
1 Review A

I reviewed the paper and I had only two comments, but unfortunately

they are both substantive, and at least the first one needs to be addressed

before the paper is published.

1. The paper doesn’t deal with the effects of Karn’s algorithm.

Recall that Karn’s algorithm changes the RTO algorithm if a segment whose RTT

is being measured is lost. As Karn’s algorithm isn’t discussed, the RTO

discussion in section II is incomplete and the understanding of attack

periods is also incomplete. NOTE: I don’t think Karn’s algorithm actually

affects the attack -- as Karn’s algorithm simply requires using a multiple of

the original RTO as the new RTO. But the point needs to be discussed and the

relationship described as Karn’s algorithm is an integral part of the RTT

estimator unless PAWS is turned on. [Karn’s algorithm is published in ACM

TOCS, Nov 1991 and/or Proc. ACM SIGCOMM ’87]

——–
(*) We have cited the above paper (now reference [21]), and changed the text in

Section 2 to better explain Karn’s algorithm:
“ At this moment, the sender enters the exponential backoff phase: it reduces the

congestion window to one, doubles the RTO value to 2 seconds according to Karn’s
algorithm [21], retransmits the unacknowledged packet with sequence number n, and
resets the retransmission timer with this new RTO value.

If the packet is lost again (not shown in Figure 1), exponential backoff continues
as the sender waits for the 2 sec-long retransmission timer to expire. At t = 3 sec, the
sender again applies Karn’s algorithm, doubles the RTO value to 4 seconds and repeats
the process.”

In addition, we have changed the text and discussed the relationship between Karn’s
algorithm and the attack in Section 3.

“If the attacker creates a second outage between time 1 and 1 + 2RTT, it will force
TCP to wait another 2 sec. By creating similar outages at times 3, 7, 15, · · · , an
attacker could exploit Karn’s algorithm and deny service to the TCP flow while trans-
mitting at extremely low average rate.

While potentially effective for a single flow, a DoS attack on TCP aggregates in which
flows continually arrive and depart requires periodic (vs. exponentially spaced) outages
at the minRTO time-scale. Moreover, if all flows have an identical minRTO parameter
as recommended in RFC 2988 [32], the TCP flows can be forced into continual timeouts
if an attacker creates periodic outages.”

——–

2. The second issue is that while the paper looks at varying the original

RTO value, an open question is what would happen if you varied the multiplier

for RTO backoff such that it was no longer a single integer but some

fractional multiplier, uniformly distributed -- would this not break the RTO

1



effect?

——–
(*) This is an interesting approach. However, as shown in Figure 1, as long as the

period of the attack is longer than 1 sec + 2 RTTs, the attacker is able to fully mitigate
the effects of Karn’s algorithm; thus, the proposed use of fractional multiplier would
be inefficient in such scenarios.

——–

2 Review B

This paper provides a rather broad and thorough exploration

of the effects of pulsed attack traffic (or non-congestion

controlled cross traffic) on TCP flows. It brings a combination

of analysis, simulation and Internet experimentation to bear on

the problem. It finds that relatively low aggregate rate attack

traffic can have a disproportionately large adverse effect due

to TCP retransmission mechanisms, and especially the minRTO.

I have no substantial issues with the correctness or

completeness of the paper, and so I believe the paper is ready

for publication more-or-less as is. However, I do have several

comments on the point-of-view taken in the paper and suggest

several steps that the authors can take to improve their paper.

Most importantly, the paper is weakened by resting too much of

its case on [2]. A recommendation that minRTO be set to 1 second

doesn’t seal the issue of what makes a good choice in practice.

There may be little practical difference between a minRTO of 1

second or half a second or less, and a smaller choice would then

be sensible in light of your attacks! This issue becomes

problematic to the reader in VI when it becomes apparent that

many TCPs do not implement minRTO as 1 second but do something

else (unspecified) which for all I know is more successful at

deterring shrew attacks. A better approach for your paper would

be to 1) analyze the dependence on minRTO, 2) note the tension

that prevents minRTO being either very large or very small and

3) give us an appreciation of what happens to the results if

minRTO is shrunk by a factor of 2, 4, or 10. How small would

minRTO need to be to negate the attacker’s advantage? You

basically do 1) and 2) in VII.B (which is why I rate your paper

as an accept already) but you punt on 3). Note that I perceive

the value of your paper as lying in the characterization of this

space, rather than the description of an attack that cannot be

countered. So I do not really care if a minRTO 10x smaller would

2



mostly solve the problem -- that is what I want to know.

——–
(*) Undoubtedly, decreasing minRTO to a small value (e.g., 50 ms) would solve the

DoS part of the problem. This is clearly indicated by Equation (4) for the single-flow
case (e.g., T=a=b=50ms), and by Equation (8) for flow aggregates. We change the
text in Section 7 to address this issue explicitly.

“There are two apparent strategies for increasing throughput on T = b time-scales.
First, it appears attractive to decrease a which would significantly increase TCP through-
put. Alternatively, decreasing both a and b would force the attacker to send very close
bursts, making it no longer a stealthy attack. However, recall that conservative timeout
mechanisms are fundamentally required to achieve high performance during periods of
heavy congestion [2].”

As indicated by the last sentence in the above paragraph, decreasing minRTO would
necessarily reduce the protocol performance in the absence of attack. The main goal
of our Section 7 was to explore these tensions between performance and security.

From the practical point of view, the fact that many TCPs do not implement min-
RTO as 1 second1 does not mean that the attacks are artificial. Instead, our contribu-
tion lies in showing that while increasing minRTO improves protocol performance, it
also opens a severe security hole.

——–

A general issue is that the writing has gotten rather stiff with

boilerplate in various places, e.g., at the start of sections

with an introduction that gets repeated later. This is not

conducive to a good read. An edit pass in which you try and tell

it more like a story can fix this and leave you with a more

memorable paper!

——–
(*) We have made an edit pass and addressed the above issue wherever possible.
——–

I found it curious that SACK was not considerably more effective

than other TCP variants, and in fact that SACK is vulnerable to

the shrew attack in the first place. Why? (This is an example of

an interesting issue that you gloss over while providing all the

boilerplate about experiments and outcomes instead.) As long as

some packets are getting through and some ACKs are getting back,

it would seem that a TCP SACK flow should be able to make some

progress rather than stall with a timeout. But evidently this is

not so. Why? Is it an artifact of how SACK has been added to TCP

as advisory only, or a reflection of an implicit assumption on

reasonable drop rates? Perhaps this is an opportunity for a more

robust transport protocol?

1but rather 200 ms. We have fixed the text in Section 6 to indicate this explicitly.

3



——–
(*) Shrew attacks create short, but extremely high packet loss-ratio events. During

such outages, if all packets from the window of data are lost, TCP (including Sack)
has no alternative but to wait for a retransmission timer to expire. Moreover, the key
problem is that after a timeout, it takes each flow some time to regain their fair share
rate of the network bandwidth. In such scenarios, loss of a small fraction of packets
from the window of data will enforce another timeout. We address this issue in the
text.

“Figure 13 also indicates that all TCP variants, including Sack, are the most vul-
nerable to DoS in the 1 - 1.2 sec time-scale region. During this period, TCP flows are
in slow-start and have small window sizes such that a smaller number of packet losses
are needed to force them to enter the retransmission timeout.”

——–

The above issue is one thread that leads me to believe that your

paper is stronger on the impact of shrew attacks than at

strategies for countering them. It seems plausible that better

transport protocol or router solutions will be found to mitigate

shrew attacks, and at that time the title of your paper may seem

a misnomer (since it implies that you provide effective counter

strategies).

——–
(*) Developing better transport protocols and better router solutions to counter

the attack is certainly possible, yet beyond the scope of this paper. We explored an
important class of existing counter-DoS mechanisms as well as some “first-cut” attack-
specific solutions (e.g., minRTO randomization); in that context, we thought that it
was reasonable to reflect this in the title.

——–

Finally, as a nit, the DOS flow filtering result could simply be

given in English rather than as an unproven formalism. I don’t

think the formalisms you provide are buying you much.

——–
(*) The “DoS flow filtering result” was written formally in order to be consistent

with the previous “DoS TCP throughput result.”
——–

3 Review C

My comments mainly concern two sections in the paper (the

rest of it is already on top of things in my view):

4



Section VII-A is the weakest part of the paper (unfortunate

given the title change of the paper). I was happy to see that

you simulated CHOKe in this version but there are some basic

issues that the paper does not completely get at:

- seems to me that scheduling schemes such as FQ should

completely eliminate the shrew. but you investigate only

preferental dropping which is fine as long as you clearly state

that:

1. scheduling will work (if you believe that claim).

2. are only investigating preferential dropping because you

are curious as to whether simpler strategies would work (and not

because they have similar power).

- more broadly, the effectiveness of the shrew attack depends

on the timescales at which fairness is enforced. scheduling

schemes do so at smaller timescales and are more effective (at

some cost) as a result . preferential dropping schemes do so at

longer timescales and are less effective as a result. this is

why CHOKe is more effective than RED-PD. and maybe why SFB might

be more effective than CHOKe.

- as a nit, referring to [24] repeatedly is a bit annoying.

you should be doing what you think is right and not becuase [24]

said something. especially because their statements were

probably made in the context of a particular form of bad flows

- those with high average rate of sending.

——–
(*) The reviewer correctly observes that a packet-level FQ scheduling has the capacity

to eliminate the effects of the shrew attack. However, there are two problems with the
FQ approach. First, achieving per-flow packet-level FQ has serious scalability problems
which prevents its deployment. Indeed, exactly due to these problems, researchers
developed scalable schemes such as CHOKe or RED-PD, on which we focus in the
paper. Second, if the attacker spoofs packets or performs a distributed shrew attack,
then even packet-level FQ would not help in such scenarios. Because we focus on the
generic shrew attack in the paper, we do not explore spoofed or distributed shrew
attacks. We have change the text in Section 7 to address this issue explicitly.

“Mechanisms for per-flow treatment at the router can be classified as scheduling or
preferential dropping. Scheduling algorithms place flows in different logical partitions
and determine the service rate received by each partition. For example, per-flow Fair
Queuing (FQ) scheduling (e.g., [5]) treat each flow as a single partition. While such
an approach would completely protect the system against the shrew attack (unless the
attacker performs a distributed shrew attack or spoofs packets), per-flow FQ has serious
scalability limitations which prevent its deployment. Due to implementation simplicity
and other advantages of preferential dropping over scheduling, we focus on dropping
algorithms for detection of DoS flows and/or achieving fairness among adaptive and
non-adaptive flows.”

5



However, the price for scalability of preferential dropping schemes such as CHOKe
and RED-PD is their inability to achieve fairness on very short (packet-level) time-
scales, and to protect the system against the shrew attacks. We have fixed the text
regarding reference [24], now [26].

——–

Compared to the rest of the paper, which is very well-written,

Section IV is a bit confusing. Here are my sources of

confusion:

- I don’t buy the optimality claim. Maybe the optimal pattern

is something completely different. Moreover, given the later

results that the shrew need not attack at C means that what you

propose might not be optimal. Maybe you are better off calling

it, for instance, optimized or smarter shrew.

- Section IV.B should be minimum *packet* (DoS streams)

instead of minimum *rate* since you are minimizing the number of

packets and not the rate?

- the term "double-rate" was confusing. there is no doubling

involved. maybe two-rate?

- call B the buffer size instead of queue size?

——–
(*) We have fixed all of the above.
——–

Out of curiosity, why didn’t you simulate 1.5 in fig 19 instead

of 1.2? especally because some OS’s might be doing 1.5 already.

results with a larger b would also be interesting.

——–
(*) It’s been a while since we plotted this figure. Most probably, we picked it because

it looked better than others.
——–

6


