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Abstract—Consider a network where nodes are websites and
the weight of a link that connects two nodes corresponds to
the average number of users that visits both of the two websites
over longer timescales. Such user-driven Web network is not only
invaluable for understanding how crowds’ interests collectively
spread on the Web, but also useful for applications such as
advertising or search. In this paper, we manage to construct such
a network by ’putting together’ pieces of information publicly
available from the popular analytics websites.

Our contributions are threefold. First, we design a crawler
and a normalization methodology that enable us to construct
a user-driven Web network based on limited publicly-available
information, and validate the high accuracy of our approach.
Second, we evaluate the unique properties of our network, and
demonstrate that it exhibits small-world, seed-free, and scale-free
phenomena. Finally, we build an application, website selector,
on top of the user-driven network. The core concept utilized
in the website selector is that by exploiting the knowledge that
a number of websites share a number of common users, an
advertiser might prefer displaying his ads only on a subset of
these websites to optimize the budget allocation, and in turn
increase the visibility of his ads on other websites. Our website
selector system is tailored for ad commissioners and it could be
easily embedded in their ad selection algorithms.

I. INTRODUCTION

The World Wide Web attracts millions of users on a daily
basis. This has created an unprecedented opportunity to study
the properties of online social networks that are formed around
popular websites and services (e.g., [1]). Such information is
invaluable for understanding fascinating individual and collec-
tive online user properties. Moreover, the knowledge acquired
in this way is useful for developing advanced socially-aware
Web and Internet services [2], [3].

In this paper, we explore users’ association with different
websites at scale in an attempt to understand how groups of
users collectively walk the Web’. In particular, we study a
network in which nodes are websites, while a weight of a link
that connects two nodes represents the average number of users
that visits both of the two websites over longer timescales.
Such information is invaluable in applications such as search
and advertising. In particular, we build an application, website
selector, on top of such user-driven network. The core concept
utilized in the website selector is that by exploiting the
knowledge that a number of websites share a number of
common users, an advertiser might prefer displaying his ads
only on a subset of these websites to optimize the budget
allocation, and in turn increase the visibility of his ads on
other websites.
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We obtain our network by crawling the popular Google
Trends website [4], which combines information from a
variety of sources, such as aggregated Google search data,
aggregated opt-in anonymous Google Analytics data, and opt-
in consumer panel data. We then study the properties of the
user-driven network and build the website selector on top of
such a network. Our contributions are the following.

First, we provide a comprehensive methodology for gener-
ating a normalized user-driven Web network by strategically
extracting and combining pieces of publicly-available informa-
tion. In particular, our goal is to generate globally meaningful
link weights based on relative local weights available from
individual Google Trends’ snippets. We design a method that
combines crawling and normalization procedures to achieve
this goal. We validate the high accuracy of our approach.

Second, we evaluate the properties of the network. We show
that our network has a small average path length and a strong
clustering coefficient, which demonstrate that our network
exhibits a small-world phenomenon. Moreover, we prove that
the properties are independent from network features in terms
of its size, as well as the seed where we start crawling
the network. Finally, by comparing our network with the
Web and online social networks, we realize that our network
significantly differs from the Web, but to some extent, is closer
to online social networks.

Third, we build an application, website selector, to optimize
advertisers’ campaigns. The selection is performed automati-
cally based on advertisers’ budget. We extensively evaluate our
application and the results demonstrate that website selector
can increase the visibility of ads by more than 22% and
consequently help increase revenues. Finally, our website
selector system is tailored for ad commissioners and it could
be easily embedded in their ad selection algorithms.

This paper is structured as follows. We first systemically
crawl, normalize and validate the network in Section II. We
then evaluate the properties of the network and compare it
with Web as well as online social networks in Section III.
We next propose website selector in Section IV. We finally
discuss related work in Section V and conclude the paper in
Section VI.

II. CRAWLING AND NORMALIZATION

Here, we explain our methodology for obtaining a user-
driven Web network. We first introduce the basic mechanisms
provided by Google Trends in Section II-A. Then, we explain
the construction of the website-affinity-based networks in
Section II-B. Next, we provide a methodology to effectively
normalize such networks, so that all websites in the network
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are scaled to the same unified 'global’ scale. In addition,
because the affinity in the normalized network does not
reflect the absolute traffic information, we bring such absolute
values into the networks in Section II-D, and unify two scale
systems in Section II-E. Finally, we validate our approach in
Section II-F.

A. Background

For a website (e.g., www.nytimes.com), Google trends
[4] provides a list of up to 10 of other websites that its
users have also visited. Moreover, Google trends also shows
the relative likelihood that users who visited this site also
visited other websites. Each website that is searched on Google
trends is considered a parent node in our network, and the
corresponding list returned by Google trends consists of the
children of the parent website. An edge between a parent node
and a child node means that these two websites have common
users. The weights of edges reflect the likelihood of a parent
node’s users to migrate to its children websites, which in turn
shows the affinity among them.

The likelihood of users migration between the parent web-
site and its first child (the website which the parent website’s
users most likely visit) is always scaled to 100% by Google
trends. The likelihood of visiting other children (websites that
the parent website’s users also visit) is scaled to the affinity of
the parent and its first child. For example, in Figure 1(A), the
users who visit website A also visit other 3 websites (D, C, and
E) with a decreasing order based on the number of common
users between A and its children. Assume that the number of
common users shared by A and D is 100K. (This number is
scaled to 100% by Google trends and shown close to the edge
AD in Figure 1(A)). The number of common users between
A and C is 20K, which will be scaled to 20%. Similarly, the
likelihood of edge AE is also scaled to the value of AD.

In addition, Google trends accepts the queries with
more than one website (e.g., ’'www.nytimes.com,
www.cnn.com’). If two websites are searched together

orderly, for the second website, Google trends will provide
the affinity ratio between the second website and the first
website’s children, rather than between itself and its children.
In addition, such relation is scaled to the value between
the first website and its first child as well. As we will
explain in Section II-C, such mechanism is very helpful when
normalizing the network.

B. Crawling the Network

We start crawling the network in a breadth-first way from
three different seeds: the first one is nytimes.com, a very
popular newspaper website with 55M unique visits monthly,
the second one is timesofindia.com, an Indian newspa-
per website of 13M unique visits monthly, and the third one
is sina.com.cn, a Chinese newspaper website of over 73M
unique visits monthly. Starting from three seeds in different
regions to construct the networks enables us to examine the
differences and similarities of these networks’ properties in
Section III.

In every step of the crawling, we record the website as a
node in the network, and the relation between this website
and its children as the edges. The weights of the edges are
also recorded in a straightforward way. Since Google trends
could not provide children information for some websites due
to the insignificant relations between these websites and their
children, the crawler is terminated by itself when there are
no nodes that have children information to further expand
the network. By running for a period of around 15 days, the
crawler collects 297,457 nodes and 2,807,496 edges for the
US-centric network initiating from nytimes.com, 297,443
nodes and 2,807,396 edges for the India-centric network
initiating from timesofinda.com, and 290,532 nodes and
2,700,852 edges for the China-centric network starting from
sina.com.cn.

C. Normalizing the Network

Google trends provide invaluable information for us to crawl
the network and understand the relation among websites. How-
ever, the key issue is that the weights of the edges represent
affiliation values relative to each individual query only. Hence,
such values are insufficient to analyze the affiliation properties
of this network at a global level.

Consider the following example shown in Figure 1(B). The
absolute traffic between B and C is 5K, and this value is set
as 50% since it is scaled to the relation between B and its
first child F whose absolute traffic is 10K. From the relative
values’ perspective, website B has stronger affinity with C
than A does. However, the number of common users between
A and C is 20K, twice as large than that between B and C.
Apparently, not only do such relative values fail to reflect
the real traffic among websites, but also hinder the analyzes
of the network’s real properties. Thus we introduce a series
of approaches to normalize the network in this section, and
validate the correctness of the normalization in Section II-F.

As we explained above, a basic mechanism supported by
Google trends is that when two websites A and B are searched
together orderly, Google trends will provide the relation be-
tween B and A’s children. In the above example, since A and B



there is a back link from a grid node to its ancestor that is a
solid node, the weight of the back link must be the same as
that of the forward link from the solid node to its child. Thus,
in the example of Figure 2 (B), the weight of CA equals to
that of AC. This is due to the fact that the users who look at
website A as well as website C are the same population. Since
node A is a solid node whose edges are normalized, the weight
of CA can be normalized to that of AC (step 1 in Figure 2
(B)). C’s other edges (CD and CE) can also be normalized
based on the ratio of CA to them (step 2 in Figure 2 (B)).
Phase 3: A grid node shares a child node with a solid
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share a same child C, the relation of BC would be scaled to 5%
based on the weight of AD, if A and B are searched together
(refer to Figure 1 (C)). Although this still does not show
the absolute traffic, such mechanism of utilizing child C as a
bridge to bring A and B together could exhibit the real traffic
relationship between both websites. Later, we will introduce
an approach to providing absolute traffic for the networks in
Section II-D and unifying two scale systems in Section II-E.
Once the weight of BC is normalized, the weights of B and
its other children (F and G) can also be normalized based on
the ratio of BC to BF and BG. Continuing the example above,
the weight of BG was 25%, which means the ratio of BC to
BG is 2:1, thus the weight of BG will be normalized to 2.5%
shown at Figure 1 (C).

Phase 1: Selecting a starting point. In order to start the
normalization with a relatively large subset of the network,
which in turn could improve the normalization efficiency, as
shown in Figure 2(A), we first choose the node (C) with the
maximum in-degree. Note that this node is also the one whose
number of parents is the largest. We then randomly choose a
parent node of C’s (say A), and consider the relation between
this parent node (A) and its first child (D) as the standard
weight (step 1 in Figure 2(A)), to which weights in the network
will be scaled. We next normalize other parent nodes by
searching them separately with A in Google trends. Once the
relation between the parent nodes (say B) and C is scaled to
the weight of AD (step 2 in Figure 2(A)), we normalize B’s
other edges correspondingly based on the ratio of BC to these
edges (step 3 in Figure 2(A)). Once the nodes and their edges
are normalized, we label these nodes as solid to indicate that
their edges are normalized, and their children as grid to express
that their edges are not normalized yet. Interestingly, the nodes
with the maximum unnormalized in-degree in three networks
that we investigate are facebook.com. This means that
online users who visit other websites are most likely to
visit facebook.com as well. We find this makes sense due to
Facebook’s increasing popularity [5].

Phase 2: A back link from a grid node to its parent. If

or a grid node (illustrated as Dot in Figure 2), and this child
is also a descendant of a solid node, we can search this grid
node and the solid node together to normalize this grid node.
For example, in Figure 2 (C), A is already normalized and
it shares a same child C, with D. Entering A and D together
in Google trends can normalize the edge of DC (step 1 in
Figure 2 (C)). Moreover, D’s other edges (say DE) can also
be normalized subsequently (step 2 in Figure 2 (C)).

Phase 4: An empty node shares a child node with a solid
node. An empty node in Figure 2 indicates that this node is
neither a solid node nor a grid node. In the network, if such
nodes have a child that is also a descendant of other solid
nodes, they can also be normalized. In the example of Figure 2
(D), D is an empty node and has a child C. C is at the same
time also a child of the solid node A. Consequently, the edge
of DC is normalized by that of AC (step 1 in Figure 2 (D)),
and the edges of DE is scaled to that of DC correspondingly
(step 2 in Figure 2 (D)).

Repeat phase 2 to 4. If there is no node that satisfies a
previous phase’s requirements, the normalization enters the
next step. Furthermore, if the normalization could not go
further with any nodes in phase 4, it starts from the step 2
again in a new loop.

We run the normalization experiment on three networks, and
we find that the above rules help us achieve high normalization
rates. In particular, we manage to normalize (label nodes as
solid) over 97.65% nodes of each of the three networks in
17 days. We are unable to achieve 100% normalization rates
mainly for the following two reasons: (¢) Nodes that are leaves
in the network can not be normalized due to the absence of
links. (#7) Nodes have children (links with other nodes), but
they neither point back to their parents, nor share their children
with other solid nodes.

Google trends regularly updates its data for websites every
month. Building the network in the first cycle, and normalizing
it in the other cycle, might induce errors in the normalization
procedure. To avoid any effects of such errors, we decide to use
the portion of the nodes that are normalized within the same
cycle.1 In particular, we normalize 217,515 (73.12%) nodes of
the US-centric network, 214,405 (72.08%) nodes of the India-
centric network, and 218,566 (75.23%) nodes of the China-
centric network within the same cycle (12 days for normal-

'Google trends provides the month/year information for its data. In this
way, we are able to realize that the crawling and normalization are executed
within the same cycle.



ization and 27 days in total for crawling and normalization).
While we necessarily reduce the normalized network size in
this case, we assure that we induce no normalization error
in the process. Moreover, we find that the network exhibits a
scale-free phenomenon, as we explain in detail in Section III
below.

D. Adding the absolute traffic into the network.

By normalizing the networks, we manage to adjust the
weights of the edges in the networks to the same scale system.
However, these weights do not reflect the absolute traffic
values yet. Because one of our goals is to build a website
selection application (Section IV), we strive to estimate the
total number of unique users that an advertiser could reach
based on its budget. Thus, our next goal is to convert the
relative affinity weights into absolute weights.

Driven by this goal, we further crawl the number of unique
users for each website in the dataset from Doubleclick ad
planner [6]. For example, www.nytimes.com is tagged with
the traffic of 55M unique visits monthly. We find that the
figures shown in Doubleclick are the same as that shown in
Google trends. This makes sense because Doubleclick [7] was
acquired by Google [8], and hence its data is in line with
Google’s. This experiment is executed for 7 days in parallel
with the normalization (Section II-C), and is just after crawling
the networks (Section II-B). In this way, for each website
in the network, we are able to label the number of unique
users information with it. We use such absolute traffic values
to convert the relative weights of edges in the network into
absolute weights in Section II-E below.

E. Unifying two scale systems

So far we have a normalized website-affinity-based network
where the weights of edges are in a relative scale system
(Section II-C). Also, we have the number of unique users
information in the absolute scale system for each website
(Section II-D). Now, we are about to use this absolute traffic
information to convert the relative weights of edges in the
network into absolute numbers. Before moving to such nor-
malization of two scale systems, we first verify one issue: For a
website, are its top 10 children websites sufficient to represent
the relations among itself and all its children? The answer to
this question would help us to correctly conduct the effort of
normalizing two scale systems later.

Top 10 children are sufficient. For a website, we compare
the traffic from other websites and the traffic from its top
10 children to check the proportion of the traffic that its top
10 children take up. As we discussed in Section II-A, if two
websites are searched together orderly in Google trends, for
the second website, Google trends will provide the affinity
ratio between the second website and the first website’s chil-
dren, instead of between the second website and its children.
Based on this mechanism, we conduct the experiment in the
following steps. We first randomly choose 500 candidates for
each network. We then select a website from the pool of all the
remaining websites (217,015 = 217,515 -500 in the US-centric
network, 213,905 = 214,405 - 500 in the India-centric network
and 218,066 = 218,566 -500 in the China-centric network) in

the normalized networks. Next, we search this website with a
candidate orderly at the same time to normalize the weights of
edges between its children and the candidate. We repeat this
process until the pool of other websites is exhausted for each
of all candidates.

Certainly, such experiment yields a large amount of requests
to Google trends (total traffic in each case of three networks =
500 * the number of non-leaf nodes in the network), and takes
up another three days (27 days for crawling and normalization,
30 days in total which are in the same cycle). These are exactly
the reasons why we limit ourselves to a reasonable size of
testset, 500 in particular. Finally, for each of the candidates, we
examine the proportion of the traffic from its top children to its
total traffic. We find that the top (up to) 10 children account for
over 77.16% of traffic, which is a lower bound for all 500 web
sites that we explored. Thus, we show that a node has strong
affiliation only with its top few children. The aggregation of
normalized weights of edges between a node and its children
beyond the top 10 is certainly small. This implies that our
result is in line with the well-known Pareto principle [9], [10],
[11] (also known as the 80-20 rule). Indeed, our results show
that approximately 20% of the children websites with strong
affinity provide 80% traffic volume for the parent website.
Consequently, for a website, the traffic from its significant
children are sufficient enough to represent its total traffic.

Converting the relative weights to absolute weights.
We conduct the normalization of two scale systems in the
following steps. Given the fact that for each website, its top 10
children account for over 77.16% of its total absolute traffic.
We first obtain the total absolute traffic that its top (up to)
10 children websites take up in a straightforward way. Then,
for each edge between a child and its patent, we calculate
its absolute value based on the proportion of the weight of
this edge to the weights of edges between its parent to all
children. For example, in Figure 1, assume that for website
A, its number of unique users is 168.48K, then the absolute
traffic that its top (up to) 10 children take up is 130K. Next,
the absolute weight of AD is 100K = 168.48K * 77.16% *
100 / 130. Accordingly, the absolute weights of AC and AE
are 20K and 10K respectively.

F. Validation

In this section, we verify the issue: Does the normalized
network accurately reflect the affinities of websites on the
Internet? For this purpose, we utilize the number of unique
users information from Doubleclick ad planner as the criterion
to verify the correctness of our normalized network. To provide
a baseline, we also evaluate our un-normalized network. In
particular, for each node in both networks, we consider the
sum of the weights of its edges as its total traffic. We
realize that such substitution is not fully accurate, since the
two networks do not consider the traffic from weak affinity
websites. However, as we explained above, it is sufficient for
us to evaluate the network features.

Next, we rank the websites in both un-normalized and
normalized networks in terms of their traffic. In particular,
for each website in the un-normalized network, we simply add
the (un-normalized) weights of edges, while in the normalized



one, since the traffic has been scaled to the standard weight,
we add the normalized weights of edges. We then rank the
website based on its total number of unique users obtained
from the Doubleclick ad planner. We finally compare the lists
of ranking in both cases with the ranking in Doubleclick.
We find that most websites in the ranking list of normalized
network have the exact sequence in Doubleclick’s list, e.g.,
159,460 (73.31%) websites in the normalized US-centric trace
(we explain this number on more detail below). However, only
32,126 (14.77%) websites in the un-normalized US-centric
trace have the correct sequence. Such a huge discrepancy
between two networks justifies the efforts of normalization.

The reasons for the normalized network being unable to
achieve 100% ranking match lies in our approach’s limitation
in normalizing the leaf nodes. Indeed, our additional experi-
ments show that the ranking for non-leaf nodes in our network
follows the Doubleclick popularity list in as many as 91.66 %
of all cases. In summary, we show that our normalization
efforts yield highly accurate results, and hence we proceed
with evaluating the properties of our normalized networks
below.

III. NETWORK STRUCTURE ANALYSIS

In this section, we attempt to completely characterize our
network. For the purpose of this analysis, we use three
datasets, which are a US-centric network, an India-centric
network, and a China-centric network. The reasons for using
the three datasets is to study regional-based variations, e.g., if
the network properties are different based on their sampling
seeds. Later, we show that the network properties change very
little with a change in the network seed and therefore, it is
possible to estimate similar properties for other networks with
different sampling seeds.

A. Network properties

1) Weighted Degree Distribution: Degree distribution is
defined as the distribution of the number of links that the
nodes in a network have to other nodes. We plot the weighted
degree distribution of all nodes for each dataset. The results
are displayed in Figure 3 that is presented in a log-normal
scale.

Our results show that the weighted degree distribution for
all networks is almost the same and follows a log-normal
curve. Another noticeable fact is that most degree weights
are concentrated between 10 and 10,000 for all networks (the
large portion shown from 1 to 4 of the x-axis in Figure 3).
The distribution for three networks shows a certain diversity
in terms of degrees. The negative x-axis extends to -4 in
the case of the US-centric network indicating that there are
nodes that display very small degrees. For the China-centric
network, however, the positive x-axis is over 8 showing that
there exist nodes that have very large degrees. Moreover, the
peak of the curves are seen between 2 and 3 for all three
networks. Furthermore, the number of nodes reaching peak
in the US-centric network is larger than that in India-centric
network and China-centric network. As we will explain later,
such nodes with very high degrees are strongly connected
in the network. Clearly, despite the similar distributions, we

TABLE I
SUMMARY OF AVERAGE PATH LENGTH AND DIAMETER RESULTS

[N India China | WEB | Online social networks
Nodes 217,515 | 214,405 | 218,566
Average Path | 7.033 7.141 7.318 16.12 4.25 t0 5.88
Diameter 15 15 15 905 9 to 27

can notice some distinguishing elements in three networks.
More of these similarities and differences are highlighted in
the following sub-sections.

Compared with Web [12] and online social networks [13]
that uniformly follow a power-law distribution, our network
follows a log-normal distribution. Such a distribution is due
to the fact that the traffic of user migration among websites
are usually similar. Likewise, our network does not show
web sites with insignificant traffic volumes, because such sites
are filtered out by Google Trends. Hence, only very few
websites have very large traffic, and very few websites exhibit
very small traffic too.

2) Average Path Length and Diameter: Average path length
for a network is defined as the average of shortest path lengths
between every pair of nodes. It is a measure of the efficiency
of information transfer on the network. Diameter, on the other
hand, is defined as the maximum of all shortest path lengths
between any two nodes. The results are captured in Table I.

Comparing with US-centric and India-centric networks, the
China-centric network has a relatively larger average path
length due to the way these networks are clustered (Sec-
tion I1I-A3). With the experiments conducted, we discover that
Chinese dataset consists of clusters containing nodes with high
degree (high-degree clusters) in the core, and the clusters with
less frequent, low degree nodes (low-degree clusters) on the
fringes. The reason for the larger average path length displayed
at the China-centric network is because high-degree clusters
and low-degree clusters are loosely connected.

The US dataset exhibits the shortest average path length
among the three networks. This attributes to the fact that the
nodes with high degree are clustered in the core, and in turn
well connect with other nodes. As we will demonstrate in
Section III-A3, the India-centric network tends to be uniformly
clustered. Thus, its average path length is larger than US’s, but
shorter than China’s. Despite the variance among the three
networks, we can notice that the difference is not significant,
and it is independent from the seed where we start crawling.
Furthermore, such seed-free phenomenon is even more clear
on the diameter property, due to the networks’ similar sizes.

The Web [12] has been shown to have a diameter of 905
and average path length of 16.12. Each of the four social
networks studied in [13] have average path lengths lying
between 4.25 and 5.88, and diameters ranging from 9 to 27.
Given our network structure’s similarity to the construct of
social networks, the similar values are not unexpected. In the
Web domain, websites in different regions or with different
topics may not be connected which makes the Web’s diameter
and average path length incredibly larger. However, websites in
our networks are connected by users’ migration, even though
they do not have a physical link at the network-level. Thus, our
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TABLE III

network is more connected than Web. (We will demonstrate
this fact in Section III-A3 below.)

TABLE I
SUMMARY OF CLUSTERING COEFFICIENT RESULTS

UsS WEB
217,515
0.2332

India
214,405
0.2336

China
218,566
0.2443

Online social networks

Nodes
Clustering

0.081 0.136 to 0.33

3) Clustering Coefficient: The clustering coefficient of a
node with N neighbors is defined as the number of links
that exists between the nodes N neighbors divided by the
number of possible links that could exist between the nodes
neighbors (N*(N-1)). The clustering coefficient of a graph is,
then, defined as the average clustering coefficient of all its
nodes. The results are listed in Table II along with parameters
in Web and online social networks.

It is clear from the table that the clustering coefficients
are almost identical irrespective of the sampling location.
The slightly lower values for the US-centric network and
India-centric network indicate that they are not as strongly
clustered as the China-centric network. Combining this result
with the large number of nodes with high degree observed in
Section III-Al, and the larger average path length learned
in Section III-A2, we confirm that the nodes with very high
degrees and these with low degrees are separately clustered
and loosely connected with each other in the China-centric
network.

Nodes in the US dataset, on the other hand, are clustered
in a different way. In particular, nodes with high degrees are
clustered in the core, while low degree nodes are not well
clustered and scattered in the network. Thus, the clustering
coefficient is smallest. The India-centric network sits in be-
tween. In particular, the nodes are more uniformly clustered,
compared with two other networks.

Table III shows the ratios of the observed clustering coeffi-
cient of the proposed networks to those of their corresponding
Erdos-Rényi (ER) random graphs [14], with the same number
of nodes and edges. ER graphs have no link bias towards local
nodes. Hence, they can be considered as a baseline for the
degree of clustering in the proposed networks. In particular,
the clustering coefficient of the three networks in Table III are
four orders of magnitude larger than their corresponding ER
random graphs. Such a high clustering coefficient, suggesting
the presence of strong clustering, can be explained as follows.
A group of online users usually visit a number of same
websites that are in turn strongly connected by ’virtual® links

THE RATIOS OF THE OBSERVED CLUSTERING COEFFICIENT OF THE
PROPOSED NETWORKS TO THESE OF THEIR CORRESPONDING
ERDOS-RENYI GRAPHS

UsS India China
Nodes 217,515 | 214,405 | 218,566
Clustering | 0.2332 0.2336 0.2443
Ratio 2814.23 | 2790.19 | 2856.09

from users’ perspective.

Combining the large clustering coefficient and the small
average path length and diameter observed in Section III-A2,
we recognize that our network is a small-world network [15].
The values we obtained are also close to the online social
networks clustering coefficients which range from 0.136 to
0.33 [13], but far away from Web’s clustering coefficient that
is 0.081 [16]. The higher value of our networks clustering
coefficient as compared to the Web is clearly because of
the strong relationships between the nodes in our datasets,
due to construction. The nodes in our datasets exhibit close
relationships because the linkages represent the weights of
user movement from one node to another. Online social
networks on the other hand would tend to have even stronger
relationships and, as a result, higher clustering coefficients.

Seed-Independent properties. For the parameters we have
investigated, they do have a small difference in terms of
their values displayed on different networks. However, as
we pointed out previously, such variance is not significant,
and thus, we conclude that our networks exhibit a seed-free
phenomenon.

Scale-Independent properties. Here, we investigate if the
network properties change significantly along with the increase
in network size. We present the results for the India-centric
network due to the space limitation. In particular, the experi-
ments conducted in previous sections are based on the India-
centric network with 214,405 nodes (72.08 % of the network
normalized after 12 days). Next, we compare these results
with the ones obtained from the same network that consists
of 290,465 nodes (97.65% of the network normalized after
17 days). In this bigger network, the most degree weights
again are concentrated between 10 and 10,000 and the peak
is observed between 100 and 1,000. The average path length
of 7.531 (was 7.141), the diameter of 16 (was 15), and the
clustering coefficient of 0.2454 (was 0.2336) demonstrate that
the network properties change very little with a change in the
network size and therefore, it is possible to estimate similar



properties for a bigger, more informative network.

IV. WEBSITE SELECTOR

In this section, we explore the utility of our user-driven
network. Given the structure of this network, the most obvious
use lies in e-commerce and the specific area that we target is
online advertising. In particular, advertisers want maximum
”bang for the buck” or the maximum number of visitors they
can get for their ads within their budget. By providing the
shared user information, our graph ensures that the advertisers
are not paying double for the same set of visitors and gives
them the optimum visibility for their budget.

A. CPM revenue model

Currently, there are three popular revenue models in use
for online advertisements - CPM (Cost Per Mille), CPC (Cost
Per Click), and CPA (Cost Per Acquisition). For the purpose
of our research, we restrict our attention on the CPM model.
Under this model, the advertiser is charged in multiples of
thousand impressions. An impression is defined as a load of
an advertisement. (This excludes page refreshes or reloads.)
This is similar to other traditional advertising schemes, where
the advertiser has to pay for his advertisement irrespective of
whether he can generate any mindshare or revenue with it.

B. Cost Optimization

Under the traditional model of advertising, an advertiser
or the commissioner has three main decision criteria when
creating a list of websites that the advertiser may want to
work with. These are - ) his budget, i) the cost associ-
ated with advertising on each of these websites, and i)
the popularity/ranking of websites. Simply put, the goal he
seeks to achieve is getting the maximum viewership for his
advertisement within his budget. With our research, we show
that by including a fourth input in the decision process - iv)
the number of shared users - the advertiser can get maximum
“bang for his buck”. The improvement achieved over the
traditional optimization problem can be as high as 22-26%.

We model the problem using simple non-linear optimiza-
tion. As inputs to the problem we have - ¢) the advertiser’s
overall budget, i) the CPM for each website, iii) the number
of unique users (or popularity) of each website, and iv)
the number of shared users between every two websites.
The first two inputs help us define the constraint for the
optimization problem and the last two help in defining the
objective function. Mathematically, the problem is stated as
follows.

Let:

e Y, : the binary decision variable representing selec-
tion/rejection of a node i from the advertising plan

e U, : the number of unique visitors associated with node
i

e (;; : the number of shared visitors between node i and
node j

e S, : the CPM associated with node i

e D3 : the advertiser’s budget

Then the objective function can be defined as

TABLE IV
PERFORMANCE IMPROVEMENTS REALIZED USING THE ’sub-optimization’
AND THE ’website selector’, KEEPING THE ’greedy approach’ AS BASELINE

] | Sub-optimization | Website selector |

US network 0.06% 24.85%
India network 0.18% 22.38%
China network 0.12% 25.79%

f:Mam(iUiin— iCinYiij)

i=1 i,j=1,

1<j

n
Subject toZSi xY; <B
i=1

, where n is the number of websites in our dataset. This
makes it an optimization problem with a non-linear objective
function and a linear constraint. There can be a concern that
we are ignoring higher order relationships by assuming that
the shared user base between any nodes i and j is completely
independent of the shared user base between another set of
nodes i and k. The concern is well founded, but, because
we restrict our attention to publicly available data only, we
have to model all binary relationships as exclusive of each
other. An ad commissioner can have a more holistic view
of the network traffic and would be able to explore the
higher order relationships easily. Moreover, it is easy to prove
that this approach, by ignoring higher order relationships, is
underestimating the objective function. (Clearly, by reducing
the effective number of shared users, we will only increase the
value of f.) Our results are, therefore, far from being overly
optimistic. Given more information about user relationships
between nodes, the model will only better itself.

C. Experiment

We design a tool, which we call the “website selector”,
around the presented model. We test it on three datasets -
US-centric network, India-centric network, and China-centric
network. To solve the optimization problem, we use Knitro
[17], a commercially available optimization tool. The problem
is modeled using Matlab. A random normal distribution is
used to compute the CPM values for the websites, since this
information is not publicly available. But it is assumed that this
information will be readily available to the concerned decision
makers.

We compare our results with those achieved using two other
techniques - ) a simple greedy approach where we choose the
websites in ascending order of their CPM until we reach our
budget constraint (greedy approach), i) a linear optimization
approach to maximize the number of unique visitors subject
to the budget constraint, ignoring the shared users information
(sub-optimization).

The Table IV presents a clear picture of the effectiveness
of the website selector in maximizing viewership for the
advertisers. In particular, the viewership advantage provided



by the website selector is as high as 24.85% for the US-
centric network, 25.79% for the India-centric network, and
22.38% for the China-centric network, when compared to the
greedy approach, constrained by the same budget of $50,000.
The results achieved by the sub-optimal approach and greedy
approach are almost identical, as shown in Table IV.

The impact of the solution is also evident in the fact that
for the US-centric dataset approximately 17% of the top 1000
extremely high volume traffic sites (monthly traffic > 4.5M)
are eliminated because of their shared user relationships with
other websites, while only 0.1% are eliminated using the sub-
optimal approach, which does not use the shared user data. The
figures are 17% and 0% for the top 1000 in the Indian dataset,
and 16% and 0% respectively for the top 1000 websites in the
Chinese dataset. Intuitively, 0% of the top websites will be
eliminated under the greedy approach.

By eliminating the high volume, high cost websites, based
on the shared relationships, our methodology is able to deliver
a net higher number of unique viewers within the same budget.
The results prove conclusively that shared user information
should be an integral part of decision making for advertisers
seeking to achieve a 'true’ maximum visibility within their
budgets.

V. RELATED WORK

Here, we present the related work in the following two
areas: (z) using Google Trends data and (¢z) optimizing online
advertising. In the Google Trends domain, our work relates
to the previous work [18], [19] in the sense that the authors
also utilize the information from Google trends. In particular,
authors in [18], [19] could track and predict flu-like illness
in a population by analyzing health-seeking behavior in the
form of online web search queries. A detection of disease
activity in a place can be made, if a volcanic increase of
searching on flu-related keywords is observed. While we share
the same source of data, our work differs from theirs in that
we exploit information about the affinities among websites,
which is another valuable resource given by Google trends, to
investigate the properties of a user-driven network.

In the online advertising domain, our work reflects a fre-
quency capping requirement for the advertisers [20]. Few
major ad commissioners implemented this requirement in a
different way. In particular, individual users are tracked across
websites in terms of their cookies. Thus, the same ad is not
shown to the user, once the number of its appearance (to that
user) is more than the specified frequency capping. Besides the
fact that such cookie-based approach is still being challenged
[21], this method is incapable of predicting the number of
individual viewership an advertiser can reach in advance, and
selecting the best website candidates with which an advertiser
wants to collaborate.

VI. CONCLUSIONS

In an attempt to understand how users’ interests collectively
spread on the Web, we design a crawler which gathers the
information about the affinities among websites from Google
trends to form a user-driven network. We propose, utilize,
and evaluate a series of approaches to globally normalize

this network and validate its high accuracy. Based on this
user-driven network, we design an optimization application,
website selector, that can be used for advertisers’ campaigns.
The application effectively selects a group of websites whose
number of common users is minimal subject to advertiser’s
budget and targeting preferences.

Our key contributions are the following. (z) We discover that
the user-driven Web network exhibits an evident small-world
phenomenon; it has a small average path length and a large
clustering coefficient. We also find that the network properties
are both scale-free, i.e., the properties are irrespective of
network size, and seed-free, i.e., the properties are independent
from the seed where we start crawling the network. (¢7) In
comparison with the Web and online social networks, we
find that the user-driven network substantially differs from the
Web network, but to some extent is closer to online social
networks. Hence, we conclude that the human component
dominantly affects the properties of this human-driven Web
network. (717) We extensively evaluate website selector and
the results demonstrate that it is able to increase the visibility
of ads by more than 22% and consequently increase revenues
for advertisers. (¢v) Our website selector system is tailored for
ad commissioners and it could be easily embedded in their ad
selection algorithms.
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