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  Paper #14: Searching for Spam: Detecting Fraudulent Accounts via Web
             Search
---------------------------------------------------------------------------

                     Overall merit: 3. Weak accept
                Reviewer expertise: 3. Knowledgeable
                           Novelty: 3. Novel or a useful reappraisal
                   Technical merit: 3. Good/minor flaws
                             Scope: 3. Core Measurement paper
              Presentation quality: 3. Mostly correct

                        ===== Paper summary =====

The paper proposes to identify twitter spam by making web search on user accounts 
and marking as spam posts from users that have no presence on other social networks.

                     ===== Comments for author =====

The idea itself is simple and to my knowledge new.  A limitation of this idea is that, while 
it may catch an fraudulent account that was set up from the get-go as fraud but would 
not catch an account from a real user that was hacked.  In fact, the proposed technique 
-- if adapted -- might actually encourage hacking of real users as a way to avoid 
detection.  But that's a side note - it's always an arms race.
Then, the search of this name will result in a large number of hits.  Beyond this, here are 
some comments:

* From your description, an even easier avoidance method would be for the spammer to 
simply select a very common word for display name (which I recall does not need to be 
unique).  You describe an elaborate manual tuning for noise reduction, but I can't see 
which of the filters would eliminate all the search results for common words.  

* I did not understand why you only made available tools but not the data set.  You said 
at the end of sec. 4.1 that the data set would age quickly but that does not explain why 
you could not provide the snapshot that you used for this study.  Since here no 
corporate data is involved, you are free to disclose your data, and I'd suggest that you 
do so.

* At the end of sec. 4.2., you speculate that some of your false positives come from 
accounts that used to be legitimate but were later hacked.  My immediate question was 
why wouldn't you random-check this, until I found that you did at the end of sec. 4.3. 



 You badly need a forward pointer in sec. 4.2.

* In table 1, what's the diff between "display name" and "screen name"?  Shouldn't be 
one of them "username"?  Also, what about various combination of these filters?  

* In the beginning of sec. 4.5, what's the "most frequently occurring domains"?  Is it 
top-5 most frequent?  Top-10?  Overall, the tuning part seemed like  a hack, with a lot of 
manual ad-hoc work.  But in practice, while not pretty, it might be OK.   

* At the end of sec. 4.5, you say that the blacklist stabilizes after 500 sets of results from 
fig. 3.  How do we see this?  On fig. 3, the point for 500 is far away from the point for 
100, indicating that the FPR and TPR are quite different.

                            Poster: 3. Yes
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  Paper #14: Searching for Spam: Detecting Fraudulent Accounts via Web
             Search
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                     Overall merit: 4. Accept
                Reviewer expertise: 2. Some familiarity
                           Novelty: 3. Novel or a useful reappraisal
                   Technical merit: 3. Good/minor flaws
                             Scope: 3. Core Measurement paper
              Presentation quality: 3. Mostly correct

                        ===== Paper summary =====

This paper presents a very lightweight yet surprisingly effective method of predicting 
whether a twitter message is spam:  search the web for evidence that the tweeting party 
is a real person.  (Hence it is possible to detect spam before it is even sent!)  The paper 
shows that the technique achieves a true positive rate of over 74% and a false positive 
rate below 11%.  But wait, you may ask, how is it possible to estimate true and false 
positive weights without some sort of ground truth?  For ground truth, the paper looks at 
which accounts were suspended by twitter.  It also makes a distinction between 
accounts that never sent any legitimate messages and accounts that appear to have 
been compromised and were then suspended.   Of course twitter may not always be 
correct in making deciding which accounts to suspend, and the results might be 
interpreted as predicting which accounts twitter will ultimately suspend, rather than 
which accounts are actually spammers (still useful, s
ince it can be done up front), but the authors also manually inspect the accounts and 
messages sent on a smaller scale (hundreds) to confirm their results.



                     ===== Comments for author =====

In the abstract "that require training and message content" is a bit confusing.  How 
about "training and analyzing message content" ?

The paper should probably have more discussion about how spammers might go about 
trying to circumvent the technique described here if they knew it was being used.  There 
is some suggestion that spammers wouldn't generally want to link their spam accounts 
across different social networks because the banning of one might lead to banning the 
others, but that's not wholly convincing.   Perhaps by linking them, the odds that any of 
them get banned would become much lower?  Also, if it all it takes is created a few 
more accounts across other services, perhaps the bar is not being raised that much. 
 (Note, though, that the blackmarket price for a real-looking Facebook account is 
significant - the last quote I heard was several dollars.)

The discussion in Section 4 about the number of blacklists is a bit confusing.  You are 
trying to filter out search query results for usernames and display names that would be 
present for any username or display name, whether or not they are spam accounts, 
right?  E.g., if twitter makes every username available via a web-based directory, such a 
query result has no bearing on whether the account is spam.  Maybe a few concrete 
examples would make this section more clear.

It's interesting that one of the authors of the paper has used the web scraping technique 
successfully in another context - collecting ground truth for a geolocation system.

                            Poster: 3. Yes
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                     Overall merit: 2. Weak reject
                Reviewer expertise: 2. Some familiarity
                           Novelty: 3. Novel or a useful reappraisal
                   Technical merit: 2. Obvious flaws
                             Scope: 2. Borderline
              Presentation quality: 3. Mostly correct

                        ===== Paper summary =====

The paper suggest that one can use web search to determine if a twitter account is 



likely to be an account created to send twitter SPAM.

                     ===== Comments for author =====

As the basic idea seems reasonable the implementation details make many 
assumptions which are not well justified. Also the validation is overly optimistic. Here 
some more detailed concerns:

- People might not want to link there accounts for privacy reasons (e.g. see reaction of 
google linking accounts in the EU).
- Possible attack: search for user account and then create a twitter account with that 
account name. Not everybody has a twitter account so many account names in other 
services are available on twitter.
- small dataset in evaluation
- If the assumptions in 4.2 are correct then 40% of twitter accounts are fraudulent. That 
seams high and makes me question if the assumptions are incorrect which would mean 
the benefit of the algorithm are an overestimate.

                            Poster: 3. Yes


