edge agent
of any carrier within the validation area of A for B. It
is an edge agent through which user b can validate the
identity of user a.

3.4 Services
The IDnet mesh provides two basic identity valida-

tion services as shown in Figure 3: online validation and
offline validation. In both services, assume a common
scenario: User b wants to validate user a’s accountabil-
ity, i.e., to verify whether user a is a registered user
(registered with the real identity) of a trustable feeder.
To do this, they must first find a validation agent of
a for b. We will describe how this validation agent is
resolved in Section 5.4.1. Here, we simply assume there
exists such a validation agent.

2. Sign

1. Validate

3. Deliver

b) Offline validationa) Online validation

a ab b
1. Request

2. Validate

3. OK

Trust area
of B

Validation agentTrustee area
of A

v v BABA

Figure 3: Two basic identity validation services

Online validation. In online validation (for appli-
cations such as Web), user a sends his validation data
(TID and passcode) along with the service request to
user b. Then b validates a’s accountability via a vali-
dation agent v by relaying a’s validation data. If the

validation is successful, b accepts a’s service request,
otherwise not. For example, b could be a Web site and
a could be one of its users; b can use online validation
to protect itself from malicious users.

Offline validation. In offline validation (for appli-
cations such as Email), there is no online communica-
tion between a and b; a wants to deliver a data object
to b, and b wants to validate the accountability of the
object sender. To do this, a encodes the object’s data
fingerprint (using SHA-1) into the service context field
(in Equation (3)) to generate the TID. Then a asks
a validation agent v to validate TID and passcode. If
the validation is successful, v returns a a digital signa-
ture that certifies the association between TID and the
service context (decrypted from TID).

Next, a delivers the data object together with the
signature, TID, and v’s agent entry (defined in Sec-
tion 3.2). b can then verify the sender’s accountability
by checking the consistency among the signature, the
object’s fingerprint, and the TID.

For example, b could be a user who wants to only
read Emails from accountable users (such that he can
effectively counter SPAMs). Then an Email user a can
use the offline validation to show his accountability.

4. IMPLEMENTATION
Here, we provide details about our system implemen-

tation as shown in Figure 4. In particular, we describe
the core IDnet identity validation algorithm (including
the database implementation), as well as IDnet system
and user protocols.

4.1 Core Algorithm
4.1.1 User Database Implementation

We implement the user database at an IDnet author-
ity or agent using MySQL. The database includes a
number of tables with the same structure. Each ta-
ble stores up to 16 user blocks for a feeder and each
user block stores up to 100,000 user entries. The name
of each table is a 48-character string that encodes the
feeder’s IDnet identifier (IDnet id, 20 bytes) and the
high 12 bits of block identifier (block id, 2 bytes). The
IDnet identifier is a self-certifying flat name generated
using SHA-1. Each user entry is a 3-tuple {HPID,
HSEC, block id}. HPID and HSEC are the hashed
version of a user’s PID and SEC at this IDnet author-
ity or agent.

4.1.2 Core Algorithm Implementation
Table 1 depicts the core identity validation algorithm

both at the user and at the edge agent. We implement
the algorithm in C++. We use the Crypto++ [4] library
for cryptographic functions such as SHA-1 and RSA.
We choose RSAES-OAEP and RSASSA-PSS for RSA
encryption and signature schemes respectively, both of
which are recommended by RFC-3447 [15] for new ap-
plications in the interest of increased robustness.

4.2 IDnet Protocol
Each IDnet uses two types of protocols — IDnet sys-

tem protocol and IDnet user protocol. The IDnet system

6

Core algorithm (Section 4.1)
runs at edge agents and users

Propagated to
all IDnets

within the trustee area

edge
agents of

Performs identity validation

Not propagated
beyond an IDnet’s
own infrastructure

IDnet system protocol (Section 4.2.1)

IDnet user protocol (Section 4.2.2)

IDnet authorities
of other IDnets

IDnet authority Level-1 IDnet agent Level-2 IDnet agent

Users

or

User data messages

System announcement messages

Identity validation messages

System announcement messages

Figure 4: Implementation: Core algorithm, IDnet system protocol, and IDnet user protocol

HSECi = Hi(SEC) (5)

nonce = time | additional nonce (6)

passcode = SHA(HSECi + nonce) (7)

HPIDi = Hi(PID) (8)

TID = RSA Encrypt(IDnet id | block id | HPIDi |
context | time | additional nonce, PubKeyi)

(9)

(IDnet id | block id | HPIDi | context | time |
additional nonce) = RSA Decrypt(TID, PriKeyi)

(10)

signature = RSA Sign(TID | context, PriKeyi) (11)

• “|” – the concatenation mark.
• SHA – the SHA-1 hash function.
• Hi – the full hash function sequence of agent i. Each hash
function hk(x) in the sequence is defined by a 20-byte hash
function id hidk. It is defined as hk(x) = SHA(hidk XOR x).
The maximum length of the full hash function sequence is 14.
• additional nonce – an additional nonce used to counter TID
replay attacks as we will describe in Section 5.5.4
• time – the time at the granularity of microseconds provided
by the Internet passport’s built-in clock.
• context (20 bytes) – the service context. For offline valida-
tion, this is the SHA-1 fingerprint of the data object to deliver.
• PubKeyi, PriKeyi – the public and private keys of agent i.

0. The Internet passport stores PID (20 bytes), SEC (20 bytes), block id (2 bytes), and IDnet id (20 bytes).
1. The user chooses a suitable validation agent (denoted by i) as we will describe in Section 5.4.1.
2. The user inputs Hi (up to 281 bytes) and additional nonce (12 bytes) into the Internet passport. In return, the
Internet passport outputs the passcode (20 bytes), time (8 bytes), IDnet id, block id, and PID. The passcode is
generated using Equations (5)–(7).
3. The user generates TID using Equations (8) and (9). Then he sends TID and passcode to the validation agent.
4. Upon receiving the TID and passcode, the agent first decodes TID using Equation (10), which restores IDnet id,
block id, HPIDi, context, time, and additional nonce.
5. The agent checks whether time differs less than 30 seconds from its own clock. If not, it returns failure.
6. The agent queries its user database to fetch the user’s HSECi based on IDnet id, block id, and HPIDi. If the
corresponding user entry is not found, it returns failure.
7. The agent regenerates the passcode the same way as the user does (Equation (7)) and checks whether it is the same
as the passcode provided by the user. If not, it returns failure.
8. If this is an online validation, the validation is done and the agent returns success.
9. For offline validation, the agent generates a 128-byte digital signature using Equation (11). The signature certifies
the association between the TID and context. The agent then returns the signature to the user.

Table 1: Implementation of the core identity validation algorithm

protocol operates among an IDnet authority and agents
of the same IDnet or between IDnet authorities of two
different IDnets (as shown in Figure 4). The IDnet user
protocol functions between IDnet edge agents and users
(as shown in Figure 4). Both protocols are implemented
upon TCP or UDP.

4.2.1 IDnet System Protocol Messages
IDnet system protocol messages are divided into two

categories — user data messages and system announce-
ment messages. The user data messages are designed
to propagate hashed copies of user data from an IDnet
authority to all its agents and to other IDnet authori-
ties. The system announcement messages are designed
to propagate system announcements (including infor-
mation about agents, trust area, and trustee area) from
an IDnet authority to all its own agents. Below we in-
troduce the major IDnet system protocol messages.

A. User data messages
• User entry update consists of a list of user entries

that need to be updated for a specified feeder. Each
user entry contains the hashed version of a user’s PID
and SEC. The update initiates from the feeder and is
later propagated to all IDnet agents within the feeder’s
trustee area.

We pace at one-hour intervals for the user entry up-
dates initiated at a feeder. Each user entry update is
ensured to be propagated to all IDnet agents in the
trustee area within the next hour (even in the worst
case). We will explain how this can be achieved in Sec-
tion 5.3.1. This guarantees that any user data changes
made at a feeder will take effect in the entire trustee
area within two hours.
• User entry sanity check and user entry sanity check

response are designed for maintenance purposes. They

7

help to check the consistency among user databases of
different IDnet authorities and agents. They are the
only system protocol messages that use UDP. All the
others use TCP.

B. System announcement messages
• Agent entry update is designed to announce infor-

mation about an IDnet’s own agents. It contains an
agent entry, which consists of the identifier, hash func-
tion sequence, and public key of an agent. In addition,
it includes a signature block which certifies the entry.
The signature block includes: (i) an SHA-1 fingerprint
for the entry data, (ii) the inception date and expi-
ration date of signature, (iii) the signer, which is the
IDnet’s identifier, and (iv) a 2048-bit RSA signature by
the IDnet authority. The signature block is updated ev-
ery day and expires after two days. An IDnet authority
refreshes all agent entries every day. If no change hap-
pens to an agent’s information (which is the common
case), the only field in the update that needs to change
is the signature block.
• Trust area update is designed to announce an ID-

net’s trust area definition. It includes a trust area sum-
mary and a list of trust area entries. The former is a
short digest for the trust area definition and includes
a signature block that certifies the entry. The latter
lists all IDnets in the trust area. Each trust area entry
corresponds to one IDnet. It consists of an IDnet iden-
tifier and a service type bitmap. Bit 0 of the service
type bitmap indicates whether the specified IDnet is a
feeder or a carrier. The rest bits define the types of ser-
vices that the specified IDnet is trusted for. If all bits
of the bitmap are set to zero, the specified IDnet will be
revoked from the trust area. An IDnet authority prop-
agates a trust area update to all its agents every day.
The update is usually incremental — it only includes
those IDnets whose information has been changed.
• Trustee area update is designed to announce an ID-

net’s trustee area definition. It includes a trustee area
summary and a list of trustee area entries. Each trustee
area entry corresponds to one IDnet. It consists of an
IDnet identifier and a hash function sequence prefix.
The hash function sequence prefix specifies the hash
functions associated with IDnet forwardings. We can
concatenate it with the hash function sequence of an
agent (of the IDnet specified in the entry) to form the
full hash function sequence. An IDnet authority prop-
agates a trustee area update to all its agents every day.
The update is usually incremental.
• Endorsement update and endorsement signature up-

date are designed to announce and certify information
about each IDnet in the trust and trustee areas. The
latter is a compact version of the former. In the gen-
eral case, an IDnet authority propagates daily an en-
dorsement update, which includes IDnets whose infor-
mation has been changed, and an endorsement signa-
ture update, which includes the remaining IDnets. The
endorsement update consists of a list of endorsement
entries, each of which includes the identifier, domain

name, and public key of an IDnet. It also contains a
signature block that certifies the entry.

All system announcements will be further propagated
from IDnet edge agents to users via the IDnet user pro-
tocol. However, one subtlety is that if the IDnet is a
feeder, it can not propagate system announcements to
users by itself since it has no agents. To solve this, a
feeder assigns a delegated carrier. It first propagates
its system announcements to the delegated carrier and
then have this carrier to propagate them to users. Mean-
while, a feeder’s system announcements messages only
include the trustee area update, endorsement update
and endorsement signature update.

4.2.2 IDnet User Protocol
IDnet user protocol messages are divided into two

categories — identity validation messages and system
announcement messages.

The identity validation messages define the request
and response format for online and offline validations.
There is a cookie field in the online validation request /
response messages. It can be used to encode the iden-
tifier and states associated with a service session. With
the cookie, a service provider (e.g., a Web site) does not
have to maintain any state for the service session until
the online validation completes.

The system announcement messages enable users to
fetch and refresh system announcements from IDnet
edge agents: (i) Agent entry request / response are de-
signed for users to fetch and refresh the agent entry for
the edge agent that the request is sent to. (ii) Trust area
summary request / response, trust area update request /
response, trustee area summary request / response, and
trustee area update request / response are designed for
users to obtain an IDnet’s trust and trustee areas defi-
nitions. (iii) Endorsement entry request / response are
designed for users to fetch and refresh the endorsement
entry for a specified IDnet.

5. EVALUATION
We deployed our Linux-based implementation of core

algorithm and protocols on a server-class test machine
and the Emulab testbed [7]. We ran benchmarks for
the core algorithm implementation on the test machine.
We tested the functional integrity of the protocol im-
plementation on the Emulab. For systematical perfor-
mance evaluation, since it refers to a large-scale system
that is hard to deploy (or emulate) on existing testbeds,
we develop analytical models for the evaluation.

5.1 Internet Passport
The Internet passport helps to provide strong but

convenient authentication. It exploits two-factor au-
thentication [24] to support strong authentication. It
unlocks itself using a user’s biometric property (e.g.,
to touch with a finger) instead of having a user type
a PIN or a password such that it both supports secu-
rity and is easy to use. To make our system scalable,
the device should be available at a reasonably low cost.
We can evaluate this by comparing its hardware com-

8

plexity with two types of related products — security
tokens and biometric devices. Based on the compari-
son, we estimate that the cost of an Internet passport
can be made around $10 or less.

Our Internet passport design shares similar features
with security tokens such as RSA SecurID [17, 18] and
VASCO Digipass [21], which are widely used for VPN,
e-commerce and e-government applications. Their com-
mon design is to generate a time-changing passcode
based on a built-in clock, a secret seed that is protected
by the device’s tamper-resistant feature [17, 37], and
a cryptographic algorithm. The only major difference
is that when generating the passcode, our algorithm
also takes external parameters input from an Internet
passport’s USB port. However, this only slightly adds
complexity to the hardware. The main complexity of
this hardware lies in its cryptographic algorithm imple-
mentation and the tamper-resistant feature. Our cryp-
tographic algorithm is based on SHA-1, which is even
slightly simpler in its hardware implementation than
the AES algorithm as used in the RSA SecurID. The
price of an RSA SecurID is about $10 and that of a
VASCO Digipass is about $7 as of 2005 [27].

As for the cost to support the biometric feature, we
can refer to the cost of biometric devices nowadays: (i)
a biometric USB flash drive can be purchased as cheaply
as $7; (ii) a biometric optical mouse is at a price com-
parable to a regular optical mouse.

5.2 Core Algorithm
In this section, we evaluate the processing speed and

scalability of our core algorithm at edge agent servers.

5.2.1 Processing Speed Benchmark
We first show benchmark results for processing speed

of the core algorithm at edge agents. We perform the
benchmark on a test machine with two dual-core 64-
bit Intel Xeon 2.8 GHz processors. We set up a user
database on this machine that consists of 4.8 million
user entries. These entries are distributed across three
full size tables, i.e., each table has 16 user blocks and
each block has 100,000 entries. We randomly select
10,000 entries from the database and precompute their
TIDs and passcodes as the input for the benchmark.

Figure 5(b) shows the average processing time of on-
line and offline validations for the 10,000 entries. It also
itemizes the processing time of major steps that consti-
tute the validation algorithms. For reference, we list
micro-benchmark results on the same machine for ba-
sic cryptographic algorithms in Figure 5(a). As we can
see, the processing speed of the core algorithm is mainly
bounded by RSA operations — an RSA decryption op-
eration in the online validation and an additional RSA
signature operation in the offline validation.

Since RSA operations are CPU-bound, we can signifi-
cantly improve the processing speed via multi-threading
on a multi-processor machine. Figure 5(c) shows the
processing time benchmark when multi-thread is used.
As we can see, the processing time on this two-due-core-
CPU machine converges quickly to 0.84 ms for online

validation and 1.56ms for offline validation as the num-
ber of threads increases, which is more than doubling
the processing speed of a single thread.

Our benchmark result also reveals that if we can im-
prove the RSA operation speed at edge agents by an or-
der of magnitude (e.g., using dedicated hardware [43]),
the processing speed will no longer be bounded by RSA,
but by the database query operations.

5.2.2 Service Scalability
Based on the benchmark results, we can gain under-

standing on the system’s service scalability by assum-
ing the following (aggressive) workload for all Internet
users:

1 Assume each user on average accesses 100 Web
pages that incur online validations every day.

2 Assume each user on average sends 20 Emails that
incur offline validations every day.

3 Assume the workload at the peak time of a day is
10 times the average workload.

According to [9], there are 1,464 million Internet users
in the world as of June 30, 2008. Therefore, to meet the
peak time workload for all these users in the Web and
Email service contexts, the system should be able to
process 16.9 million online validations and 3.4 million
offline validations every second. Using the benchmark
results of the last section — 0.84 ms for online valida-
tion and 1.56 ms for offline validation, we get that each
edge agent server can serve 75,000 users on average and
we need only 19,520 servers totally to serve all the 1,464
million users of the current Internet.

For server load balancing, we can adopt the same ap-
proach as Google platform [32] does: (i) DNS servers re-
solve a common domain name (e.g., agent.IDnet-domain-
name) to a set of IP addresses, which acts as a first level
of load balancing by directing users to different dat-
acenters, i.e., edge agents. The order of IP addresses
provided by the DNS servers follows round-robin policy.
(ii) A load-balancer (a proxy server) at each datacen-
ter takes the user request and forwards it to one of the
servers. This acts as a second level of load balancing.

5.3 IDnet System Protocol
The job of the IDnet system protocol is to reliably

propagate user data and system announcements within
the time constraint enforced by predefined responsive-
ness upper bound. The responsiveness upper bound
quantifies the system’s guaranteed responsiveness to data
changes. It is defined as the time upper bound that out-
dated data could remain in the system in the worst case.
The shorter the value, the better.

Short responsiveness upper bound and high reliabil-
ity is critical for us to achieve timely updates and revo-
cations for trusted information (such as the user cre-
dential, an agent’s public key, an IDnet’s trust and
trustee area definitions). However, both the respon-
siveness upper bound and the reliability depend on a
system’s scale. The larger the system, the longer it
takes to propagate data changes to the entire system

9

Algorithm Time per operation

1024-bit 2048-bit
RSA encryption 0.10 ms 0.28 ms
RSA decryption 1.55 ms 8.13 ms
RSA signature 1.55 ms 8.13 ms
RSA verification 0.12 ms 0.32 ms

SHA-1 0.59 µs

(a) Micro-benchmarks of cryptographic algorithms

Online validation 1.85 ms
- Decrypt TID (RSA decryption) 1.55 ms
- Fetch HSEC (database query) 0.26 ms
- Other program overhead 0.04 ms
Offline validation 3.43 ms
- Online validation 1.85 ms
- Generate signature 1.58 ms

(b) Benchmark result

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 2 5 10 20 50 100

 0.84

 1.56

P
ro

ce
ss

in
g

tim
e

(m
s)

Number of threads

Online validation
Offline validation

(c) Benchmark result (multi-thread)

Figure 5: Processing time benchmark for core algorithm

and the more complex the system is; therefore, it be-
comes more challenging to achieve short responsiveness
upper bound and high reliability.

In this section, we evaluate the responsiveness upper
bound and reliability of the IDnet system protocol using
the topological model of a very large scale IDnet mesh
system as described in Table 2.

5.3.1 Responsiveness Upper Bound
A. Responsiveness upper bound values

We first introduce our predefined responsiveness up-
per bound values for system data.

The responsiveness upper bound for user entries is
two hours. As described in Section 4.2.1, we pace the
user entry updates initiated by an IDnet at one-hour in-
tervals. Each update is ensured to be propagated to all
IDnet agents in the trustee area within the next hour.
This implies that any changes in the user entries are
guaranteed to take effect in the entire system within
two hours, hence the two-hour responsiveness upper
bound. Comparing with other Internet user credential
approaches such as OpenPGP, our responsiveness upper
bound is significantly shorter. OpenPGP’s user creden-
tials rely on the expiration time of digital certificates to
invalidate themselves [28] in the worst case. The expi-
ration time is typically set to one year, which implies a
one-year responsiveness upper bound.

The responsiveness upper bound for system announce-
ments (including agent entries, trust and trustee area
summary, trust and trustee area entries, endorsement
entries) is two days. As described in Section 4.2.1, we
perform daily refreshment for signature blocks in all sys-
tem announcements and set the signature blocks to ex-
pire after two days, which implies this two-day respon-
siveness upper bound. Comparing with similar secure
global announcement approaches such as DNSSEC [6],
our responsiveness upper bound is much shorter. In
DNSSEC, the refreshment period and lifetime of signa-
tures (for DNS data) are typically on the order of weeks
or a month, thereby leading to a much longer respon-
siveness upper bound.

B. Bandwidth requirements
Here we evaluate the bandwidth requirements on re-

lated Internet paths in order to achieve the above re-
sponsiveness upper bounds. Denote by B the goodput
to transmit the system protocol messages over an In-
ternet path. We evaluate requirements on B and show

that the requirements can be easily satisfied.
Denote by T1 the time that it takes to propagate

a message from an IDnet authority to all edge agent
servers within the same IDnet; denote by S the message
size. Using the topological model described in Table 2,
we can get:

T1 = 2 ×
10S

B
+ 2D + d. (12)

T1 does not include the TCP connection establish-
ment time. We assume that the TCP communication
channels between an IDnet authority and a level-1 agent,
and between a level-1 agent and a level-2 agent, are pre-
established and kept alive all the time. Moreover, when
propagating user entry updates, we need to perform an
SHA-1 hash for each user entry. However, the hashing
can be performed at line speed, hence is ignored here.1

Denote by T2 the time that it takes to propagate
a message from an IDnet authority to all edge agent
servers of all IDnets within the trustee area. We can
get:

T2 =
6S

B
+ 6D + T1 =

26S

B
+ 8D + d. (13)

To achieve the two-hour responsiveness upper bound
for user entries, we need to ensure that a user entry up-
date can be propagated to all IDnet agents in the trustee
area within one hour. Here we evaluate the minimum
goodput B required to ensure this.

Assume the following scenario for a feeder with one
million users: (i) The Internet passport for each user
expires after three years (similar to a credit card); there-
fore each user needs to renew the Internet passport ev-
ery three years. (ii) On average, each user loses track of
his Internet passport once during the three years such
that the user has to reclaim the Internet passport once.
(iii) To be conservative, we assume that on average
each user has his user entry updated 8 times for other
possible reasons during the three years.

Based on the workload associated with the above sce-
nario and the user entry update format that we imple-
mented, we can get the message size S of each user entry
update paced at one-hour intervals to be 16.4KB. Let-
ting T2 = 1hour and using Equation (13), we can get
the minimum goodput B = 0.12KBps. This means
that for a feeder with one million users and with the
above workload for user entry updates, to guarantee the

1Suppose B = 10 MBps, then the transmission time for each
user entry is 4.4 µs. While the time to hash a user entry is
only 0.3 µs.

10

Description of the model

1. The structure of each IDnet is a two-level complete 10-ary tree, that is, each IDnet has 10 level-1 agents and each level-1
agent has 10 level-2 agents. Therefore, each IDnet has 100 level-2 agents, which are its edge agents.

2. Each edge agent is a datacenter that consists of 10,000 servers. Therefore, each IDnet has 1 million edge agent servers.

3. Total number of IDnets in the IDnet mesh is 40,000.

4. An IDnet can propagate hashed versions of authentication data to other IDnets using IDnet forwardings through up to
L intermediate (IDnet-level) hops. We set L to 6.

5. Denote by D the one-way propagation delay on Internet paths between two IDnet authorities, between an IDnet authority
and each of its level-1 agent, or between a level-1 agent and each of its downstream level-2 agent. We set D to 500 ms.

6. Denote by d the total queuing delay at each edge agent to forward data to all its 10,000 servers. We set d to 1.5 sec.

Rationale for the model parameter settings

• We set item 1 and 2 by referring to the largest replica server system on the current Internet — Google platform [32].
The Google platform is estimated to have over 450,000 servers. These servers are distributed across tens of datacenters
across the world. We set each IDnet in our model to have a comparable scale of the Google platform.

• We set item 3 by referring to the total number of autonomous systems (AS) on the current Internet because an IDnet
and an AS share the similar administrative domain nature. There are about 40,000 AS numbers currently allocated by
IANA. We therefore set the total number of IDnets in this model to 40,000.

• We set item 4 by referring to the small world phenomenon [36], which suggests a six degrees of separation between
any two persons in the world. Since the separation between two identity providers should be less than that between two
persons, we therefore set the separation upper bound L to 6.

• We set item 5 based on typical propagation delays on Internet paths. The typical propagation delay between two
endpoints within the same continent ranges from several ms to several tens of ms; the typical propagation delay between
two endpoints across different continents can span up to several hundreds of ms. We conservatively set D to 500 ms.

• For item 6, we assume a linear logical topology for the forwarding and conservatively assume the bandwidth between
any two servers within a datacenter is 10 MBps. Suppose the size of each packet is 1,500 bytes, then the queuing delay of
one packet is about 0.15 ms. Therefore, we get d = 10, 000 × 0.15 ms = 1.5 sec.

Table 2: Topological model of a very large scale IDnet mesh used to evaluate IDnet system protocol

two-hour responsiveness upper bound, we only need to
ensure a goodput share of 0.12KBps on related Inter-
net paths for user entry updates initiated by this feeder.

To achieve the two-day responsiveness upper bound
for system announcements, we must ensure to propa-
gate all system announcement updates within one day.
To evaluate the minimum goodput B required to ensure
this, assume an extreme case that the IDnet’s trust and
trustee areas include all the 40,000 IDnets. And con-
sider the extreme case (everything is not incremental)
for the daily system announcement updates volume: (i)
100 agent entries, (ii) a trust area update consisting of
40,000 trust area entries, (iii) a trustee area update
consisting of 40,000 trustee area entries, and (iv) an
endorsement update consisting of 40,000 endorsement
entries. Based on formats of system announcement mes-
sages that we implemented, we can get S = 42.7MB.
Letting T1 = 1 day and using Equation (12), we can get
the minimum goodput B = 10.1KBps.2

C. Signature generation time cost
To achieve the two-day responsiveness upper bound

for system announcements, we must also ensure to re-
fresh signature blocks in all system announcements daily.
We can evaluate the signature generation time for this
task using the above extreme case. Then, the number

2For the case when the IDnet is a feeder, we can get a similar
result of B = 9.9 KBps by slightly changing the equation
(to include an additional propagation hop from the feeder
to the delegated carrier and to reflect that its system an-
nouncement messages can at most include a trustee area
update and an endorsement update.)

of signature blocks the IDnet needs to refresh daily is
40,102, including: (i) 100 for the agent entries of the 100
level-2 agents, (ii) 1 for the trust area summary and 1
for the trustee area summary, and (iii) 40,000 for en-
dorsement entries corresponding to the 40,000 IDnets.

As shown in our micro-benchmark results in Figure
5(a), each RSA signature operation for 2048-bit keys
takes 8.13ms on our test machine using a single thread.
Therefore, we only need to dedicate 40, 000×8.13ms =
325.2 sec CPU time daily to signature generation. If we
use multi-threading, the signature generation time can
be more than halved on the same machine.

5.3.2 Reliability
In addition to the bandwidth requirements and sig-

nature generation time as evaluated above, we also con-
sider the following two reliability factors for the system
protocol design: (i) possible connectivity failures on In-
ternet paths, and (ii) possible IDnet system faults.

The current Internet only provides a best effort ser-
vice which does not guarantee the connectivity. To en-
sure the timely propagation of protocol messages, we
have to consider this factor in addition to the bandwidth
requirements. According to [38], Internet path connec-
tivity problems can usually be recovered within 20 min-
utes. We therefore expanded the guaranteed maximum
propagation time to one hour to address this.

The IDnet system devices may experience software or
hardware faults that impede the timely propagation of
system announcements, which could affect the service
availability. Therefore, it is particularly important to
ensure a high reliability for the timely propagation of

11

system announcements. For this reason, we expanded
the guaranteed maximum propagation time for system
announcements to one day. This should be sufficient to
recover system faults via automated failovers or manual
technical support in most cases.

5.4 IDnet User Protocol
The evaluation of the IDnet user protocol depends

on the service context where our system is applied (to
provide user accountability). In this section, we use the
Web and Email services as typical examples to evaluate
the performance of the IDnet user protocol.

5.4.1 Application Examples and Time Overhead
The Web service is a typical example where online

validation can be applied, while the Email service is
a typical example where offline validation can be ap-
plied. Table 3 describes our prototype implementation
for these two applications. Meanwhile, we analyze the
corresponding time overhead when integrating the ID-
net user protocol with these two services.

We evaluate the time overhead in terms of the mea-
sures RTT and D which are defined as follows:

RTT is the average round trip time on an Internet
path between (i) a user and a local IDnet edge agent,
(ii) a user and a local DNS, (iii) a user and a Web site,
or (iv) a user and a server of an Email service provider.
RTT is typically several ms to several hundred ms. D is
the transmission delay for a trust area update response
message (Section 4.2.2). It varies between several ms to
several sec depending on the message size. The trans-
mission delays for other IDnet user protocol messages
are negligible compared to RTT.

Denote by Cd the delegated carrier (Section 4.2.1)
of a user’s feeder. The time overhead does not include
the following operations from the user’s perspective: (i)
selecting an edge agent of Cd (this includes to resolve
the agent via a local DNS, to download and to verify the
agent entry), and (ii) downloading the feeder’s trustee
area update from the above agent of Cd and verifying it.
Both operations are preprocessed automatically once a
user’s computer connects to the Internet.

The time overhead for transmitting any system an-
nouncement messages in the IDnet user protocol is amor-
tized across the whole day. This is because the system
announcements of an IDnet are updated at most once a
day. Moreover, all the system announcements are very
likely to remain static over longer time scales, which
makes them good candidates for caching. Therefore,
in the best case, what the daily updates (at the user’s
computer) actually do is simply refreshing the signature
blocks and verifying that the cached system announce-
ment data are still valid.

Below we summarize the time overhead incurred by
identity validation in both the worst case and the best
case according to Table 3. The best case results from
the effective use of caching (e.g., system announcement
data are already cached and still valid).

Web: Online validation: The time overhead in-
curred by identity validation for the Web application is

Select an edge agent of an IDnet other than Cd

• Worst case: 3RTT (amortized across the whole day)

1. Fetch the endorsement entry for the IDnet from
Cd to get the IDnet’s domain name and public key.

1RTT

2. Resolve an edge agent of the IDnet via local DNS. 1RTT

3. Fetch the agent entry from the edge agent. 1RTT

4. Verify the integrity of the agent entry. -

• Best case: 1RTT (amortized across the whole day)

1. Do the following in parallel: 1RTT

1) Update the endorsement entry from Cd. (1RTT)

2) Update the agent entry from the edge agent. (1RTT)

Web: Online validation

• Worst case: 5RTT (2RTT is amortized) - 2RTT (the service
request and response time when online validation is not used)

1. Send a pre-service request to the Web site b. b
responds with a list of (up to 20) preferred edge
agents distributed across a number of preferred ID-
nets. Each entry in the list contains the agent’s IP
and the corresponding IDnet identifier.

1RTT

2. Select a validation agent v based on the feeder’s
trustee area and the preferred agents of b.

-

3 Do the following in parallel: 1RTT

1) Suppose v belongs to IDnet V . Fetch V ’s en-
dorsement entry from Cd.

(1RTT)

2) Fetch v’s agent entry from v. (1RTT)

4. Verify the integrity of v’s agent entry based on
V ’s public key provided in the endorsement entry.

-

5. Generate TID and passcode. Then send a
(TCP) service request to b together with the TID,
passcode, and v’s IP.

1.5RTT

6. b relays the TID and passcode to v in form of the
online validation request and performs the online
validation using v.

1RTT

7. b responses to the service request based on the
online validation result provided by v.

0.5RTT

• Best case: 4RTT (1RTT is amortized) - 2RTT

1. Do the following in parallel: 1RTT

1) Update V ’s endorsement entry from Cd. (1RTT)

2) Update v’s agent entry from v. (1RTT)

2. Steps 5–7 of the worst case. 3RTT

Email: Offline validation (sender side)

• Worst case: 9RTT+D (8RTT+D is amortized)

1. Resolve the trust area of the receiver. 5RTT+D

1) Resolve the home carrier (B) of the receiver’s
Email provider (e.g., Gmail, hotmail) via the
Email provider’s server or via DNS.

(1RTT)

2) Select an edge agent of B based on B’s domain
name. (Need not fetch B’s endorsement entry.)

(2RTT)

3) Fetch the (TCP) trust area update of B from
the above agent.

(2RTT+D)

2. Compute the validation area as described in Sec-
tion 3.3 and choose an IDnet (V) within the vali-
dation area.

-

3. Select an edge agent (v) of V . 3RTT

4. Do offline validation via v and get v’s signature. 1RTT

5. Send the Email message together with the TID,
v’s signature, and v’s agent entry. (Note: time cost
for this step is not overhead.)

-

• Best case: 2RTT (1RTT is amortized)

1. Do the following in parallel: 1RTT

1) Verify that B is still the home carrier of the
receiver’s Email provider.

(1RTT)

2) Update B’s trust area summary from B. (1RTT)

3) Update V ’s endorsement entry from Cd. (1RTT)

4) Update v’s agent entry from v. (1RTT)

2. Steps 4,5 of the worst case. 1RTT

Email: Offline validation (receiver side)

• Both worst case and best case: 1RTT (amortized)

1. Fetch V ’s endorsement entry from Cd. 1RTT

2. Verify the integrity of the Email using the signa-
ture and the agent entry attached to the Email.

-

Table 3: Time overhead of IDnet user protocol

12

3 RTT in the worst case and 2 RTT in the best case. In
both cases, only 1RTT of the overhead is incurred for
every validation, the rest is amortized across the day.

Email: Offline validation: The time overhead in-
curred by identity validation at the sender side is 9 RTT
+ D in the worst case and 2 RTT in the best case. In
both cases, only 1RTT of the overhead is incurred for
every validation, the rest is amortized across the day.
For the receiver side, the time overhead is 1 RTT for
both cases and is amortized across the day.

5.4.2 Space Overhead
When using the offline validation for Email, a sender

needs to attach the following data to an Email: TID
(128 bytes), SHA-1 fingerprint (20 bytes) of the Email
message, the signature (128 bytes) provided by the val-
idation agent v, and the agent entry (570 bytes) of v.
With Base64 encoding, these data result in 1.14KB
space overhead per Email. To the best of our knowl-
edge, the Email traffic composes 1∼1.5% [1] of total
Internet traffic today and the average Email message
size is of the order of tens of KB [8]. Therefore, the
above space overhead for Email is reasonable.

5.5 Security
In this section, we evaluate several security concerns

related to our work.

5.5.1 Impersonation Resiliency
Our system provides strong resiliency to user imper-

sonation in the following way: (i) The tamper-resistant
feature of a user’s Internet passport ensures that others
can not steal the SEC without being detected. The
only way to get the SEC to impersonate the user is to
get the Internet passport itself. (ii) Using a user’s bio-
metric property to unlock the generation of passcode
ensures that even if others could get the Internet pass-
port or hijack a user’s computer, they won’t be able to
generate the passcode to impersonate the user. (iii) A
user can easily revoke a missing Internet passport via
the feeder by changing the SEC.

5.5.2 Surveillance Resiliency
A misbehaving provider may choose to spy on their

clients, e.g., collect user browsing patterns and sell to
third parties for Internet advertising [23]. There are
two issues with respect to this problem. First, user pri-
vacy is becoming a first-order issue nowadays (e.g., [5]).
With our feeder-carrier architecture, users can easily
change carriers if they feel some carriers do not respect
their privacy. This enables an effective business compe-
tition that enforces carriers to refrain from such surveil-
lance activities. Meanwhile, feeders and collaborative
carriers can easily react to a misbehaving carrier by
opting it out from their trustee and trust areas.

Secondly, with the feeder and carrier decoupled, the
IDnet mesh is inherently resilient to surveillance at-
tempts. Neither a feeder or a carrier can effectively
reverse engineer a client’s identity: the feeder because
it is not involved in the identity validation process, and
the carrier because it is not the feeder.

5.5.3 Key Size
As of 2002, a key size of 1024 bits was generally con-

sidered the minimum necessary for the RSA algorithm.
RSA claims that 1024-bit keys are secure (not likely to
be “crackable”) by 2010, while 2048-bit keys are suffi-
cient until 2030 [20]. We use 2048-bit keys for the IDnet
authority such that we provide high security for system
announcement messages which are signed by such keys.
We use 1024-bit keys for edge agents since our system
can easily update edge agents’ keys periodically through
system announcement messages.

5.5.4 TID Replay Attacks
The passcode associated with each TID remains valid

for up to 30 seconds. To prevent replay attacks using
the same TID within this period, we can exploit the
additional nonce field used to generate the passcode
(Equation (6) in Section 4.1.2). For example, an appli-
cation can encode a server’s IP and the service’s TCP
or UDP port to this field such that the passcode is valid
only for the specified service on the specified server. The
service process on this server caches all those TIDs that
have passed identity validations in the recent 30 seconds
such that it can block the replays. For online validation,
this server could be a Web site server. For offline valida-
tion, this server could be the load balancer (the proxy
server) at an edge agent.

5.5.5 Agent Spoofing Attacks
In online validation, a misbehaving user may spoof

an edge agent’s IP to send a fake online validation re-
sponse to a server that he attempts to cheat. However,
we can effectively counter such attacks by exploiting the
online validation request / response’s two-way commu-
nication property. The server can encode certain data
only known by itself into the cookie field of the online
validation request, such that only the edge agent who
receives the request can provide a response with the
same cookie. The server can therefore easily filter fake
responses based on the cookie’s validity.

5.5.6 DDoS Attacks
Malicious users could launch distributed denial-of-

service (DDoS) attacks by sending a large number of
identity validation requests to IDnet edge agents to de-
plete their CPU resources.

Our countermeasures to such attacks include the fol-
lowing: (i) The large scale identity validation service
replication and load balancing mechanism used in the
IDnet mesh provide the first level of resiliency to DDoS
attacks. (ii) We can use CAPTCHA [35] (e.g., challenge
the user with a distorted image) or proof-of-work ap-
proaches [33] (e.g., challenge the user’s computer with
a computational puzzle) to mitigate DDoS attacks when
the attack level is high. (iii) We may deploy dedicated
hardware for RSA operations [43] at edge agents to raise
the agents’ DDoS resiliency.

5.6 Incremental Deployability
The IDnet mesh requires no changes to the exist-

ing Internet infrastructure and protocols, and is there-

13

fore completely incrementally deployable. Each IDnet
provider can gradually add servers to their system and
use the Internet for wide-area system communication.
All system secure communication channels are static
and therefore can be easily implemented using crypto-
graphic techniques such as IPsec tunnels. Such channels
include those between the IDnet authority and a level-1
agent, between a level-1 agent and a level-2 agent, and
between two IDnet authorities.

6. CONCLUSION
In this paper, we proposed IDnet mesh, a general

purpose user identity architecture for the Internet. It
can enable diversified new Internet services as well as
new features for existing ones. It supports both user ac-
countability and user privacy. It adopts a novel feeder-
carrier decoupling approach which provides both high
surveillance resiliency and high service scalability. It
requires no change to the current Internet infrastruc-
ture and protocols, hence is completely incrementally
deployable. It adopts a practical trust model such that
it yields high system evolvability towards global deploy-
ment. Our evaluation shows that the proposed system
can achieve outstanding performance for scalability, se-
curity, efficiency, and reliability at the same time.

7. REFERENCES[1] http://blog.wired.com/27bstroke6/2008/04/ddos-
packets-ar.html.

[2] Conn. bill would force MySpace age check.
http://www.msnbc.msn.com/id/17502005/.

[3] Consumer watchdog overreacts about gmail.
http://blogs.zdnet.com/Google/?p=1181.

[4] Crypto++ library. http://www.cryptopp.com/.
[5] Cuil. http://www.cuil.com/info/privacy/.
[6] DNSSEC: DNS security extensions.

http://www.dnssec.net/.
[7] Emulab. http://www.emulab.net/.
[8] Google answers: What is the average size of an email

message? http://answers.google.com/answers/thread
view?id=312463.

[9] Internet world stats.
http://www.internetworldstats.com/stats.htm.

[10] ITU-T Recommendation X.509: Information
technology - Open systems interconnection - The
directory: Public-key and attribute certificate
frameworks.

[11] Kerberos. http://web.mit.edu/Kerberos/.
[12] MySpace to tighten security. http://www.knoxnews.

com/news/2008/Jan/15/myspace-to-tighten-security/.
[13] New Yorker. http://www.unc.edu/depts/jomc/

academics/dri/idog.html.
[14] OpenID. http://openid.net/.
[15] RFC 3447: Public-key cryptography standards

(PKCS) #1: RSA cryptography specifications version
2.1. http://www.ietf.org/rfc/rfc3447.txt.

[16] RFC 4423: Host identity protocol (HIP) architecture.
http://www.ietf.org/rfc/rfc4423.txt.

[17] RSA SecurID 6100 USB token. http://www.indevis.de
/dokumente/rsa securid usb token.pdf.

[18] RSA SecurID token.
http://www.rsa.com/node.aspx?id=1156.

[19] SAML single sign-on (SSO) service for Google apps.
http://code.google.com/apis/apps/sso/saml reference
implementation.html.

[20] TWIRL and RSA key size.

http://www.rsa.com/rsalabs/node.asp?id=2004.
[21] VASCO Digipass.

http://www.vasco.com/products/Digipass.html.
[22] VeriSign unified authentication (white paper).

http://www.verisign.com/static/016549.pdf.
[23] Watching while you surf. http://www.economist.com

/science/tq/displaystory.cfm?story id=11482452.
[24] What is two factor authentication? http://www.tech-

faq.com/two-factor-authentication.shtml.
[25] What we should learn from Sony’s fake blog fiasco.

http://adage.com/smallagency/post?article id=113945.
[26] Windows Live ID (Microsoft Passport). https://accou

ntservices.passport.net/PPPrivacyStatement.srf.
[27] Data lockdown, Dec. 2005.

http://money.cnn.com/magazines/fsb/fsb archive/
2005/12/01/8365397/index.htm.

[28] RFC 4880: OpenPGP message format.
http://www.ietf.org/rfc/rfc2440.txt.

[29] Andersen, D. G., Balakrishnan, H., Feamster,
N., Koponen, T., Moon, D., and Shenker, S.
Accountable Internet protocol (AIP). In ACM
SIGCOMM ’08 (Seattle, WA, Aug. 2008).

[30] Bellare, M., Micciancio, D., and Warinschi, B.
Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on
general assumptions. In EUROCRYPT ’03 (Warsaw,
Poland, May 2003).

[31] Camenisch, J., and Herreweghen, E. V. Design
and implementation of the idemix anonymous
credential system. In ACM CCS ’02 (Washington,
DC, USA, Nov. 2002).

[32] Carr, D. How Google works. Baseline Magazine
(July 2006).

[33] chang Feng, W., chi Feng, W., and Luu, A. The
design and implementation of network puzzles. In
IEEE INFOCOM ’05 (Miami, FL, Mar. 2005).

[34] Ellison, C., and Schneier, B. Ten risks of PKI:
What you’re not being told about public key
infrastructure. Computer Security Journal 16, 1
(2000), 1–7.

[35] Kandula, S., Katabi, D., Jacob, M., and Berger,
A. Botz-4-sale: surviving organized DDoS attacks
that mimic flash crowds. In NSDI ’05 (Berkeley, CA,
May 2005).

[36] Kautz, H., Selman, B., and Shah, M. ReferralWeb:
Combining social networks and collaborative filtering.
Communications of the ACM 40 (1997), 63–65.

[37] Kommerling, O., and Kuhn, M. G. Design
principles for tamper-resistant smartcard processors.
In USENIX Workshop on Smartcard Technology
(Chicago, IL, May 1999).

[38] Labovitz, C., Ahuja, A., Bose, A., and Jahanian,
F. Delayed Internet routing convergence. In ACM
SIGCOMM ’00 (Stockholm, Sweden, Aug. 2000).

[39] Mislove, A., Post, A., Gummadi, K. P., and
Druschel, P. Ostra: Leverging trust to thwart
unwanted communication. In NSDI ’08 (San
Francisco, CA, Apr. 2008).

[40] O’Reilly, T. What is Web 2.0. O’Reilly Network
(Sept. 2005).

[41] Song, D., and Tsudik, G. Quasi-efficient revocation
of group signatures. In Financial Cryptography ’02
(Southampton, Bermuda, Mar. 2002).

[42] Stallings, W. The PGP web of trust. BYTE 20, 2
(Feb. 1995), 161–162.

[43] Yesil, S., Ismailoglu, A. N., Tekmen, Y. C., and
Askar, M. Two fast RSA implementations using
high-radix montgomery algorithm. In ISCAS (2)
(2004), pp. 557–560.

14

	TR_cover_page.pdf
	TR-09-12.pdf
	TR_cover_page.pdf
	idnets.pdf

