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Abstract—The current Internet content delivery model assumes
strict mapping between a resource and its descriptor, e.g., a JPEG
file and its URL. Content Distribution Networks (CDNs) extend
it by replicating the same resources across multiple locations, and
introducing multiple descriptors. The goal of this work is to build
Web-LEGO, an opt-in service, to speedup webpages at client side.
Our rationale is to replace the slow original content with fast
similar or equal content. Further, we perform a reality check of
this idea both in term of the prevalence of CDN-less websites,
availability of similar content, and user perception of similar
webpages via millions of scale automated tests and thousands
of real users. Then, we devise Web-LEGO, and address natural
concerns on content inconsistency and copyright infringements.
The final evaluation shows that Web-LEGO brings significant
improvements both in term of reduced Page Load Time (PLT)
and user-perceived PLT. Specifically, CDN-less websites provide
more room for speedup than CDN-hosted ones, i.e., 7x more
in the median case. Besides, Web-LEGO achieves high visual
accuracy (94.2%) and high scores from a paid survey: 92% of
the feedback collected from 1,000 people confirm Web-LEGO’s
accuracy as well as positive interest in the service.

Index Terms—Web acceleration, quality of experience, crowd-
sourcing, network performance

I. INTRODUCTION

High Quality of Experience (QoE) on the Web is essential
for both content providers and end-users. QoE directly affects
content providers’ business revenues and clients’ willingness
to wait for and revisit a webpage [1], [2]. Amazon has reported
that every 100 ms increase in page load time costs them 1%
in sales [3]. As a result, significant efforts have recently been
made from both industry (e.g., QUIC, SPDY, and HTTP/2)
and academia [1], [4], [5], [6], [7] to design tools and novel
protocols which can reduce page load times.

Despite these efforts from both industry and academia,
Content Distribution Networks (CDNs) are still the most
valuable asset to speed up web content delivery. CDNs disrupt
the Internet content delivery model from device-centric to
content-centric, and move popular content close to the users
by leveraging hundreds of thousands of servers distributed
worldwide [8], [9]. To further improve user’s QoE, CDNs
redirect clients to different servers over a very short time scale
by leveraging extensive network and server measurements.

Fig. 1. User opinions on trading content strictness for faster webpages.

While CDNs undoubtedly help content providers, only
popular content providers can afford their services. Despite
the availability of free (basic) CDN services from providers
like CloudFlare [10] , 36% of Alexa’s top 1,000 websites (and
77% of the top one million websites) do not use a CDN. Yet,
the same constraints regarding user experience and revenue
loss for associated content providers hold for such websites.
In a way, this creates a negative cycle where websites fail to
attract clients due to their poor performance, yet improving
performance depends on revenues from the clients.

The numbers above suggest that “server side” technologies
to improve page load time–such as CDN adoption, update to
HTTP/2, or other–are unlikely to be deployed where needed
the most. Motivated by this observation, the goal of this work
is to build a client side mechanism (Web-LEGO) to speedup
webpages in the absence of server side cooperation. Our key
idea is to trade content strictness for performance. By enabling
users to download similar, yet not necessarily the same content
they requested (e.g., a similar but not the same JPEG file as
shown in Figure 1), we generate the opportunity to locate faster
content thus implicitly speeding up a webpage. Nevertheless,
Web-LEGO can be coupled with all current popular web
accelerating methods (e.g., optimizing dependency graph and
caching [1], [4], [5], [6], [7], [11], [12], [13]).

In this paper, we went one step further and relaxed the latter
constraint proposing a novel content delivery model where



TABLE I
FRACTION OF WEBSITES USING CDN SERVICES AS A FUNCTION OF

WEBSITE POPULARITY (ALEXA RANKING).

top-100 top-1K top-10K top-100K top-1M
70.0% 64.3% 49.3% 35.4% 22.9%

similar content can be downloaded from arbitrary servers. We
realized this abstract idea into Web-LEGO, a concrete solution
which requires no changes to the existing Internet infrastruc-
ture. Web-LEGO identifies similar content on the fly and offers
the best available copy with minimal distortion of content
exactness. Toward a comprehensive solution for speeding up
webpages leveraging widely existed similar content, we make
the following contributions:

• With millions of automated tests and thousands of real
user feedback, we present a large scale reality check to
understand the feasibility of Web-LEGO in term of the
prevalence of CDN-less websites, availability of similar
content, and user perception of similar webpages.

• We design and implement the idea as Web-LEGO, an opt-
in speedup service where users can trade faster webpages
for slightly different content at client side. As far as
we know, this is the first webpage accelerating service
leveraging the widely existing similar (and equal) content
widely deployed on the Internet.

• Our final evaluation with large scale tests shows that
Web-LEGO brings significant improvements in term of
reduced PLT (up to 5.5s) and uPLT (up to 5s).

• We also discuss the potential problems which can meet
when Web-LEGO is deployed in the wild in the future,
e.g., advanced alternative content selection, security, and
economic sustainability problem, etc.

II. REALITY CHECK

Web-LEGO is motivated by three assumptions that we set
out to verify: 1) a significant fraction of websites do not use a
CDN, 2) the Internet abounds of similar content, and 3) users
are willing to trade content strictness for faster websites.
Prevalence of CDN-less websites Web-LEGO aims to im-
prove the performance of not-so-popular websites that cur-
rently do not use a CDN (CDN-less), either to avoid extra costs
or due to a lack of technical expertize. This raises the question:
how many websites are CDN-less today? Table I shows the
fraction of websites that are hosted by at least one CDN from
the Alexa’s top 100 up to Alexa’s top 1 million websites. This
data was obtained by querying whatsmycdn.com, a public
service which reveals the underlying CDNs for an arbitrary
URL [14]. The table shows that while the majority of popular
websites are hosted by CDNs, e.g., 70-64.3% if we focus on
the top 100 and 1,000 websites, only 22.9% of the Alexa top
1 million websites use at least one CDN.
Content similarity Our work relies on the underlying assump-
tion that the Internet abounds of similar content, e.g., images
of the same bridge from a different angle (see Figure 1).
We investigate this assumption by extracting all image URLs
embedded in 100 CDN-less webpages randomly selected

Fig. 2. Visualization of user feedback on Web-LEGO alternative websites ;
50 websites, 1,000 paid participants, 6,000 responses.

from Alexa and searching for similar images using Google
Images [15]—whose reverse image search allows to locate
similar images across billions entries. We find that Google
Images returns at least 10 similar images for 92% of cases, and
at least two similar images for 97% of cases. The procedure
above was repeated also for 100 CDN-hosted websites and
no significant difference was observed. This result suggests
that similar content does exist, as we further verify in
Section IV-B.
User Feedback Web-LEGO is designed as an opt-in service,
and its users are informed to be trading faster webpages for
slightly different content. Estimating how many users would
accept this compromise is hard, as it requires launching the
service and attracting a substantial user-base. We thus resort
to crowdsourcing to shed some light on this question.

We use our previous work – Eyeorg [16] , which is a
system for crowdsourcing Web QoE measurements, to collect
user feedback on whether they would consider Web-LEGO-
generated webpages as alternatives to an original page, granted
that they can be served faster. We generated a new experiment
type where two snapshots (instead of videos) of fully loaded
webpages are presented side by side (see Figure 1). Prior to
the test, participants are informed that the page on the right
was automatically generated by our algorithm with the goal to
be similar to the original one but faster. Participants are also
informed that the text was not altered, and that only images
have been potentially altered. Participants are finally asked to
rank the proposed alternative websites on a scale 1 (very poor),
2 (poor), 3 (acceptable), 4 (good), and 5 (very good).

Using the methodology above, we run an Eyeorg cam-
paign where we ask each paid participants to score 6 side-
by-side website comparisons. We recruited 1,000 users on
Appen (cost: $120), and collected 6,000 evaluations of 50
webpage comparisons (∼120 scores per webpage). Paid par-
ticipants are selected as “historically trustworthy,” a Appen’s
feature which guarantees trustworthy participants at the cost
of a longer recruitment time. We further discard participants
with potential low quality, i.e., participants who skipped our
detailed instructions, spent less than one second on a task, pro-
vided always the same score across six website comparisons.
This filtering accounts for about 7% of the paid participants.



Figure 2 visualizes the scores collected per webpage. The
majority of the scores (92.5%) are positive, i.e., acceptable,
good, or very good. On average, a website only had ∼12%
of the scores which were negative. We visually inspected
websites where more than average low scores were observed,
e.g., 25% for website-31. A recurrent pattern was observed:
slightly different image sizes cause small variations to the
page layout. Participants could spot these minor variations
because of the two pages being displayed side-by-side which
is necessary for the study but also an adversary condition for
Web-LEGO which is not to be found in regular browsing.
This study indicates that Web-LEGO is doing a good job in
selecting alternative content (see Section III). Further, it shows
encouraging results with respect to the potential adoption of
the novel content delivery model here proposed.

III. DESIGN AND IMPLEMENTATION

A. Design

How does Web-LEGO work? Figure 3 shows Web-LEGO’s
three main components: client, similarity storage server (3S),
and reverse file search server (RFSS). The Web-LEGO’s client
has the goal to intercept regular user requests and replace them,
if possible, with equal or similar content it has obtained from
alternative resources. Such alternative resources are provided
by 3S which, very much like DNS, responds to Web-LEGO’s
client queries for extra content resources. Finally, the RFSS
is responsible to collect similarity information, i.e., identify
acceptable alternative content resources.

Web-LEGO’s client intercepts web requests and 1) forwards
them to its target server, 2) forward requests for web objects
supported by Web-LEGO (images, JS, and CSS) to 3S, seeking
for alternative resources. Upon the reception of a content
request (URL), 3S looks for such URL in its database. In case
of a hit, N alternative resources for the requested content are
provided. In case of a miss, a negative response is returned to
the client while the original request is forwarded to the RFSS.
The RFSS performs a reverse file search for this content,
i.e., it finds alternative same or similar files, and returns
alternative URLs to 3S so that future requests for the same
content will not result in another miss. During the reverse file
search progress, RFSS will consider the content providers’
preferences of the original request and similar alternatives
based on the similarity control headers to avoid the possible
content inconsistency and copyright problems. Reverse file
search is an active research area [15], [17], [18], [19], [20],
and many operational systems exist in this domain [15], [18],
[20]. Among them, we utilize Google Images and TinEye; we
detail our use of these services below.

Upon the reception of N alternative resources for some
content, the Web-LEGO client attempts contacting each of
them. Finally, whichever of the (N+1) requests—the original
requests plus these N—completes first, its associated object is
returned to the application. Note that the N extra requests for
similar content pay an extra latency compared to the original
request due to the communication with 3S; however, Web-
LEGO aims at finding alternative content hosted on better-
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Fig. 3. Web-LEGO architecture.

provisioned and/or closer servers. Further, this latency can be
minimized by caching and/or prefetching popular resources
for alternative content.
How many alternative resources does Web-LEGO query?
We here discuss N , or the number of alternative resources
that Web-LEGO queries for each original request.A similar
problem has been analyzed in depth in the context of reducing
latency through redundant requests [21], [22], [23]. While
Web-LEGO effectively extends this approach by allowing
similar content retrievals, the same cost vs. benefit trade-off
holds for Web-LEGO and redundant requests. In [21], the
authors develop a simple, yet insightful, model to quantify the
break-even benefit for a client choosing to send extra requests,
measured in terms of the amount of improved performance
(milliseconds) to the amount of added traffic (KBytes). As
an example, the model implies that for a broadband wireline
service, as long as Web-LEGO generates the benefit of at least
0.029 ms/KB, it pays off to send extra requests. For a mobile
broadband plan, however, this benefit threshold is necessarily
higher (0.74 ms/KB) because the cost of such service is higher.
We experimentally evaluate this issue in Section IV by varying
N in the range 1—3. While different networks may require
different level of request replication, we find that sending up
to 3 alternative requests is beneficial on broadband wireline
and mobile networks alike.
Which web objects does Web-LEGO support? Modern
webpages contain hundreds of different objects such as
HTML, JavaScript (JS), CSS, images, XHR, etc. Currently,
Web-LEGO only supports (i.e., attempt to replace) images,
JS, and CSS files. The remainder object types should either
never be replaced (e.g., HTML) or require extra care (e.g.,
media objects). Substituting HTML content is not allowed
since it can trigger the download of extra/unwanted content. In
principle, Web-LEGO can handle media objects since they also
share high similarity, e.g., two videos of the same event from
a slightly different angle, and reverse video search services
are indeed widely available [15], [18], [20]. However, media
objects further complicate the understanding of user QoE. We
thus opted to focus on media-free webpages, but we plan to
remove this limitation in our future work.

Web-LEGO handles JS and CSS files differently than



images. For images, Web-LEGO opportunistically attempts
to replace them with the same or a similar content hosted
elsewhere. For JS and CSS files, Web-LEGO only looks for
identical copies hosted at alternative servers. In fact, while two
similar images can convey the same semantic meaning (see
Figure 1), even few different lines in JS/CSS can dramatically
change the appearance and behavior of a website.
Why is Web-LEGO designed as an opt-in service? Web-
LEGO speeds up webpages by giving up the content strictness,
therefore, Web-LEGO service works for a web object only
when both users and content providers agree to use it. For
users, they can just disable the service on the client-side. For
content providers, they can explicitly adding similarity control
headers to HTTP(S) response, and RFSS will eliminate the
associate content for sharing or replacing (See Section III-B3).
In this way, content providers could retain fine-grained control
of their web resources, and the potential content inconsistency
and copyright issues could also be solved at the same time.
This is somewhat similar with the web caching technique [24]
where content providers are able to ”opt-out” by setting cache
control headers.

B. Implementation

1) Web-LEGO Client: There are three potential candidates
for a (realistic) Web-LEGO client implementation, each with
its own pros and cons. First, we could modify Chromium [25]
adding support of Web-LEGO’s client side logic. Clearly, this
solution is realistic but at the expense of a significant engineer-
ing challenge. Nevertheless, because of the rapid evolution of
the Chromium source base our implementation could rapidly
become obsolete. We thus discarded this solution with the
hope that the larger Chromium community can consider Web-
LEGO’s adoption in the future.

The next approach consists in implementing Web-LEGO’s
logic as a browser extension. This approach is also realistic,
although some potential performance overhead due to the
introduction of the extension. After exploring the Chrome
extension capabilities—this is without loss of generality since
all browsers follow a similar architecture for their extensions—
we have also discarded this solution. In fact, via an extension
we can intercept, block, or modify in-flight requests using
webRequest API. For security reasonsthe same cannot be
done for received responses. This would limit our design to
N = 1, i.e., “guessing” only one potentially faster alternative.

Finally, we discuss the solution we opted for: a web proxy.
This allows to build an application agnostic (e.g., browsers
and mobile apps) solution while minimizing the engineering
effort. This solution also allows realistic performance testing
since any modern browser is supported. The main drawback of
this solution is the performance penalty caused by the proxy,
which in turn implies that our evaluation represents a lower
bound of Web-LEGO performance. To minimize such penalty,
we have resorted to a careful implementation which we detail
next. Note that HTTPS is not an issue since, in a lab setting,
TLS interception can be adopted.
Concurrency The high level goal of Web-LEGO is to speedup
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Fig. 4. The concurrent workflow of Web-LEGO’s client.

web applications like browsers and mobile apps. It follows
that the extra operations required, i.e., contact 3S and lookup
extra resources, should have minimal impact on the regular
application execution. Our goal is thus to implement a multi-
threaded proxy where the extra operations required are in-
dependent from the traffic relay operation. Beyond system-
level concurrency, it is also essential to avoid the degradation
of user-perceived performance due to the potential network
congestion induced by added traffic. This issue was analyzed
in depth in [22], showing that request replication is beneficial
even under heavy load. In Section IV-D, we evaluate Web-
LEGO in constrained bandwidth environments.

The Web-LEGO’s client uses a dedicated thread (thread-1
in Figure 4) to relay HTTP(S) traffic generated and received
by an application. Such content requests are also shared with
thread-2 which identifies if the content requested is suitable for
replacing, i.e., it refers to an image, JS, or CSS. We describe
how we realized such content identification in the upcoming
subsection. If a request is a candidate for replacing, thread-
2 contacts the 3S requesting alternative resources. Assuming
at least one source is returned, the Web-LEGO’s client starts
a thread pool. For example, if three alternative resources are
returned, the pool consists of thread-3, thread-4, and thread-5
(as shown in the figure), where each thread is responsible to
fetch the desired resources. As discussed above, we limit the
size of the thread pool to 1, 2, or 3, to evaluate performance
in different networks. Eventually, the first result (out of four)
that completes is sent to the application.

We implemented Web-LEGO’s client within
goproxy [26], an HTTP/HTTPS proxy library written
in Go [27] which has native concurrency features.

Content Identification A URL is usually composed of four
parts: protocol, hostname, pathname, and parameters. In most
cases, the suffix of the pathname reveals the file type, e.g.,
“.png” suggests that the requested content is an image. In
some cases, the URL does not unveil which content type
is being requested. To address this issue, the Web-LEGO’s
client analyzes the content received at the proxy to identify
images, JS, and CSS, and propagate the pair <URL, type> to
3S. Obfuscated URLs, or URLs lacking file extensions in the
suffix of their pathname, are always forwarded to the 3S where
their type can now be retrieved. Finally, we omit sending to
3S advertisement URLs—detected via their hostnames—and
social-network and other analytics.



2) Similarity Storage Server: 3S has three main functions:
store similarity information about web objects, respond to
Web-LEGO clients’ requests, query RFSS and cache its re-
sponses. We use MongoDB [28]to deploy a non-relational
database and store information about URLs and their sim-
ilarity. For each type (i.e., JS, CSS, and image) we create
two collections, which are similar to tables in SQL, yet have
no structure. One collection stores all URLs along with their
attributes, e.g., for an image URL it stores its category (i.e.,
image), file size, width, length, type, CDN-flag (i.e., whether
it is hosted at a CDN or not), etc. The second collection stores
the similarity relationships among URLs.
URL Selection Algorithm. Web-LEGO limits the number of
candidate URLs to replace a web object to three, as discussed
above. When more than three candidate URLs are available,
we proceed as follows. First, we give highest priority to CDN-
hosted URLs, i.e., URLs having the CDN-flag attribute set.For
image URLs, we prioritize identical images, then URLs for
which the corresponding image dimensions are closest to the
original image size. We find that the file type, e.g.,.png vs
.jpg, does not pose a constraint for successful alternative
webpage construction, because the CSS files handle the file
types automatically. For JS and CSS files, given that the
alternative CDN-hosted URLs point to identical content to
the requested one, we select them randomly. Note that Web-
LEGO ignores URLs associated with images that have width
or length smaller than 100 pixels. Such images usually do
not have enough features for the reverse file search engine to
return a same or similar image response. We finally return the
top 3 URLs based on the ranking above.

URLs cached at the 3S server might become stale over
time, i.e., they might no longer point to the desired content
or point to different content. The first scenario is likely to
happen over time, yet the consequences for Web-LEGO are
not significant; in the worst case, the original content will still
be served, because Web-LEGO always requests the original
object. The second scenario, i.e., an existing URL pointing to
a new object, is unlikely. In either cases, regular automatic
cleanups effectively resolve these issues.

3) Reverse File Search Server: RFSS identifies alternative
resources for an input web object. Differently from 3S, this
operation does not have a real-time constraint, as results are
used to populate 3S’s database for (eventual) future requests.

To fully control how to share and replace website resources
by the content provider, the sharing flag and replacing flag
are defined. Both flags are included in the HTTP(S) header.
RFSS will follow the sharing and replacing flags when it
looks up alternative resources from the Internet, and further
tell the associate information to 3S. The potential content
inconsistency and copyright issues could be solved with simi-
larity control headers. Specifically, the resource can be shared
when the sharing flag is set to one, otherwise, equal to zero;
The resource can be replaced with the similar, same and no
resource when the replacing flag is equal to one, two and zero.

Building a reverse file search service is complex, costly and
out of the scope of this paper, so we just borrow the power

of other existed reverse file search engines. In the following,
we first focus on how RFSS deals with images, and later
describe how CSS and JS are handled. Although reverse image
search is a well explored topic [29], [30], [31], building a
reverse image engine is challenging. This is because it requires
indexing billions of images and thus a significant engineering
and monetary investment. To build a proof of concept of
RFSS, we piggyback on two commercial services for reverse
image search: TinEye [20] and Google Images [15]. While
Google Images is free of use [32], for TinEye we purchased
an API with a capacity of 10,000 searches for the price of
$300. For each returned image, both engines also report their
copyright. To avoid copyright infringement in our evaluations,
Web-LEGO only uses “free to use or share” images.

Given an input image/URL, TinEye derives a fingerprint
to find equal images within its database (billion of entries).
Matching images are returned in the form of a public URL
from where they can be downloaded. Instead, Google Images
analyzes the input picture, e.g., by identifying objects and/or
persons, and return a set of equal and similar images. For
each input image, it also returns a tag, i.e., a set of keywords
describing the content of the image.

Despite Web-LEGO users are informed to be trading per-
formance for potentially different website appearances, our
goal is to minimize website distortion. Webpage developers
use images to convey a message; our goal is to provide an
image which captures a similar message, e.g., the Golden
Gate bridge from a different angle rather than a different
bridge (see Figure 1). Accordingly, for a given input image
url, we query both TinEye and Google Images; we then rank
the received images based on their similarity to the original
image. Equal images are ranked the highest; next, similar
images are ranked based on how similar their tags are with
the original image. Tags for alternative images (provided by
Google) are retrieved by performing a reverse file search; tag
similarity between original and alternative image is expressed
using cosine similarity [33]. Whenever 3S asks for alternative
images, RFSS will respond with same images first, then similar
images with highest cosine similarities. We find that more than
70% images have equal images with a measurement study in
Section IV, so we are sure that we convey the similar message
that webpage developers want to deliver.

To the best of our knowledge, no commercial reverse file
search service exists for JS and CSS. As above, building
such service is out of the scope of this paper. While finding
binary-level object matches has been studied in a variety
of contexts over the years [34], [35], [36], we resort to
a simple mechanism which piggybacks on Google search.
Given an input JS/CSS file, we use text snippets from these
files to perform Google searches and locate corresponding
alternative files. Once identical alternative files are found, their
URLs is returned to 3S. For JS, two popular CDN-hosted JS
frameworks are located: Google-hosted libraries and CDNJS
libraries. For CSS, we instead find identical CSS files scattered
around independent websites on the Internet.
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Fig. 5. Evaluation of Web-LEGO’s potential vs actual replacement.

IV. EVALUATION

A. Metrics and Experiment Settings

Metrics Throughout the evaluation, we use three main metrics:
PLT, uPLT, and normalized benefit. The page load time
(PLT) refers to when a browser returns the onload event (see
Section VI). This metric is commonly used [1], [4], [5], [16] as
a quick method to estimate the performance of a webpage. PLT
has been recently criticized because unable to keep up with the
evolution of the Web, e.g., it suffers from the presence of JS
files [1], [37]. For this reason, we also use the user-perceived
page load time (uPLT), or the time when a user considers a
page “ready to use” as defined in [16], [38], [39].

We also compare Web-LEGO’s benefits with respect to
the extra network traffic it introduces. We call normalized
benefit the ratio between milliseconds (of improvement or
deterioration) and KBytes (of extra traffic); note that this
metric has been previously used in [21]. We compute a
webpage’s performance improvement (or deterioration) as the
difference between the PLT of the original webpage and its
PLT when served via Web-LEGO. The extra traffic refers to
the additional requests generated by the Web-LEGO’s client
in the attempt to retrieve (faster) equal or similar content.
Settings We built a testbed composed of a Web-LEGO’s client,
3S, and RFSS. The Web-LEGO’s client runs on a high-end
desktop machine (3.30 GHz, 4 cores,8 GBytes of RAM) with
fixed access (up to 100 Mbps in download and upload). The
3S and RFSS run on two regular server machines (3.50 GHz,
8 cores, 8 GBytes of RAM) located in the same LAN as
the Web-LEGO’s client, i.e., negligible network delay and
packet losses. Artificial delay, losses, and bandwidth throttling
are introduced using cell-emulation-util [40], a script
based on Linux TC netem [41] which allows to emulate real-
world cellular networks based on traces provided by Akamai.

We selected two sets of 50 websites to be tested: CDN-
hosted and CDN-less. Both sets were randomly selected from
Alexa’s top 1,000 websites based on whether they are hosted
on a CDN or not, according to whatsmycdn.com (see
Section II). The number of websites under test was chosen to
ensure we can collected reasonable feedback from real users;
nevertheless, it is twice as large as in [39].

We instrument Chrome via its remote debugging protocol to
load a target website while collecting an HTTP Archive (HAR)
file, i.e., JSON-formatted file logging the browser’s interaction
with a site. Each website is loaded directly and via the Web-
LEGO’s client; each load is repeated 5 times for 30 seconds

while a video of the page loading is recorded. As suggested
in [16], [42], we ensure a fresh browser by cleaning Chrome
state among runs, as well as a “primer” to populate eventual
DNS (and 3S) caches at ISP level.

The recordings of website loads, realized with ffmpeg [43],
are used for uPLT assessment. We use Eyeorg’s timeline
experiment [16] where a participant is asked to “scrub” the
video until when (s)he considers the page to be ready to use.
For each website load (original and Web-LEGO) we show
to paid participants the video whose PLT is closest to the
median of the 5 loads. Each Eyeorg campaign targets 200 paid
participants (total cost: $24), who each evaluates 6 videos—
thus generating 1,200 uPLT values or about 12 feedback per
website’s load (original and Web-LEGO).

B. Web Objects Characterization

We start by analyzing which web objects have potential for
replacements and which ones were actually replaced in our ex-
periments, i.e., served from alternative resources. Figures 5(a)
and 5(b) show boxplots of the number of potential and actual
replacements as a function of the object type (image, JS, CSS),
differentiating between CDN-hosted and CDN-less websites.

Regardless of whether a website is CDN-hosted or CDN-
less, image files hold the most potential for replacement, fol-
lowed by JS and CSS files. For CDN-less websites, Figure 5(a)
shows that, most of the time, potential replacement translates
into actual replacement, which means that the identified equal
or similar content is received by the Web-LEGO’s client faster
than the original one. For CDN-hosted websites, Figure 5(b)
shows instead that while 50% of these websites contain at
least 5 images with candidate replacements, only one of these
objects was actually replaced in the median case. This result
is not surprising since CDNs are already optimized to serve
content close to the user; indeed, this result further strengthens
the importance of Web-LEGO for CDN-less websites.

For JS and CSS files, Web-LEGO leverages alternative files
which are carbon copies of the original ones; alternative im-
ages can instead be either equal or similar—in terms of cosine
similarity (see Section III-B3)—to the original ones. For each
original image (1,012 images when combining CDN-hosted
and CDN-less websites) we derive the highest rank available,
i.e., equal or highest cosine similarity, and summarize the
results in Table II. The majority of the original images, 73.9%,
have at least one equal alternative. Although not shown in the
table, more than half (52.1%) of the original images have three
equal alternative images: since Web-LEGO never attempts to
replace an image with more than three alternative images (see
Section III), this means that half of the time the user would
see no visual change in a Web-LEGO-generated webpage.
Further, an extra 11.9% of images have at least one very
similar alternative image, i.e., cosine similarity mostly equal
to one. Only 14% of the images have low similarity alternative
images (cosine similarity <0.5) which have potential to distort
the semantic of an original image.

Next, we quantify the accuracy of cosine similarity com-
puted between image tags as an indicator of how visually
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Fig. 6. Performance evaluation ; 50 CDN-less and 50 CDN-hosted websites.

similar two images are (Table II, second row). We resort to
visual inspection and find that cosine similarity is a good
visual similarity indicator, e.g., 92.4% of the images with
perfect cosine similarity are visually similar to their original
counterpart. Errors happen when the search engine doesn’t
correctly tag an input image, triggering the retrieval of bad
alternative images which indeed share the (erroneous) tags
with the input image. Accuracy decreases as we focus on
images with lower cosine similarity; still, 70.3% of the images
with cosine similarity ≤0.5 are visually similar to the original.
By combining the first and the second row of Table II, we can
conclude that Web-LEGO has an average accuracy of 94.2%.

C. Baseline Network Experiments

Page Load Time Figure 6(a) shows the Cumulative Distri-
bution Function (CDF) of the (median) PLT reduction for
50 CDN-less and 50 CDN-hosted websites, respectively. We
compute the PLT reduction as the difference between the
median PLT of an original webpage and its median PLT when
served via Web-LEGO, i.e., positive values indicate good Web-
LEGO’s performance.

Figure 6(a) shows that Web-LEGO reduces the PLT for
80% of the CDN-less websites, with reductions in the order of
multiple seconds (up to 5.5 secs). Significant PLT reductions
are also available for 58% of the CDN-hosted websites. As
discussed above, the observed lower benefits for CDN-hosted
websites are expected due to the reduced opportunity of
content replacement (see Figure 5(b)). Web-LEGO causes PLT
degradations (negative PLT reductions) for 20% of the CDN-
less websites (10 websites) and 42% (21 websites) of the
CDN-hosted websites; we analyze such PLT degradations next.

The PLT degradations for 6 of the 10 CDN-less websites
impacted are < 200 ms. Such values are, however, within
the standard deviation of the PLT measured across 5 runs.
It follows that their root causes might lie in non-Web-LEGO
related causes such as high(er) load at one of the many servers
involved during a webpage load. Conversely, for the remaining

TABLE II
SIMILARITY OF ORIGINAL IMAGES AND ALTERNATIVE ONES ; METRICS:

COSINE SIMILARITY AND ACCURACY.

Equal Similar (cosine similarity) None1 [0.8,1) [0.5, 0.8) [0, 0.5)
Ratio 73.9% 7.1% 2.2% 2.6% 14.0% 0.2%
Accu. 100% 92.4% 86.1 % 78.9% 70.3 % -

4 websites we observe PLT degradation comprised between 0.6
and 1.7 seconds. HAR inspection suggests that in all cases,
third-party ad servers, that Web-LEGO did not interfere with,
were the root cause of the degradation.
User-perceived Page Load Time Here, we aim to verify that
Web-LEGO’s performance improvements also hold in terms of
uPLT, or how fast people perceive a webpage. Accordingly,
Figure 6(b) shows the CDF of the median uPLT for both CDN-
less and CDN-hosted websites.

Differently from Figure 6(a), the figure shows a similar
fraction of CDN-less and CDN-hosted websites (74%) for
which users “perceive” an improvement thanks to Web-LEGO.
This implies that the verdict of PLT is reverted for 6% of
the CDN-less websites, which are felt slower by real users
than what PLT indicated, and for 16% of the CDN-hosted
websites, which are felt faster than what PLT indicated. This
result is due to two reasons. First, as discussed above, PLT
is not perfect and does not take into account how the page is
actually rendered on screen. Second, humans are not perfect
either; note that the two CDFs show that 20% of the uPLT
reduction values are comprised within ±200 ms, a value very
hard to judge by the human eye. The figure also shows large
uPLT reduction values, e.g., 60% comprised between half
a second and 4-5 seconds where, we can blindly trust the
input from the human eye. Similarly, we observe high PLT
degradation values for two CDN-hosted websites (2.7 sec);
we visually inspected these videos and indeed observed that
some advertisements, by design ignored by Web-LEGO, are
responsible for the webpage to complete later. Interestingly,
few users did not consider this to be an issue and reported
much faster “ready to be used” values.
Normalized Benefit To further understand the result above,
Figure 6(c) shows the CDF of Web-LEGO’s normalized
benefit distinguishing between CDN-less and CDN-hosted
websites. The normalized benefit was first introduced in [21]
to quantify the break-even points for a client choosing to send
extra requests, measured in terms of the amount of improved
performance (milliseconds) to the amount of added traffic
(KBytes). In the most relevant scenario for our experiments
here, i.e., a broadband wireline service, the model implies
that as long as extra traffic induced by the client generates
the benefit of at least 0.029 ms/KB, it pays of economically
for the client to generate extra utilization. We plot this value
as a vertical line at x = 0.029 in Figure 6(c).



(a) CDF of PLT. (b) CDF of normalized benefit (4G).

Fig. 7. PLT and normalized benefit under challenging network conditions ;
CDN-less websites.

The figure shows that Web-LEGO’s normalized benefit is
above the 0.029 threshold in most cases, i.e., 80% of CDN-
less cases and in 58% of CDN-hosted cases. The significant
benefits, particularly for CDN-less websites, imply that there
is additional room for increasing the number of requests for
alternative content. At the same time, the results for CDN-
hosted websites imply that a more conservative approach
should be taken. This is because normalized benefit is only
slightly above the threshold in most cases. While the value
of 3 additional requests provides a reasonable trade-off in
this particular scenario, we conclude that a more fine-grained
method, capable of dynamically adjusting the amount of
additional traffic on-the-fly, would provide additional benefits.

D. Challenging Network Conditions

We here evaluate the impact of worsen network conditions,
i.e., slower speed, higher latency and losses, on Web-LEGO’s
performance. We select two scenarios representative of 4G
and 3.5G connectivity, respectively, in terms of download
bandwidth. For 4G, we limit the download bandwidth to
19 Mbps; we computed this value as the average download
speed for 9 LTE networks in the US, based on a recent
study [44]. For 3.5G, we set the download rate to 5 Mbps,
according to [45]. For this analysis, we focus on the 50 CDN-
less websites.

Figure 7(a) shows boxplots of the PLT as a function of
the network connectivity (broadband, 4G, and 3.5G) as well
as N , or the maximum number of additional parallel content
requests sent by the Web-LEGO’s client for each replaceable
object. We denote as “original” the PLT of a website when
loaded directly. Differently from above (see Figure 6(a)) we
plot the PLT instead of the PLT reduction to highlight the PLT
variation in presence of variable network connectivity.

We also can be concluded from Figure 7(a) that Web-
LEGO is beneficial in both the broadband and 4G scenarios.
In particular, as the number of additional requests grows, the
performance improves. Despite the additional traffic down-
loaded in such scenarios, no significant congestion occurs
in the download direction. Hence, the Web-LEGO client
manages to utilize a larger number of alternative resources
to reduce latency and improve performance. We notice that
the improvement relative to the original case is larger in the
4G case, which is more constrained than the broadband one.
For example, the N = 3 median case improves upon original
by 20% in the broadband scenario, and by 45% in the 4G

scenario. A similar effect was first analyzed in [22], where it
was observed that the benefits of request replication increase
at medium over low loads.

Differently from [22], which found that request replication
is beneficial at high utilization, we found that this does not
hold for Web-LEGO. Figure 7(a) shows that in the case of a
3.5G network, characterized with a download speed of 5 Mbps,
requesting alternative content can cause the PLT to increase.
For example, for N = 1, it increases by 14% in the median
case, and for N = 3, it increases by 28%.

In the 3.5G scenario, the additional traffic fetched by a Web-
LEGO client creates short-term congestion in the down-link
direction, which effectively degrades the overall performance,
including the performance of the connections to the origin
servers. In these or worse network conditions, Web-LEGO
has several options: a Web-LEGO client should either refrain
from sending alternative requests. Alternatively, Web-LEGO
could implement fine-grained algorithms that would oppor-
tunistically select a subset of replaceable objects.
Normalized Benefit. Figure 7(a) shows that Web-LEGO pro-
vides clear and substantial performance benefits in the mobile
broadband scenario. Here, we explore if such performance
improvements are of sufficient economic benefit to the clients.
We again refer to the cost-benefit analysis of low latency via
added utilization [21] which found that, in the case of a mobile
broadband plan, the normalized benefit should be above a 0.74
ms/KB threshold in order to be economically viable.

Figure 7(b) shows Web-LEGO’s normalized benefit in 4G,
i.e., the 19 Mbps LTE mobile broadband service. As a refer-
ence point, we add the x = 0.74 line in the figure, which corre-
sponds to the economic break-even point discussed above. The
figure shows that for all numbers of added requests per object,
the benefit is still larger than 50%. Most importantly, the figure
shows that N = 3 not only brings the largest benefit, i.e., in
more than 62% of scenarios, but despite the larger overhead
(i.e., on average 3x relative to the N = 1 case), it manages to
bring the corresponding PLT reduction. As a minor note, we
investigated the long negative tail shown in Figure 7(b), for
N = 1. We found that it is induced by a poorly-responsive ad
server, that Web-LEGO did not interfere with, associated with
one of investigated websites. On top of that, the amount of
alternative content fetched by Web-LEGO was only 7 KBytes,
which caused the long negative tail.

V. DISCUSSION

Advanced alternative content selection The normalized ben-
efit (milliseconds/KBytes) depends on the amount of extra
content requested by the Web-LEGO’s client, and the re-
duction in PLT that such extra traffic brings. While simple
heuristics could be easily and safely drawn from our results,
e.g., “send 3 alternative requests for a CDN-less website on a
broadband wireline connection”, more sophisticated and fine-
grained algorithms could be developed. Such algorithms would
determine the right level of request redundancy based, for
example, on the PLT of a particular website, Web-LEGO setup,
the underlying network type, and whether a website is hosted



on a CDN or not. Moreover, in resource constrained scenarios
it might not be beneficial to replace every single object, even
if alternative sources are available. In such a case, it would be
necessary to select a subset of the replaceable objects, further
raising the question which objects are more important than
others in the context of user perception [4], [39].
Security One such hypothetical scenario arises due to a
discrepancy between time-of-check vs. time-of-use of a file
used by Web-LEGO. In particular, if an attacker is capable
of hijacking an origin server, then it can inject malware to
a Web-LEGO client. There are several ways to address such
a potential scenario. First, the RFSS server should only rely
on reputable websites using information from Alexa [46],
WoT [47], etc. The ability for an adversary to promote a
malicious website into the group of reputable sites is chal-
lenging, and the ability for an adversary to hijack a reputable
website is again challenging. Even if such an event happens,
the adversary is far more likely to conduct direct and more
potent attacks (e.g., phishing), than to “hunt” for Web-LEGO’s
clients—whose requests are hard to distinguish from one
originated by more classic clients.
Economic sustainability The key involved entities are: Web-
LEGO clients, CDNs, CDN-less websites, and origin websites
or websites whose content might be offered as an alternative
by Web-LEGO. Clients and CDN-less websites directly ben-
efit from Web-LEGO’s page load time speedup. CDNs also
directly benefit from Web-LEGO because of additional traffic
and thus revenues increase. Conversely, there is no obvious
benefit for origin websites. However, Web-LEGO could target
any web objects that content providers would like to share
and replace (see Section III-B3). Further, while the economics
behind each website are different and complex, there is one
shared goal which directly relates to increased revenues: web-
page ratings [46] and search engines rankings. It is important
to note that such webpage ratings and search engine rankings
are impacted by traffic-based metrics [48], [49]. It follows
that Web-LEGO-induced traffic towards origin websites, helps
their general ratings and search engine rankings.

VI. RELATED WORK

To the best of our knowledge, the work in [50] (for files) and
in [51] (for videos) are the only previous attempts to look into
content similarity to improve an application performance, i.e.,
Web-LEGO’s core idea. In particular, [50] introduces a system
that utilizes file similarity to speed-up large file transfers
for multi-source downloads, such as BitTorrent. The authors
provide a method to find similar objects and locate chunks
within such similar objects that are identical to the chunks in
the original file. While similar in spirit, Web-LEGO departs
from this approach for two key reasons. First, it abandons
content strictness which is still a requirement for the above
solutions. Second, it targets the Web and mobile applications.

Web-LEGO’s main goal is to speedup webpage loading
time to improve a user’s QoE. Many recent solutions share
the same goal and achieve so by optimizing/compressing a
webpage dependency graph. KLOTSKI [4] is a system that

aims at improving user experience by prioritizing the content
most relevant to a user’s preferences. Shandian [1] is another
system whose goal is to remove the intrinsic inefficiencies
of webpage loads. It removes such inefficiencies by directly
manipulating the dependency graph, i.e., controlling what
portions of the page and in which order they are communicated
to the browser. Netravali et al. [5] notice that a browser is only
partially informed of a page’s dependency graph. With the goal
to minimize wasted times, the authors propose fine-grained
dependency graphs with no missing edges. Prophecy [12] is a
system for accelerating mobile webpages. It first precomputes
the JavaScript heap and the DOM tree of a webpage, then the
server sends a write log including the computed information
to the mobile browser. The mobile browser can replay with
the log to reconstruct the final page state without interme-
diate computations to speedup webpages. Vaspol et al. [6]
propose VROOM which aims to speedup mobile webpages
via server-aided dependency resolution. To preserve the end-
to-end nature of the web, the web servers assist clients to find
resources when clients fetch every resource from the servers.
Nutshell [11] is devised to solve the scaling challenge of the
proxy based webpage accelerating solution via minimizing the
proxy computational overheads. It can identify and execute
only the necessary JS code to push the required objects for
loading a webpage, while ignoring other codes.

VII. CONCLUSION

This paper has proposed Web-LEGO, a client side mecha-
nism which trades content “strictness” for faster webpages. We
first validated Web-LEGO’s idea via crowdsourcing, i.e., inter-
rogating a thousand users on their interest on slightly modified
webpages in exchange for a faster browsing experience. Next,
we design and implement Web-LEGO as a high perform-
ing opt-in service, for both end-users and content providers.
Finally, we use both automated tests and paid participants
to demonstrate Web-LEGO’s effectiveness. Our results show
that Web-LEGO offer speedups of up to 5 seconds in user
perceived page load time. Most gains originated in broadband
wireline and wireless scenarios, and for websites not using a
CDN. We further showed that fetching additional content is
economically viable in evaluated broadband scenarios.
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