Wi-FM Resolving Neighborhood Wireless Affairs by Listening to Music

Marcel Flores, Uri Klarman, and Aleksandar Kuzmanovic

ICNP 2015

The home network

- Many 802.11 devices.
- Many 802.11 networks!
- Many are poorly configured.
 - Overlapping Wi-Fi channels.
- Controlled by many different "operators."

	🥱 🜒) 96% 🕼 Tue 12:45 PM	N	larce	IF
1	Wi-Fi: On Turn Wi-Fi Off			
5	✓ pathfinder	Α	ŝ	Ì.
1	eduroam		((:	Ł
	Guest-Northwestern		((i:	-
	HP-Print-ec-LaserJet 400 color		((iç	
	mas939-imac	\cap	((iç	t
	Northwestern	\cap	((iç.	
	NUTheaterNet	\cap	((;	
	OpenWrt	\cap	((iç.	L
	TheaterNet	\cap	((:	t

An example

An example

Crossing the lines...

- How can neighbors interact?
 - Can't require APs to explicitly communicate.
 - Can't depend on any kind of AP based signal.
- We will solve this using an *ambient* radio signal for coordination.

What kind of coordination?

- We are not interested in packet level scheduling.
 - Don't want to alter 802.11 itself.
- Would like an approach that allows efficient sharing when the networks are busy.
- This will be achieved with block scheduling.

FM radio

- Ubiquitous in the United States and Europe.
- Penetrates Buildings (unlike GPS).
- Cheap and prevalent antennas.
 - Already included on many Wifi/BT chipsets.
- Comes with included digital signal (RDS).

Radio Data System

- Designed to provide additional meta-information about a radio broadcast.
 - Program name, alternative frequencies, etc.
- Broadcast alongside FM signal at the 3rd harmonic of I9kHz pilot.
- Includes a well defined structure.

Repeating code

How do we use it?

- Use RDS bits as our base unit of time.
 - Data rate of 1187.5 bps.
- Use structure to synchronize to RDS signal.
- Implement non-exclusive scheduling in terms of the blocks.

How do senders schedule?

- Sample the channel, determine which blocks are occupied by other senders.
- Determine a fair share.
- Choose the least contested blocks.
- Repeat process to ensure continued fairness.

Our implementation

- NooElec DVB-T USB radio.
- GnuRadio using RTL SDR .
- Testbed:
 - Arch Linux 3.17.3, on 3.3 Ghz Intel i5 processor.
 - TP Link TL-WDN3800 802.11n card, Ath9k driver.
 - Modified "plug" qdisc to control traffic.

Delay between nodes

Delay between nodes is well under 1ms.

Sync time

WiFM maintains a near perfect sync rate

Sender B

All nodes are scheduled on non-overlapping blocks.

Throughput gain

Throughput gains achieved 80% of the time.

More complex arrangements are possible.

Throughput gain

Greater gains are achieved.

Summary

- Used FM Radio as an external coordination mechanism.
- First to provide a neighborhood coordination mechanism for use across networks.
- Demonstrated implementation which relies on straightforward coordination process.
- Showed throughput gains in testbed experiments.

Thank you!

Related work

- A large body of work exists on performing TDMA with 802.11 networks.
 - Inn the realm of enterprise/managed networks, don't apply to home networks.
- Significant work in general synchronization.
 - Including the use of RDS.
- We are the first to consider neighborhood setting.

Testbed arrangement

Latency improved by nearly 40ms

