A Poisoning-Resilient TCP Stack

Amit Mondal and Aleksandar Kuzmanovic
Northwestern University
{a-mondal, akuzmig@cs.northwestern.edu

Abstract— We treat the problem of large-scale TCP poisoning:
an attacker, who is able tomonitor TCP packet headers in the
network, can deny service to all flows traversing the monitoing
point simply by injecting a single spoofed data or control packet
into each of the flows. One of the entities responsible for tki
severe vulnerability is certainly the TCP protocol itself: it behaves
as a “dummy” state machine that can more-than-easily become
desynchronized by an attacker. In this paper, we explore way
for upgrading TCP endpoints into viable DoS-resilient protocol
entities, capable of mitigating large-scale poisoning adicks. We
show, by means of analytical modeling, simulations, and Irnet
experiments, how small upgrades implemented by the endpdis
can dramatically improve resilience to attacks. The key meta-
nisms unique to our approach are ¢) deferred protocol reaction,
used to accurately detect poisoning attacks;i{) forward nonces,
applied to distinguish among different traffic sources during
the attack; and (ii7) self-clocking-based correlation, utilized for
successfully detecting legitimate packet streams. Our sdion
solely relies on the protocol design, it is incrementally deloyable,
and TCP friendly.

I. INTRODUCTION

packets in the network, and without flooding network or serve
resources.

Many counter-DoS techniques, which address the problems
of packet spoofing, header encryption, or authentication, d
rectly or indirectly address the above probleeng, [2]-[9].

Still, none of the solutions is widely deployed in today’s
Internet. As such, the approach we propose in this paper is a
complementary effort aimed to increase the overall resile

to DoS attacks. Moreover, our approach is unigue in the sense
that we apply no “classical” security techniques, but rathe
solely rely on DoS-resilient protocol design to defend aghi

the attacks.

Our contributions are threefold. First, we demonstraté tha
by considering realistic limitations on the attacker, wesiop
avenues for quite novel approaches to the poisoning prablem
Second, we show that network measurements (latency in our
case) can be used as an effective implicit authenticatioh to
the technique, we believe, might become a viable alteraativ
for a number of other security-related problems. Finallg w

Denial of Service (DoS) attacks are presenting an incrgasiiémonstrate that the proposed scheme is effective in tegjev

threat to the global inter-networking infrastructure. Aubling

the attacker from the ability to conduct simple, scalable] a

observation is that it is usually easier for the attacker #§w-rate attacks.

find a single security hole than for the defender to block e start-off by recognizing the attackers’ constrain®: (
all_holes. However, reversing this asymmetric situation t8opping or modifying packet is much harder to achieve
the defenders’.advantage is not impossible. Small effqyts than sniffing packets andij identifying and utilizing lower
defenders, typically easy to deploy and use, may raise f3gency Internet paths than those applied by the legitifia®
“bar” high enough, forcing the attacker to multiply the amou engpoints requires a significantly larger amount of resesirc

of resources in order to perform a successful attack.

Once these limitations are considered, the space of sohutio

The TCP’s implicit assumption of end-system cooperatigignificantly changes.

results in a well-known vulnerability to attack by high-eat

The first mechanism unique to our solution is deferred

non-responsive flows. However, to deny service to TCP traffigrotocol reaction; instead of instantly processing theenesd

it is not necessary to apply such high rate-attacks. Ins@ad packets, the TCP endpoints defer their reaction to incoming
attacker who is able to monitor TCP packet headers in thgckets, which enables them to detect the attacks. For dgamp
network can send aingle spoofed packete(g, RST) to one tne arrival of data packets with the same or overlapping

of the TCP endpoints, and instantly poison the flow. As longaquence numbers that carry different payload is a clear
as the spoofed packet's sequence number is in the acceptaffature of the attack.

range — the TCP endpoint will simply abort the connection _ _
1. Nex?, we introduce foryvard nonces; the protocol_ requires th
) ~endpoints to repeat 8-bit long random numbers in successive
This work addresses the problem of large-scale TCP poisefcp packets. This technique alone neither prevents attcke
ing attacks. An attacker who monitors traffic in the Interc@t fom generating meaningful spoofed packets, nor does it
poison TCP flows traversing the monitoring point simply bynaple the receiver to authenticate arriving packetd, $tilen
injecting spoofed data or control packets to either theesrv compined with the attacker's limitation in utilizing lower

or the clients. In this way, the attacker can effectively enatency paths, it does provide the TCP endpoints with the
service to both servers and clients, without directly diagp

focus on a more discreet case of a cooperative version of the
attack! In a cooperative scenario, the attackér monitors
only the victims’ traffic and forwards valuable information
(e.g, source and destination addresses, together with port and
sequence numbers of sampled packets) to another attaeker, d
noted byAs in Figure 1. A, then poisons the communication
between the clients and the server by sending spoofed acket
to either of the two.

Both TCP’s control and data planes are equally vulnerable
to the attack. For example, an attacker can subvert the TCP
control plane by sending a reset (RST) packet to either the
valuable ability to distinguish streams generated by cffie client or the server, thus immediately shutting down the
sources. connection. Likewise, the attacker can target the TCP data
, ,) plane by sending bogus data packets to the receiver. A forged
Finally, we apply the self-clocking-based correlation mec o -\.qt will be accepted by the receiving TCP agent and pushed

anism to detect the legitimate flow. The key idea is to explo[u(g the application layer, as long as the forged packet isén th
TCP’s self-clocking property, which induces high corridat acceptable sequence-number range [1].

between subsets of legitimate DATA and ACK streams. For
example, if the attacker sends a single RST packet, the

proposed mechanism can accurately detect the valid T8p Attackers’Model

flows by measuring high correlation between the appropriate - .

substreams of DATA and ACK packets. Still, because dy- Her_e, we present the realistic constr_alnts of the attgcker.
namic network conditions can blur the correlation betweef}® will show below that _these co_nstralnts can dramatically
the packet substreams, we perform an extensive simulati nge the scope of possible solutions by opening the door to
study to explore the robustness of the proposed technigque u[ndamentally novel approaches.

diverse, often quite hostile, network conditions. To confir It is harder to modify or drop than to sniff packeWhile the

the applicability of the self-clocking correlation appobtain ability to modify or drop packets is justified in scenariosest

the Internet, we perform TCP measurements among seveta attacker compromises network routeesg([11]-[15]),
PlanetLab nodes [10] and find a high correlation between ACl¢ where hosts forward control and data packets on behalf
and DATA packets measured along various Internet paths. of others, €.g, in multicast [16]-[18] or ad-hoc wireless
Idw_etworks [19], [20]), such capability is in general muchdear

to achieve in the Internet. On the other hand, monitoring
packets is much easier; packet-sniffing software is freely
available at various web sites and as commercial produtis [2

Fig. 1. TCP poisoning attack

At the end, we explore the incremental-deployability pro
erties of the poisoning-resilient TCP stack. The key proble
is that due to delayed protocol reaction, the protocol zd8i
less-than-TCP-friendly throughput. To resolve the prohle
we derive a general TCP-friendly formula as a function 4122]'
arbitrary additive-increase and multiplicative-deceegaram- Limited “racing-success” probability.When the attacker
etersae and 5. Finally, we compensate the deferring effects bgniffs a packet, assume it generates a spoofed packet, and
appropriately adjustinge and 8. As a result, we demonstratesend it to one of the endpoints. The probability that the
that in addition to achieving high resilience to poisoningspoofed packet will reach the destination before the valid
the proposed TCP stack remains TCP friendly in absencemdcket, is significantly smaller than the probability thhaé t
attacks. valid packet reaches the destination first. Our argumerds ar

the following. First, generating a spoofed packet itseliradd
Il. MOTIVATION a non-negligible delay, particularly when higher-layeckets
must be generated. Second, if the valid and spoofed packets
share the same network path to the destination, then uriess t
packets are re-ordered at routers, the packet generatedifirs

TCP-targeted poisoning attack scenario. Victims, dented reach the destination first. Finally, if the valid and the iedl

Ci,...,C,, are clients that download content from a serve?aCkets do not share the same network pat, (Figure 1),

S. An attacker, denoted byl; (e.g.in the same subnet as the is indeed possible that the latency on the attacker's path

sender), monitors packets from the server to the clientslavh(€-9> A1 — A2 — C1) can be shorter than the latency on the

this attacker could poison the TCP streams by sending bo lﬂ'd '?altlh.te'g‘ A — (Ijl)' To q<t3h|_eve th'st the ?_'ttacker needs
packets to either the clients or the server, this might not g (nstall 1is own overlay monitoring system. However, even

feasible in reality; for example, because the attacker tmigh | . .
b ble to send packets with foraed source addresses. Eur StlII_, the sol_utlons we dgve[op later in the paper apply Hyua the above
ea p g -6 tglfénano in which the monitoring machine (e.g.;) itself inserts packets to

attackers tend to avoid activity that is easily detectedisTve either the source or the destination.

A. A TCP-Poisoning Attack Scenario

What the attacker can do (part 1). Figure 1 depicts a

in such case the probability of finding a lower latency path
for the majority of clients €.g, C1,...,C,) in the system is
negligible [23].

What the attacker can do (part 2). In combination with
packet spoofing, the monitoring capability can be utilized t PN: Past Nonce
conduct TCP-poisoning attacks, exactly as explained above
By sniffing a single packet, the attacker can send a single Fig. 2. Forward nonces (up) and concatenation attacks (down
spoofed packet, and abort or poison the entire flow. Because

the receiver windows are typically of the order of tens of)
packets [24], generating a spoofed packet with acceptahigward nonces do not prevent the attacker from generating

sequence numbers is highly feasible and requires no *haf¥eaningful spoofed packets. Instead, they provide a simple
racing with valid packets. Moreover, once the attacker ofhaining mechanism that enables distinguishing amongreliff
serves a DATA packet, it can poison the source by sendififjt Packet sources.

a spoofed ACK packet in the reverse direction; similarlg th e introduce two new fields into the TCP packet format:
attacker observing an ACK packet can poison the destinatipgst Nonceand Future NonceBoth are implemented as TCP

Poisoning
stream:

by sending a spoofed DATA packet. options, as we elaborate below. Figure 2 illustrates thésid
For each DATA and ACK segment, the sender fills Ehgure
1. COUNTER-DOS TECHNIQUES Noncefield with a unique random number generated when the
segment is sent. In addition, the sender fills Bast Nonce
A. Design Principles field with the random number that corresponds to Future

Nonceof the previous packet. Nonces generated by the source
Given that the attacker can only monitor packets, the streand the destination are independent of each other. Below, we
of valid packets is continually present at the destinatiMe. explain how this method helps us separate packets generated
discuss exceptional scenarios.d, Telnet-type applications) by different sources.
in Section VI. This view motivates a new way of approaching
this problem: instead of trying to instantly authenticdte te-
ceived packets, the goals are, first, distinguish amongreifit
streams, and then detect the valid one.

What the attacker can do (part 3).Forward nonces impose
a fundamental limitation on the attacker — it is no longer
able to generate an easy attack by spoofing a packet with an
arbitrary sequence number. Instead, to “break” the chain of
1) Deferred Protocol ReactionAccurately detecting the valid packets, it must generate a packet with the nonce salue
TCP-targeted poisoning attack is the first step in addrgssirelative to the sniffed packet. Moreover, nonces generayed
the problem. Given that the stream of valid packets will bée source and the destination are fullylependenbf each
present at the receiver, deferred protocol reaction to @aclother. The implication of this design choice is significahe
arrivals can be used to detect the attack. Delaying the pobtoattacker is no longer capable of injecting poisoning atsack
reaction for short intervals (exact values will be definetb® in the direction opposite from the observed omeg, send
would be enough to receive contradicting messages, whispoofed ACK packets after observing DATA packets, or vice
would clearly reveal that the system is under attack. Feersa. One exception are TCP SYN packets, which we discuss
example, the arrival of a RST packet followed by a strearater in Section VI.
of data packets would clearly reveal that the attack has bee
launched. Similarly, the arrival of data packets with thenea
or overlapping sequence numbers that carry a differentyaalyl
would be a clear signature of the attack.

"hssume the scenario from Figure 1. When the attacker
sniffs a valid packetd.g, p;) and accesses its payload and
header values, including those of tRastandFuture Nonces
it has the following options. First, the attacker can geteeea
While quite effective in detecting poisoning attacks (as wspoofed packetg(g, p;) with exactly the samPastandFuture
will demonstrate below), deferred protocol reaction alisie Noncesas inp;, and change either the payload or set the RST
insufficient to mitigate the attacks. The key problem reraainor FIN flags in the TCP header. However, as discussed in detail
once the attack is detected, how to authenticate valid peickabove (Section II-B), the spoofed packgt will reach the
and drop the spoofed ones? We decouple the above problgestination after the packgf with high probability. Hence, the
in the following subproblems:Y How to distinguish among attacked endpoint refuses the attack with the same pratyabil
the packets (or the streams of packets) generated by differsimply by accepting the first of the two packets. Second, the
sources? i) How to detect which of the sources is theattacker can launch the packigtwith randomly generateast
legitimate one? and Future NoncesHowever, because a randomly generated
Past Noncewill not match theFuture Nonceof the previous

2) Forward Nonces:The first problem is distinguishing gggd packetp;_,, this type of attack is mitigated.

among packets generated by different sources. We prop
forward nonces, which are similar in spirit, yet fundamdgta Finally, the best option for the attacker is to launch con-
different from the ones proposed by Savage al. [25]. catenation attacks, as illustrated in Figure 2. We explam t

Server Client the paper. Denote byDT'; the inter-departure time between

two consecutive ACK packetalCK; andACK ;. 1; likewise,

IDTi denote byl AT; the inter-arrival time betwee AT 4; and
:gl:; DATA;1;. As long as the sender transmits DATA packets in

response to ACK packets.g, DAT A; in response tACK;,
IATi as shown in the Figure), and the packets are not significantly
distorted in the network, the inter-ACK departure “codet se
by the receiver will repeat in the inter-DATA arrival stream
ITAT; will be short (correlated tal DT';), IAT ;11 will be
longer (correlated td DT';11), etc. Denote byV the number
of inter-arrival and inter-departure samples. Then, wengefi
Fig. 3. Self-clocking-based correlation the normalized distance between the two subsets, starting a
indexi and of the lengthV, ¥ (IDT,IAT), as

IATI+1
IATI+2

”i* ! | TAT}, — IDT,

TAT}

1
N

N(IDT,IAT) = —
Gl (?) N

single-packet attack version first. The attacker generates
spoofed packete(g, p;) such that itsPast Noncematches
the Past Nonceof the observed valid packet; yet theFuture
Nonceis necessarily different; otherwise, we would repeat the Computing the above metric over highly correlated packet
scenario described above. Likewise, once the attackdsshg Substreams yields a small value, which can be used for
packetpi’ it can also generate a malicious pacﬁglly whose Imp|ICIt|y authenticating the arrival streams. leeWIﬂ’ther
Past Noncematches the;’s Future Nonce(not shown in the distance values reveal potential attackers.

figure). Still, thep;,1's Future Noncewvould again differ from \what the attacker can do (part 4). Nothing stops the
the p;11’s with high probability, simply because these twyttacker from launching longer-packet concatenationcksta
are generated independently by two different sources.lIifinaThere are two options. First, the attacker may try to mime th
once the “chain” of valid packets has been “broken,” nothinghserved inter-packet times, thus achieving high corielat
stops the attacker from generating streams of spoofed fackgetween legitimate and poisoned packet streams. However,
as illustrated in Figure 2. We treat this problem in depttobel endpoints can easily detect such attacks since poison&etsac

In summary, forward nonces enable the destination to diill consistently reach the endpointter the regular ones
tinguish among legitimate and malicious (streams of) pagke(Section 1I). Thus, the attacker is forced to apply a sim-

yet, the important problem remains: which of the streams ¢ “seée and shoot” strategy. Once the attacker observes a
the right one? packet, it randomly intersperses concatenated packetsaro

a reasonable, yet randomly chosen value. Hence, even if the
3) Self-clocking-based CorrelationHere, we propose a attacker's packet arrivals are distributed around the emrr
self-clocking-based correlation method as a way to acelyrat mean value, they are unable to successfully mimic the inter-
detect the legitimate TCP stream. This method is based on B]ﬁ:ket variations existent in the valid stream. As a resod,
TCP's self-clocking property, which induces high corr&dat normalized distance for such streams increases, enatfiing t
between appropriate subsets of legitimate DATA and AClgceiver to detect the attack. The implication is the follayy
packet streams. even if the valid TCP transfer finishes while the concatemati

TCP self-clocking characterizes the well-known TCP beittack is taking place, the TCP endpoint is able to accuyratel
havior in which the reception of ACK packets triggers théetect the malicious flow. This demonstrates the scheme’s
transmission of DATA packets at the sender [26]; likewisé@bility to thwart attacks the goal of which might be to preen
the same term equally applies to the complementary scendh§ connection to terminate by sending extra data packets.
in which the reception of DATA packets at the receiver
triggers the transmission of ACK packets. (We discuss thg Putting it all together
delayed ACK option of RFC 2581 [27] later in the text.)

While the TCP self-clocking behavior is a consequence of Here, we explain how we embed the above ideas into the
the reliable window-based TCP congestion control, the k8yCP protocol. In addition, we define novel protocol param-

insight is that the timely responses to packet arrivals aedueters and TCP option fields, and provide guidelines for their
strong correlation between appropriate samples of indeket settings.

departure and arrival times at an endpoint, which we exploit
to detect legitimate flows.

I @

k=i

1) How long to defer?:The deferring time parameter
critically impacts an endpoint’s ability to detect the pmisng
Figure 3 depicts a simple scenario showing the exchangeatfack. Setting it too low prevents successful detectiat; y
packets between a TCP sender and a receiver. We purposegliting it too high can unnecessarily degrade the protocol
idealize the scenario to convey the basics of the self-ahgck performance. Intuitively, relevant measures of interesehare
correlation idea, and address many of the challenges laterthe packet inter-arrival times; if the deferring time paster is

' e ' ' ' ' value RTQ, and number of packets acknowledged by each

P L) ACK b, as

s 0.8 T

% 0.6 T 1 .
g | | bp(d— . bp(1+d)(d—

P o are=t20me —+— RTT \/ 2yt + RTOmin(1, 3/ 250)p(1 + 32p2)
[a]

0.2

RTT = 60ms ---%---
RTT = 30ms % (2)
RTT =12ms @

‘ ‘ ‘ . We provide the derivation in [29].
0 5 10 15 20 25 30 35 40

Deferring time as percentage of SRTT Finally, by settinga=2 and 3=0.54, we effectively undo
the deferring effects. This helps the poisoning-resili€@P

to regain its TCP friendly fair-share, despite delayed @cot
reactions. Later, in Section V, we demonstrate that this is
indeed the case. To achieve the same for short TCP flows,

set to a value that is longer than the packet inter-arrivaés we aporopriatelv adiust the receiver window parameter and
are, this guarantees detecting all attack attempts. Becays pprop y adj P

the inter-arrival times are connection-dependent, therdiefy e TCP's slow-start behavior.
time needs to be adjusted on per-connection basis. 3) How Long are Nonces?The nonce size determines the

To determine a reasonable value for the deferring time, viasobability with which the attacker can launch a successful
perform a number of simulations, and present the key resuft§ack simply by guessing ttruture Noncdield of the packet
in Figure 4 (The exact simulation setup is explained in ecti following the sniffed valid packet. If the guess is correand
IV-A). The figure shows the attack detection probabilityne malicious packet reaches the destination before thid val
as a function of the deferring time, which is expressed fext-to-the-sniffed packet, the attack will be successful

terms of the percentage of the smoothed RTT (SRTT). Asyye propose using 8-bit long nonces, which we implement
expected, the detection probability is poor for small defier 55 3 TCP option. Thus, the total overhead per packet is 2 Bytes
values. Yet, by increasing the deferring time paramete®, thne for thePast Nonceand the other for théuture Nonce
detection probability quickly increases. For example,ufég ith such an approach, the probability for the attacker to
4 shows that setting the deferring time parameter to 25% gficceed by sending a single spoofed packeti%. At the

the SRTT yields the detection probability above 0.99 for alame time, to guarantee the success of the attack, the attack
evaluated RTT values. Thus, we opt for setting the deferriggy,i1d have to send hundreds of Mbps bursts to the victim
time parameter to 25% of the SRTT. (e.g, 28 packets over the interval of a few milliseconds in

Deferred protocol reaction is tightly coupled with the selforder to guarantee that atleast one of the attackers packet
clocking correlation mechanism. Despite delayed respomseWill match the nonces).

packet arrivals, an endpoint must preserve the self-chagki 4) How to Apply the Correlation MethodNot all TCP

property characteristic of a non-deferring TCP. This could . . ;
be achieved by equally delaying responses to packet a?rriveﬁaCkets are generated in response to incoming DATA or ACK
kets. For example, whenever the TCP sender increases the

Hence, the_ deferring time parameter should not be uPda%%r?dow size, more than one DATA packet can be generated as
over short time-scales because that can affect the accofac

% response to a single ACK. On the other hand, to effectively

the self-clocking correlation method. This is exactly whg w ! Lo
compute the deferring time as a function of the slowly-vagyi apply the sglf-clockmg correlation ideas propos_ed _ab@/e,
TCP endpoint must be capable of accurately filtering such

SRTT parameter. To avoid potentially frequent updates ef th

. bl i .~ . packets. To cope with this problem, we propose that the
deferring parameter, we deploy additional low-pass fittgi endpoints set a single bit (implemented as a TCP option)

2) How to remain TCP-Friendly?Delaying the protocol only to packets generated directly in response to prewousl
reaction by 25% of the SRTT by each of the deferring TCReceived packets, thus enabling a reliable use of the self-
endpoints effectively increases the TCP connection’s RYT lelocking method. While the use of a single bit is a type of
50%. This prevents such a connection to utilize the TCP-fakplicit signaling between the two endpoints, it is hereliop
bandwidth share. According to [28], increasing the RTT bgnly to improve the performance of the implicit self-cloogi
50% approximately degrades the throughput by 33%. Stitlprrelation method, and not for explicit packet autheriica
this bandwidth loss could be easily compensated by retunin

the additive increase and multiplicative decrease pammset method, necessarily omitting many low-level details. Assy

andg. for simplicity, a single-stream poisoning attack. Thus,ewh
Using the stochastic TCP model and methodology of [28yver the attack is launched, the victim endpoint receives
we generalize the TCP-friendly formula to a scenario witpackets from two distinct sources, the malicious and the
arbitrary values ofa. and 3. In particular, we express thelegitimate one. The self-clocking-based method is lesabil
average TCP ratB as a function of the round-trip tim@TT, when the normalized distance is computed over short number
steady-state loss event rapg TCP retransmission timeoutof data points. Indeed, even a small deviation in the inter-

Fig. 4. Deferring time

gNext, we explain the application of the self-clocking-tdise

= = 4 HTTP cross traffic

——m= Attacker's flow l . '
a 1 “ o |
g = TP —K
s e
s ool T o
o
]
o 08 |
°
g 0.7 attack’s length = 1 pack. ---—+---]
© 5 pack. -
10 pack. —%—
0.6 L s
%0 8 100

i i i i Link utilization (%
Fig. 5. Simulation scenario ink utilization (%)

Fig. 6. Variable queuing delay

packet arrival time can cause errors. But, in the vast nigjori

based on a larger number of samples. For example, evergither launches a single-packet RST attack or a “see and
the attack is shore.g, 1-packet long, it is highly likely that a shoot” concatenation attack. We consider five- and tengtack

sufficient number of packets belonging to the legitimateatt |ong attacks. In both cases, we randomly intersperse @ttack
will reach the destination after the start of the attack. Wgackets in the range from 1@@ec to 3ms.

explore scenarios in which this is not the case later in the S)
paper. To compute the attack-mitigation accuracy with low over-
head, we initially do not abort a TCP connection once the
Thus, whenever one of the streams is less than 5-packgigck is successful. In such cases, we simply increment the
long, we compute the normalized distance defined by Equatigfimber of successful attacks, and continue with data teansf
(1), and compare it to a threshold. Numerous simulatiqryter, we do abort connections in order to evaluate the impac
experiments including scenarios with hundreds of flows: hejf the attack on throughput and fairness. Our implemematio
erogeneous link capacities, and multiple bottlenecks,@bas of the poisoning-resilient TCP is derived by modifying the
Internet experiments corroborate that the threshold val@8 5.2 FulITcpAgent stack. For every data sample, we run the

represents a high performance compromise for all inveftja simulation for 1000 sec repeatedly and take the averageeof th
scenarios. Finally, no threshold is needed when the nunmberggits.

packets from both streams is larger than 5, because we then
directly compare t_he corresponding normalized distances ag Challenging Environments
choose the one with smaller value.
Our anti-poisoning mechanisms exploit high correlation be

IV. MEASURING TCP-ROISONING RESILIENCE tween subsets of inter-arrival and inter-departure timdsch
_)) is induced by timely responses of legitimate TCP endpoints.
A. Simulation Scenario However, such timely responses may become distorted due

Figure 5 depicts the simulation scenario. The topolo queuing delay or packet loss, both of which are common
' . : today’s Internet. Below, we explore the behavior of our
consists of a web-client and a web-server pool that ar

interconnected by a pair of routers and a bottleneck Iink:kEa"]l(?gomhm in such environments.

node from the server pool connects to a router R1 with al) Variable Delay: Queuing delay and packet losses are
1 Gbps link; likewise, each node from the client pool consectorrelated; for a given queue limit, the higher the queuing
to another router, R2, via a 1 Gbps link. Nodes R1 and R2 atelay, the larger the packet loss probability. Our goal hisre
connected by a link which capacity we vary from 10 Mbp# understand the impact of both parameters on the detection
(default) to 100 Mbps. By adjusting delays on the accesslinlaccuracy. Thus, to decouple the two effects, we proceed as
we uniformly distribute the flow round-trip times in the rang follows. First, to isolate the impact of the variable queyin
from 10ms to 100ms. We inject HTTP cross traffic on nordelay, we increase the bottleneck queue limit for an order
bottleneck links R1-R3 and R2-R3. of magnitude, such that it becomes 25 times the bandwidth-
delay product. In this way, bursts of highly variable HTTP

To simulate the distributed poisoning attack, initially il S) . .
lustrated in Figure 1, we proceed as follows. The attack [oss traffic directly transfer into variable bottleneckeging

consists of two distinct entities — sniffing and poisonin .Z&i:‘pﬂg:to??#:'_?%lf%gkest I%Sdseersétg?:kab:aisour::;atg'ztg;:gg
The sniffing entity, denoted by A1, monitors and forward : WS U ! '

randomly-sampled packets to the poisoning entity A2 usi@é)tentlally weakening their resilience to attacks.

IP-over-IP encapsulation. (Forwarding all packets is bath Figure 6 plots the correct detection probability as a fuotti
scalable and non-stealthy.) The attacker A2 obtains alegit of the bottleneck link utilization, which we control by vaing
information by reading the TCP and IP headers of the snifféke cross traffic. For low link-utilization levelse(g, 50%),
packets. It then generates spoofed packets by forging tihe queuing delay does not change dramatically, and thus the
source address of the original packet within the acceptaldletection accuracy does not suffer. As the link utilization

100 F — ' Deferriﬁg TCP]

g g
= g 80f 1
g X
2 S 60Ff B
3 3
3 N 40}]
o ©
S 07}t attack’s length = 1 pack. —%—] £ L |
O 5 pack. e g 20
10 pack. ---%---
0.6 0 b~
0 1 2 3 4 5 0 10 20 30 40 50
Packet loss rate (%) No. of attacks per second
Fig. 7. The impact of packet loss ratio Fig. 8. Throughput

3) The Impact on ThroughpufThus far, the goal was to
creases, so does the variability induced by the cross trafiic €stimate the correct detection probability in various enwi
the packets become more and more distorted. However, Figfitents, so we did not abort the connections in the case of a
6 shows that the detection accuracy remains high, partigulasuccessful attack. Here, we evaluate the effects of paigoni
for longer-packet attacks. Despite strong inter-packesaig, ©On throughput; thus, we reset TCP connections whenever
even short subsets of undistorted inter-arrival sampbdstent the attack is successful. To create a realistic networking
in the legitimate TCP streams, are sufficient for distingirig €nvironment, we generate the traffic by randomly distritti
them from malicious streams, which lack such signaturede sizes in the range from 10kB to 10 MB.To support a
Finally, the correct detection probability degrades thesmolarger number of flows, we increase the bottleneck capaaity t
during single-packet attacks, when the distortion is largel00 Mbps.

(e.g, 95% utilization). Indeed, in absence of longer malicioug Figure 8 plots the normalized link throughput as a function
streams, we have to rely on the threshold-based schemeh whig the RST attack rate, which varies from 1 to 50 RST packets

is less reliable in this case. per second. In the first scenario, we evaluate the performanc
of the regular TCP stack (marked as “TCP” in the figure). For

2) Congested Environment3p isolate the impact of packet d K 4RST « 4. th
losses on the accuracy of our detection scheme, we addeé{ﬁn mo e_rate attack ratesg, packets per second, the
utilization drops almost by a half. Indeed, as long as th

g : : lin
artificial packet dropper at the bottleneck link. In this wase , D
manage to control the packet loss rate, yet without incr@siSpOOfed packets sequence number is in the acceptable range
the queuing delay (easy to achieve), the TCP endpoint aborts the connection [1

As the attack rate increases, the normalized throughptitdur
Figure 7 shows the correct attack-detection probability afiickly decreases. It does not drop all the way to zero due to
a function of the packet loss rate, which we vary from 0.1%igh arrival and departure rates of short flows.
to 5%. As expected, the detection accuracy decreases as the . . . » . .
packet loss ratio increases. Whenever a packet loss happen t the same time, the “deferring TCP” stack remains highly

the “chain” of valid packets breaks, which complicates tee dresilient to attacks, despite a large number of short flows.
’ Eor example, in the most severe scenario (RST rate equals
I

tection process. Once the attack is launched, the key p&gam 0 « q 4 desite | b ¢ oh
impacting its success is the number of valid packets agivi packets per second), an _esplte arge number of s ort
ows, the throughput remains high, approximately four sme

until the next packet loss event. If the number is high, tlzeee hiaher than in th lar TCP 0. One i . t
almost no differences from the loss-less case, and theta®tec igher than in the regular scenario. One interestingce

probability is high. However, as the number of valid packef@’e observed is that whenever the attack starts succeedéhg an

that can be used for detection decreases, the detectionaﬂgzcurese'[tirlg a pe_rcent of fI_ows, the congestion reduces; asiires
worsens, as discussed in the previous section. Finallyeaf tthe s;zlf-clohckmg techmqu:_e r?ecomes more accurate, swth th
attacker generates a spoofed packet that matches a paskettl?)e throughput remains high.

event, the attack is certainly successful. Still, the plolig)

for this to happen is small, necessarily smaller than thégtac C- Internet Experiments

loss probability. .
P y Here, we perform Internet experiments to evaluate the

In summary, highly congested network environments dgccuracy of the self-clocking-based detection method ieah r
degrade the anti-poisoning detection accuracy. Luckilighs system. We daot generate any attacks; instead, we simply
environments do not prevail in today’s Internet. Recent naheasure the normalized distance between DATA and ACK
work measurements reveal that a large percentage of Tg&ckets, which indirectly reveal the potential attackigaition
connectionsé.g, 20%) experience no packet loss, while onlyrobability.

a negligible percent of connections.g, 0.06%) experience a

loss rate of more than 10% [30]. Below, we re-evaluate this?Our results, not shown due to space constraints, indicage tesilience

; ; of both short and longer-lived flows to poisoning attackssdila poisoning
result by performing Internet experiments. attack against short flows quickly experiences scalabliilitytations.

LI ; ; ;] PO e e —
’ Columbia ------ S Derferring TCP ---—----
sy Berkeley ¥ = 8} Total —%—]
<8 1r Cambridge --©-- 5
- Q.. Hannover --éc-- x 60 | 1
7] =
a 0.8 B = -
=+ = T e
55 o g 0 e g 1
52 o°f = D ow e «
S | e T e
oal | s Ll. Xttt e x 1
0 2 4 6 8 10 0 10 20 30 40 50 60 70 80 90 100
No. of packets Deferring TCP deployment (%)
Fig. 9. Internet experiments Fig. 10. Incremental deployability; in presence of attacks
We establish TCP connections from a host machine locate '® [5™ 1&F |
at Northwestern Campus to 5 PlanetLab nodes around thgz 80 - 1
world [10]: T (India), Columbia (New York), Berkeley < 6ot :
. . . Q.
(California), Cambridge (England), and Hannover (Germany § 4| i
We perform number of measurements by transferring 5MB £ w0 |]
files from the host to the destinations; the transfers lasnfr = . , ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
40 sec to Berkeley up to 400sec to IIT. In all scenarios, we 0 10 20 30 40 5 60 70 80 90 100
measure the normalized distane¢’ (I DT, I AT), defined by Deferring TCP deployment (%)

Equation (1); in this case, the IDT sequence corresponds to
DATA packets generated by the host machine, while the IAT
corresponds to ACK packets returned by destinations. We
compute normalized distance ovalf substreams of the size The plot clearly reveals that as the number of poisoning-
i, ranging from 1 to 10. resilient TCP flows in the system increases, the total link

Figure 9 depicts the mean plus one standard deviation {flization increases. In presence of attacks, regular TG#s’
oN(IDT,IAT) as a function ofi for all measured Internet S€Tviceé is easily denied, whereas deferring TCP survives
paths. As expected, the normalized distance decreases adfifi attack; hence, the link utilization increases. Becébse
length over which the measure is taken increases. This iEP connections are in this scenario limited by the receiver
primarily because the variance of the normalized distan¥dndow, the link utilization does not increase quicker. ther
decreases. However, the key insight from the figure is thgifcumstances, deferring TCP flows would be able to utilize
while slightly larger than in the simulations, the normatiz Pandwidth left unused by regular TCP flows, thus providing an
distance between DATA and ACK substreams is pretty mudslditional incentive for clients to apply the novel TCP &tac
the same. Moreover, in all scenarios, mean plus one standard) _)
deviation are below the threshold of 0.8 for 5 packet-lon§: Performance in Absence of AttacRECP Fairness

intervals. This result confirms that the proposed method SHere. we explore the fairess properties of the proposed

indeed highly accurate in detecting low-rate poisoningeis. TCP stack. Typically, such experiments are needed to show
One of the reasons for the slight increase in the normalizéitht the new stack does not overwhelm the regular TCP.
distance between DATA and ACK packets is the delayed ACHowever, in our case, the goal is opposite. Due to deferred
feature. A TCP endpoint may delay transmission of ACKpgrotocol reaction, the proposed TCP effectively incredbes
hoping to have DATA ready to sent in that frame. In any casRTT by a half. To compensate for these effects, it also
for obvious reasons, poisoning-resilient TCP simply does adjusts the protocol parameters as explained in Sectiei.
apply the delayed ACK feature, but requires endpoints ttyregmigure 11 shows that the compensation is indeed successful,

Fig. 11. TCP fairness in absence of attacks

immediately. since the protocol remains TCP friendly. We conduct an
experiment with a large number of long-lived TCP flows which
V. INCREMENTAL DEPLOYABILITY create congestion. Independently of the level of deploytmen

deferring TCP flows manage to utilize their bandwidth fair

In this section, we treat the problem of incrementally deshare. Finally, this also confirms the correctness of our-non
ploying deferring TCP in the Internet. In essence, we eXloivial modeling efforts, which resulted in Equation (2).
how regular and deferring TCP streams affect each other when

they are multiplexed. VI. DISCUSSION ANDRELATED WORK

A. Performance in Presence of Attacks A. Discussion

Figure 10 plots the normalized link utilization as a funatio Forward vs. “classical” nonces.Savageet al. [25] propose
of the percentage of deferring TCP connections in the systeNonceand Nonce replyfields as a way to prevent a misbe-

having receiver from driving a standard TCP sender arhigrar This digest acts like a signature for that segment, incorpo-
fast. For each segment, the sender fills Mancefield with rating information known only to the connection endpoints.
a unigue random number, which is echoed by the receiveriiere are several drawbacks to such an approach. First, the
theNonce Replfield. This is fundamentally different from the computation burden of such algorithms may become a system
forward noncesnechanism proposed here. The key differendmttleneck on high-bandwidth networks [8]. Second, the key
is that in our scenario, nonces generated by the two endpoiexchange and managemeatd, required by [33]) is itself an

are independent of each other. Also, the TCP endpoint thatsolved problem [15]. Building an Internet-wide publicyke
generates a nonce iself required to repeat the same noncénfrastructure (PKI) incurs huge costs and suffers fromghhi

in the successive TCP packet. This enables the destinatiek of failure [34], [35]. Finally, independently of the PK
endpoint to distinguish packets generated by differentcsi problem, the initial key-exchange.¢, based on thdiffie-

In addition, the “classical” nonces ([25]) address a dédfdar Hellman key agreemefi6]) is itself vulnerable to poisoning
problem, and does not solve the TCP-poisoning problem: thttacks: an attacker that observes the transfer of a puéyidsk
attacker can return a correldonce Replfield, yet maliciously unable to decrypt messages encrypted by that key, but mpthin
set the RST flag. Moreover, nothing prevents the attacken frastops the attacker from poisoning the initial transfer ofke
sending a future data packet within the receiver window, yetg, by resetting a TCP (or a lower-layer) connection before
with a different nonce. the keys are exchanged.

Interactive communication. All proposed counter- The IPsec protocol [4] encrypts the TCP packet headers
poisoning mechanisms critically depend on the assumptiand payload. Thus, users applying the IPsec are immune
that the sender is backloggede. always has packets toto the TCP-targeted poisoning attacks. However, there are
send. Because interactive applicatioresg(Telnet) violate several drawbacks with such an approach. First, while IPsec
this assumption, the proposed solutions do not directlyyappmproves users’ security and privacy, it also increasesgsn
to such scenarios. While beyond the scope of this papegtwork vulnerability to DoS attacks. For example, withthe
one way to address the problem would be sending “dummagbility to monitor packet headers and classify packetsntar
packetsat low ratesinto the network in moments when noDoS and intrusion-detection systenesq, [37]) simply cannot
data is coming from the application. function. Second, the inaccessibility of packet heades ipit

Poisoning TCP SYN packetsUsing independent noncesthe network prevents deployment of advanced transport pro-

in different flow directions i(e., source-to-destination and]tcOCOIS €., XCP [38)) r?shwell as novellls.ecfllmty meghamsms
vice-versa) prevents the attackers from generating megéulin _ﬁ: IZGFP@'Q’.[:L.SD’ whic _brleqUI_r(; ex_p(; I(I:It dOWI mo(;morlng. K
poisoning attacks towards the origin endpoirgsy(returning Ird, IPsec Is incompatible with widely-deployed networ
ACK packets to the source after observing DATA packets"jl.Oldress translators (NATS) [39].

However, this does not hold for the exchange of initieé.(Finally, preventing malicious hosts from sending spoofed
TCP SYN) packets, in which case the attacker can startpackets would also solve the TCP-targeted poisoning pnoble
meaningful concatenation attack towards the source. Whiine approach is ingress filtering in which ISPs on the edges
this effectively becomes a hijacking attack, our approdih s drop outgoing packets with forged source addresses toaugtig
has a great potential to combat the problem. First, due BwS attacks. However, ingress filtering has not been widely d
deferring, we arealways capable of detecting such attacksployed for economic reasons: ISPs must pay for a system that
Moreover, applying additional techniquesd, estimating the only benefits others. Moreover, even if ingress filtering ever
actual RTT to the other endpint either by sending active outniversally deployed at the customer-to-ISP level, agask
of-band pings or by using a history-based approach [31])coicould still forge addresses from the hundreds or thousahds o

be used to effectively defend against such attacks. hosts within a valid customer network. Another approact®is |
traceback [5]-[7], [9]. Such mechanisms, when implemented
B. Related Work at network core routers, can detect hosts that forge source

. . . IP addresses. Unfortunately, such mechanisms eitherreequi
Our approach relies solely on DoS-resilient protocol desigyqters to keep a large amount of state [7] or generate a large

and requires no “classical” security techniques. Here, Wenont of overhead traffic [5]. In addition, problems such
briefly summarize such techniques. The following systeq, scalability, incremental deployability, and large heace

vulnerabilities enable the TCP poisoning attaaktlie lack of changes required at routers further prevent the deployiient
an authentication mechanism between senders and receivﬁé%eback mechanisms in the Internet [9].

(7¢) the visibility of TCP packet headers in the network, and
(7i7) the attacker's ability to generate packets with forged

source addresses. VIl. CONCLUSIONS

An authentication mechanism would prevent the TCP poi- This paper addresses the problem of large-scale TCP-
soning attacks. One such approach is proposed in [3] to defgroisoning attacks, in which an attacker can severely deny
against TCP-based BGP-targeted attacks. It defines a new T8&PRvice to a large number of flows by poisoning the endpoints
option for carrying an MD5 digest in a TCP segment [32)with spoofed packets. We design and evaluate a poisoning-

resilient TCP stack, which applies novel mechanism}, (14]
deferred protocol reactionji) forward nonces, and4;) self- (1]
clocking-based correlation to accurately detect, distisiy,
and mitigate poisoning attacks. We demonstrate that the pro

posed TCP upgrades relieve the attacker from the ability 5!
conduct simple, scalable, and low-rate attacks, in whigmev

a single spoofed packet is sufficient to deny service to a flowz]
To succeed, the attacker is forced to flood the endpoints, thu

becoming detectable by other counter-DoS mechanisms.

The proposed solution requires no explicit security assB®
ciation between the TCP endpoints, nor it requires them to
explicitly prove the receipt of packets. Instead, the iegite [19]
TCP endpoints challenge and authenticate each other implic
itly by recognizing random “codes” embedded in the inter20]
packet departure and arrival sequences. Large-scaleatioml
and Internet experiments show remarkably high accuracy [91]
this scheme in diverse, even quite hostile, networking en-
vironments. The proposed TCP upgrades are incrementa{ﬂ?
deployable; clients applying the change become resilient (¢l
attacks while they experience no performance degradations
in their absence, since the protocol is TCP friendly. In thig4l
future work, we plan to implement the proposed TCP sta I
and validate its performance in a controlled network tedtbe
as well as on the Internet.

[26]

VIII. A CKNOWLEDGEMENTS [27]

This work is supported by NSF CT grant ANI-0627715. [28]
REFERENCES [29]

[1] “Transmission control protocol,” Sept. 1981, InterfREC 793.

[2] P. Ferguson and D. Senie, “Network ingress filtering: €&zing denial- [30]
of-service attacks which employ IP source address spobdfifey 2000,
Internet RFC 2827. [31]

[3] A. Heffernan, “Protection of BGP sessions via the TCP Mé&dgnature
option,” Aug. 1998, Internet RFC 2385.

[4] S. Kent and R. Atkinson, “Security architecture for thrgernet proto- [32]
col,” Nov. 1998, Internet RFC 2401.

[5] J.Li, M. Sung, J. Xu, and L. Li, “Large-scale IP tracebankhigh-speed [33]
Internet: Practical techniques and theoretical founddtio Proceedings
of the IEEE Symposium on Security and Priva®©akland, CA, May [34]
2004.

[6] S. Savage, D. Wetherall, and T. Anderson, “Network supgor IP [39]
traceback,”IEEE/ACM Transactions on Networkingol. 9, no. 3, pp.
226-237, June 2001.

[7] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Taal®m [36]
B. Schwartz, S. Kent, and W. Strayer, “Single-packet |IP eback,”
IEEE/ACM Transactions on Networkingol. 10, no. 6, pp. 721-734,
Dec. 2002. (37]

[8] J. Touch, “Performance analysis of MD5,” iRroceedings of ACM
SIGCOMM '95 Boston, MA, Aug. 1995.

[9] A. Yaar, A. Perrig, and D. Song, “FIT: Fast Internet trbeek,” in [38]
Proceedings of IEEE INFOCOM 'Q8Vliami, FL, Mar. 2005.

[10] “Planetlab,” http://www.planet-lab.org.
[11] S. Cheung, “An efficient message authentication schéoméink state [39]

routing,” in Proceedings of the Annual Computer Security Applicataions
Conference San Diego, CA, Dec. 1997.

Y. Hu, A. Perrig, and D. Johnson, “Efficient security rhacisms for
routing protocols,” inProceedings of NDSS '0&an Diego, CA, Feb.
2003.

Y. Hu, A. Perrig, and M. Sirbu, “SPV: Secure path vectauting

for securing BGP,” inProceedings of ACM SIGCOMM '04ortland,
Oregon, Sept. 2004.

[12]

[13]

O. Nordstrom and C. Dovrolis, “Beware of BGP attackACM Com-
puter Comm. Reviewol. 34, no. 2, pp. 1-8, Apr. 2004.

L. Subramanian, V. Roth, |. Stoica, S. Shenker, and RzK4 isten
and whisper: Security mechanisms for BGP,”Rmoceedings of NSDI
'04, San Francisco, CA, Mar. 2004.

C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar, “Dikation
codes and applications to DoS resistant multicast autteign,” in
Proceedings of NDSS '0&an Diego, CA, Feb. 2004.

A. Perrig, R. Canetti, B. Briscoe, J. Tygar, and D. Sofi¥gfficient
authentication and signing of multicast streams over lat@nnels,” in
Proceedings of the IEEE Symposium on Security and Pri\Beskeley,
CA, May 2000.

A. Perrig, R. Canetti, D. Song, and J. Tygar, “Efficientasecure source
authentication for multicast,” ifProceedings of NDSS 'Q0Ban Diego,
CA, Feb. 2001.

Y. Hu, D. Johnson, and A. Perrig, “SEAD: Secure efficielistance
vector routing for mobile wireless ad hoc network8d Hoc Networks
vol. 1, no. 1, pp. 175-192, July 2003.

Y. Hu, A. Perrig, and D. Johnson, “Packet leashes: A niefeagainst
wormhole attacks in wireless networks,” Broceedings of IEEE INFO-
COM ’'03, San Francisco, CA, Apr. 2003.
ProgramURL.com, “Packet sniffing
http://www.programurl.com/software/packet-sniffingrh
OptOut, “Packet sniffing,” http://grc.com/oo/packetff.ntm.
D. Anderson, H. Balakrishnan, M. Kaashoek, and R. MorfResilient
overlay networks,” inProceedings of ACM SOSP '0Banff, Canada,
Oct. 2001.

A. Medina, J. Padhye, and S. Floyd, “Measuring the esdun of
transport protocols in the Internet,” Tech. Rep., 2004.

S. Savage, N. Cardwell, D. Wetherall, and T. AndersdrGP congestion
control with a misbehaving receiverACM Computer Comm. Revigw
vol. 29, no. 5, pp. 71-78, Oct. 1999.

V. Jacobson, “Congestion avoidance and contrédCM Computer
Comm. Revieywol. 18, no. 4, pp. 314-329, August 1988.

M. Allman, V. Paxson, and W. Stevens, “TCP congestiontas,” Apr.
1999, Internet RFC 2581.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “ModgliTCP Reno
performance: A simple model and its empirical validatioflfEE/ACM
Transactions on Networkingrol. 8, no. 2, pp. 133-145, Apr. 2000.
A. Kuzmanovic and E. Knightly, “Receiver-centric casgion control
with a misbehaving receiver: Vulnerabilities and end-panlutions,”
Journal of Computer Network2007.

M. Allman, W. Eddy, and S. Ostermann, “Estimating losges with
TCP,” ACM Performance Evaluation Revigwol. 31, no. 3, Dec. 2003.
T. Anderson, A. Collins, A. Krishnamurthy, and J. Zajaor, “PCP:
Efficient endpoint congestion control,” iRroceedings of NSDI 'Q6San
Jose, CA, May 2006.

R. Rivest, “The MD5 message-digest algorithm,” Apr.929 Internet
RFC 1321.

R. Moskowitz, P. Nikander, P. Jokela, and T.Henders$binst Identity
Protocol,” June 2006, Internet draft draft-ieft-hip-b&¥&txt.

D. Davis, “Compliance defects in public key cryptodngg in Proceed-
ings of the USENIX Technical Conferen&an Diego, CA, Jan. 1996.
C. Ellison and B. Schneier, “Ten risks of PKI: What yar'not being
told about public key infrastructureComputer Security Journavol. 16,
no. 1, pp. 1-7, Apr. 2000.

W. Diffie and M. Hellman, “New directions in cryptograph |IEEE
Transactions on Information Theqryol. IT, no. 11, pp. 644-654, Nov.
1976.

R. Mahajan, S. Floyd, and D. Wetherall, “Controllingghibandwidth
flows at the congested router,” iRroceedings of IEEE ICNP 'Ql
Riverside, CA, Nov. 2001.

D. Katabi, M. Handley, and C. Rohrs, “Congestion cohfiar high
bandwidth-delay product networks,” Proceedings of ACM SIGCOMM
‘02, Pittsburgh, PA, Aug. 2002.

B. Adoba, “IPsec-NAT compatibility requirements,” Ma&001, IETF
Internet draft.

software,”

