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Taming the Mobile Data Deluge with Drop Zones
Ionut Trestian, Student Member, IEEE, Supranamaya Ranjan, Aleksandar Kuzmanovic and Antonio Nucci

Abstract—Human communication has changed by the advent
of smartphones. Using commonplace mobile device features they
started uploading large amounts of content that increases. This
increase in demand will overwhelm capacity and limits the
providers’ ability to provide the quality of service demanded by
their users. In the absence of technical solutions, cellular network
providers are considering changing billing plans to address this.

Our contributions are twofold. First, by analyzing user content
upload behavior, we find that the user-generated content problem
is a user-behavioral problem. Particularly, by analyzing user
mobility and data logs of 2 million users of one of the largest US
cellular providers we find that (i) users upload content from
a small number of locations; (ii) because such locations are
different for users, we find that the problem appears ubiquitous.
However, we find that (iii) there exists a significant lag between
content generation and uploading times, and (iv) with respect to
users, it is always the same users to delay.

Second, we propose a cellular network architecture. Our
approach proposes capacity upgrades at a select number of
locations called Drop Zones. Although not particularly popular
for uploads originally, Drop Zones seamlessly fall within the
natural movement patterns of a large number of users. They
are therefore suited for uploading larger quantities of content
in a postponed manner. We design infrastructure placement
algorithms and demonstrate that by upgrading infrastructure
in only 963 base-stations across the entire United States, it is
possible to deliver 50% of content via Drop Zones.

I. INTRODUCTION

Cellular network providers are faced with an increasing

challenge when offering data services over their networks.

In the last several years, the production and consumption of

digital media over cellular networks has evolved dramatically,

and it is continuing to grow at an exponential pace [11]. As

an example, it is expected that more than 140 million mobile

subscribers worldwide will use social networking applications

that enable them to share photos and videos with their friend

circle on their phones by 2013 [13].

The problem incurred by the booming activity on mobile

devices is that users are no longer only consuming data

but have also started producing content that grows at an

exponential pace. This happened due to high processing power

and high capability mobile devices (e.g., enabled with high-

resolution cameras) that became available for mass-market

prices around the world.

The load induced by the user-generated content creates

problems to mobile network providers on a daily basis [5, 9].

AT&T officials warned that the Internet will not be able to

cope with the increasing amounts of video and user-generated

content being uploaded [2]. For example, users are likely to
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upload ‘heavy’ content, e.g., photos and videos, that range

from several tens of KBytes up to several MBytes, to popular

sites such as Flickr, Facebook, or Youtube, or send directly

to their friends. Contrary to ‘traditional’ content (e.g., the one

shared by peer-to-peer applications), user-generated content is

unique and often meaningful only to a user and his social

circle. Hence, traditional content delivery methods, including

caching that would at least reduce the long-haul burden on the

provider are incapable of addressing this issue.

In light of the above changes, cellular network providers

are rushed to address the problem and keep up with the

explosion of content production and consumer interest that

drives the traffic increase. In the absence of viable solutions

some providers are considering charging special usage fees

to heavy data users [3]. AT&T, concerned by the data usage

habits of iPhone customers took further steps and changed

billing plans [1]. Moreover, the current efforts conducted by

the providers are focused on “educating customers about what

represents a megabyte of data and improving systems to give

them real-time information about their data usage” [3].

Our key contribution lies in demonstrating that a feasible

win-win solution to this emerging problem does exist. In

particular, our approach enables users to freely upload their

content. At the same time, it helps providers to cope with

growing uploading trends. We demonstrate that providers can

reach this goal by strategically upgrading small parts of their

networks, (that we call Drop Zones) in which users can upload

heavy content as they pass by in their daily commute. We base

our approach on the following observations.

First, by analyzing mobility and upload properties of nearly

2 million users of a mobile 2.5G, and 3G network, we confirm

that users are likely to upload ‘heavy’ content from most

locations, implying that the problem is wide-spread. However,

a structural analysis of joint user mobility and uploading

properties shows that the user-generated content problem is

vastly a user behavioral problem. Indeed, we find that an

individual user is likely to upload ‘heavy’ content only from a

small subset of locations, typically corresponding to his home,

or work or school locations. Still, given that such locations are

different for different users, the problem appears ubiquitous

since the user-generated content uploads grow exponentially

at most locations.

Second, we analyze properties of user-generated content: (i)
uploaded via mobile devices to popular sites such as Flickr, or

(ii) directly sent to friends. We find that large amounts of such

content is uploaded in a postponed manner, i.e., there exists

a time lag ranging from several hours to weeks, from when

the content is generated to when it is uploaded. For example,

from our trace, we find that 40% of images are sent via mobile

devices at intervals longer than 10 hours since such content

was generated; likewise, in more than 55% of scenarios, the
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difference between content generation and uploading events is

longer than a day in the Flickr case.

Our Drop Zone approach is based on (i) changing a user’s

upload patterns (not the user behavior just where the uploads

physically take place), and (ii) disproportionally upgrading

bandwidth in a small subset of existing networks. In particular,

users can tag content for postponed delivery immediately after

generating it, and remove the burden of worrying about up-

loading such content from home, or work, or school locations.

At the same time, providers can take advantage of users’ daily

commute properties to increase bandwidth at a smaller number

of locations. We call these locations Drop Zones, and let users

opportunistically upload their content while in such zones. The

underlying intuition, that we confirm in our analysis, is that

most users visit a much smaller number of common locations

during daily commutes. Thus, by strategically upgrading small

portions of their networks, providers can effectively serve

growing user-generated content with minimal resources.

The key research questions we explore in this paper is

where to place Drop Zones such that they absorb the most

content possible? How to design effective algorithms to ap-

proximate this placement problem? What is the relationship

between postponed content delivery intervals users can tolerate

and needed infrastructure? Can we perturb user movement

to achieve better performance? What are the advantages of

wireless technologies with a higher coverage?

Our analysis shows that by upgrading only 963 base-stations

of the current United States nationwide infrastructure and

assuming users would postpone content delivery by 3 days,

the analyzed provider can become capable of absorbing 50%

of user-generated content delivered in a postponed manner as

part of the user daily movement routine. Furthermore we show

that when considering spatial proximity of users to our Drop

Zone infrastructure, 65% of content could be delivered if users

would travel 2 kilometers for the same Drop Zone placement

or if better radio technology would extend the radius of the

cell by the same amount.

The rest of this paper is structured as follows. In Section

II we introduce our Drop Zone content upload approach and

we give insights into how users currently upload content. In

Section III we present our Greedy Drop Zone placement algo-

rithm. In Section IV we thoroughly evaluate the performance

of our Drop Zone placement and investigate how Drop Zones

will be used. In Section V we demonstrate the feasibility of

our approach by describing a possible implementation. We

discuss related issues in Section VI. We present related work

in Section VII and conclude the paper in Section VIII.

II. THE CASE FOR DROP ZONES

Here, we briefly introduce the Drop Zone architecture. Then,

we show empirical results that motivate our approach.

A. A Drop Zone Architecture

Figure 1 shows our proposed Drop Zone architecture. The

network is fragmented into normal connectivity zones. These

correspond to base-stations using the technology that is com-

mon place in the provider network, e.g., 3G, or 2.5G. On the

other hand, there exist better connectivity zones, that we call

Fig. 1. Postponed delivery example

Drop Zones, shown with a darker color in Figure 1(b). We

intentionally do not tie our approach to a particular technology

that can be used in Drop Zones for two reasons. First, because

it can come in different forms. For example, this could be

WiMAX [14] or LTE [10], for which base-station ranges can

be roughly matched among 3G, 2.5G and WiMAX and LTE.

WiFi also can be one such technology (e.g., [16, 32, 35]).

Second, our goal is to understand system performance in

limiting scenarios. In particular, if the user-generated content

will keep growing at an exponential pace, we want to explore

where should the Drop Zones be placed and how should their

capacity scale.

Figure 1 illustrates the difference between the state-of-the-

art user uploading and our proposed Drop Zone approach.

Consider three users, who generate three independent pieces

of content, marked by A, B, and C. Figure 1(a) shows how the

content is currently uploaded. Independently from where a user

may generate the content, we find that with a high probability,

the user uploads the content from a certain set of locations.

We call such user- centric locations (we call them user- centric

since users are seen spending a majority of their time here) as

the user’s ‘comfort zones’, that most of the time correspond to

the user’s home, or work, or school locations. We validate this

phenomenon in Section II-B1 below. Because such locations

are different for different users, the user-generated load grows

nearly uniformly at most locations.

Note that businesses and sometimes even users decide to

take matters into their own hands and employ femtocells

(small cellular base stations) in order to get bigger capacity

and increased reliability for themselves. They are however

complementary to our Drop Zone upgrades as they are targeted

at covering a small number of users; unlike the Drop Zones

that we envision that will cover significantly larger areas and

numbers of users. We also do not have femtocell statistics for

the provider that we have analyzed and the results we provide

should be considered with this in mind.

Figure 1(b) shows the Drop Zone uploading scenario. Users

do not upload content from comfort zones, but rather upload

it in a postponed manner from Drop Zones. In particular, all

pieces of content, A, B, and C, are uploaded from the same

Drop Zone marked by X in the figure. As shown in Section

II-B3, users upload content in a postponed manner; we show
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TABLE I
SENDING STATISTICS

Total Nr. messages Avg. size Max. size
[MB] [bytes] [MB]

Text 73 1,231,411 58 0.42

Appl. 826 2,193,443 376 3.5

Image 77,495 2,022,361 38,318 3.1

Audio 34,831 531,133 65,577 3.2

Video 5,998 31,345 191,339 3.5

it by considering the difference in content creation and upload

times. In this paper we aim to quantify benefits and trade offs

involved in using the architecture shown in Figure 1.

B. Analyzing User Behavior

Here, we provide details about the dataset we use for this

study. We use an anonymized trace collected from the content

billing system for the data network of a large 3G, and 2.5G

mobile service provider. The trace contains information about

1,959,037 clients during a seven day period. It preserves user

privacy as all identifiers such as users’ phone numbers, email

addresses and ip-addresses were anonymized.

The trace provides details of user sessions defined as be-

ginning from the time the user is authenticated by the Remote

Authentication Dial in User Service (RADIUS) server to the

time the user logs off. When logged in and out, the event is

stored in our trace. Among the fields we store, we count the

anonymized user identifier, the local timestamp and the base-

station that serves the user. Further changes in location are

reported to the server.

With regards to base-station location, we have the latitude

and longitude of the base-stations and since the cell phone

only reports the current base-station that it uses, we make the

assumption that the current position of the user is given by the

position of the base-station. More details about the extraction

of the dataset can be found in [36, 37].

The trace contains MMS messages exchanged among users,

as well as uploaded to social networking websites such as

Facebook, Myspace, Flickr. For messages we have logged the

content filename, the size, if it was uploaded or downloaded,

the base-station that was used, and the anonymized identifiers

for the sender and receiver. In order to upload pictures,

Facebook Mobile users for example, receive from Facebook a

unique email address that they can use to send emails or MMS

with attached images from their mobile phones. The pictures

they upload in such manner are shown on their Facebook pro-

file. Our trace contains such information, yet we cannot iden-

tify individual uploads since the corresponding identifiers are

anonymized. etc. Table I summarizes the uploading statistics.

We use various attachment types to categorize given content in

one of the five categories: text (plain, xml, bookmark, calendar,

etc), application (word, excel, powerpoint, pdf, rtf, zip, etc),

image (gif, bmp, jpg, jpeg, etc), audio (mp3, acc, midi, wma,

wav, amr, etc), and video (3gpp, h264, mp4, etc).

Note that in our trace there exist smartphones that also use

WiFi and prefer it when such a signal is present. Since our

trace was collected from the content billing part of the cellular

network, WiFi transfers are not recorded. Even though it would
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be desirable to analyze WiFi effects (transfers meant for Drop

Zones could be scheduled when WiFi is available), WiFi usage

does not directly impact our study.

It is rather obvious that our trace is only a sample of user

activity across applications yet the best we could obtain at

such a large scale. Indeed, user activity is diverse, users use

applications such as Skype, and Facetime to communicate

in real time. User-generated-content should not be neglected

however. One can note how important such content is by

looking at the Facebook usage statistics [6], mobile users being

twice as active as desktop users.

1) Users upload content from their top locations: Here, we

explore from what locations do users upload their content to

the network. To answer this question, we proceed as follows.

First, for each individual user, we rank the locations he

encounters based on the amount of time the user spends in

that location. We find that there exists a significant bias in

user behavior. In particular, independently from the number

of locations that users visit in their daily commute, they tend

to upload their content from the top three locations.

Figure 2 shows this effect. In particular, more than 85%

of content of all types is uploaded from a user’s top three

locations. This holds true both for the number of different

content pieces uploaded (marked by ‘distinct content’ in the

figure) and the content size (marked by ‘bytes’ in the figure).

Analyzing these results more closely, using straightforward

time and space analysis (mainly identifying the locations

where a user spends the most time during day hours and night

hours as explained in our previous work [37]), we find that

in the vast majority of scenarios, two of the three locations

can be confidently associated with a user’s home and work

or school locations. Thus, users prefer to send their content,

including the ‘heavy’ ones that we focus on in this paper, from

their top ranked locations.

2) The user-generated content problem is wide-spread:

Here, we explore the user uploading behavior from the

network-wide perspective. Above, we demonstrated that in-

dividual users tend to upload content from top locations.

However, we show that the problem is the fact that different

users have different top locations. Hence, the problem is wide-

spread, as we demonstrate below.

Figure 3 shows the amount of uploaded content for each

application type as a function of top base-stations in terms

of messages sent from that location. We make the following

insights. First, in terms of content size, images are dominant,

then audio, then video, then applications, then text. Second,

the figure shows that while some base-stations are necessarily
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more popular than others, the popularity difference among

base-stations is not dramatic, implying that user-generated

content uploads grow nearly uniformly at these locations.

Indeed, the peak to mean ratio across base-stations is approx-

imately 2:1 for images and audio, that dominate the trace.

Third, the relative ratio among content types stays nearly

constant for most base-stations, that implies similar upload

trends at most locations.

Summarizing the results from the entire trace, we find

that out of all locations that users upload their content from,

80.57% of such locations are top locations for some users. We

conclude that the user-generated problem is wide-spread and

induced by users’ habit to upload such content to the network

from top locations.

3) Lag between producing and uploading content: Here, we

present evidence suggesting that not all user-generated content

is posted or sent immediately after it has been produced. In

particular, we have crawled Flickr mobile photography groups

where users upload pictures taken via their camera phones [7,

12]. The pictures are also uploaded via the phone. It contains

49,054 pictures uploaded over a period of 3 years. For this part,

we were able to extract the time information at the granularity

of days. In addition, we have also explored the same issue

using our trace. Our mobile trace, different than the above

Flickr trace, contains diverse user behavior such as sending

photos to friends as well as uploading them to sites such as

Facebook, Myspace and Flickr. We obtain the date and time

when the content was created by observing that a subset of

the image filenames in our trace contain such information (the

default setting of the camera is to insert in the filename the date

and time of creation). In order to determine if this sample is

representative for all the pictures, we compared the distribution

of picture sizes for this sample with the overall distribution of

picture sizes. The two are indeed similar.

Figure 4 shows the results, implying that users do not

necessarily upload their pictures as soon as they shoot them.

For example, the Flickr data shows that as much as 55% (100 -

45%) of content is uploaded at a lag longer than one day, while

25% at a lag longer than a week. At the same time, the results

extracted from our trace show good match for lags above one

week, yet imply shorter lags between picture generation and

upload times for less than a week time scales. Still, the results

show that 40% of content is uploaded after 10 hours or longer

since it has been generated.

The statistics about the lag between content generation

and uploading show that users are already willing to tolerate

delays. Moreover, while we cannot make strong statements

for content that is uploaded soon after generated, we argue

that a portion of this content might be possible to deliver

in a postponed manner. This is because a subset of users

might have a tendency to ‘hand over the content immedi-

ately’, while they might not require it to be uploaded so

fast2. Nonetheless, the observed postponed content delivery

behavior already validates our assumption that the bulk of

user-generated content can be uploaded in such a manner. We

do not expect all users to postpone content uploads. Indeed,

some users have the expectation of having content available

immediately after posting it. It is however hard to predict

which way user behavior will change as there are factors

working both ways (battery life, capped data plans, smaller

upload delays, incentives that providers might offer).

Other incentives for users to upload or download content

in a postponed manner include: (i) longer battery life - it

has been shown in [19] that batching transmissions improves

battery life by reducing the tail energy incurred in wireless data

transmission, (ii) pricing, clients can be given discounts for

uploading or downloading some content through Drop Zones.

4) User profiling: User profiling can prove useful for a

service provider for example for better service targeting. It is

not our goal in this paper to profile users of a mobile network.

However, one can distinguish from the above results several

characteristics on which users could be profiled. Among these

characteristics, we can include: (i) how many locations they

visit, (ii) how much content they upload, (iii) how long they

delay uploading content to the network.

Figure 5 shows the uploading and movement profiles of the

users in our trace (all users are captured on the x axis, one

point on the x axis being one user). The relative amount of

content in bytes uploaded per user (with respect to the y1 axis)

shows that a small amount of users out of all the users upload

a few orders of magnitude more content than others. In fact

10% of the users upload 54% of the content (not shown). We

call these users heavy uploaders.

Also shown in the figure is the number of locations a user

visits during the trace interval. The same behavior can be

observed in this figure. A small amount of users is seen in

a large number of locations. In particular 10% of the users are

seen in more than 8 locations with some users being seen in

more than 100 locations. We call these users heavy travelers.

Note that in Figure 5, the users on the x axis are not the same

for the two curves but are ranked in decreasing order with

2Certain phones offer users the option to directly upload a picture after
taking it, to sites such as Facebook or to send it to a friend via MMS.
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respect to their corresponding y axis.

With regards to users delaying content we use the same data

as described in Figure 4. Figure 6 shows the content delaying

profiles of the users in our trace (as in the previous figure all

users are captured on the x axis, one point on the x axis being

one user). Three curves are shown in the figure. For each

user on the x axis we have a minimum value, a maximum

value, and an average value for all the delays observed for

that user. We can note that the figure captures the fact that

distinct users prefer to upload content right away and other

distinct users prefer to almost always delay uploads. In fact

48% of the users delay uploads by more than one day. We call

these users heavy delayers.

III. METHODOLOGY

In this section, we will introduce and analyze the mechanics

of our approach for providing better infrastructure for content

delivery at certain special locations. Some content can be

marked as postponed for delivery by the user and will be

delivered only at these locations that have better connectivity.

Below we introduce the specific methodology we use for

identifying candidate locations for better connectivity.

A. Problem Statement

Our Drop Zone placement problem formulation is based on

the following observations. First, that users already inherently

postpone delivery of content after generating the same as

shown via Figure 4. Further, we argue that once an architecture

such as that proposed here is in place, users can be given the

option to either deliver content immediately (using whatever

type of infrastructure is available at the current location) or

asked about how much delivery delay are they willing to

tolerate. Hence, in the Drop Zone placement problem, we

assume a tolerable delivery delay for all users to come up

with a placement. Second, due to users’ mobility patterns,

there exist a set of common locations, through which many

users pass by at some point in time. Hence, in our problem

formulation, we combine the two observations and determine

the common locations through which users will pass by after

generating content within the tolerable delay assumed. The

Drop Zone placement problem can be stated:

Problem Statement 1: Given:

• B base-stations and U nomadic users with the associated

tempo-spatial mobility patterns, i.e., which base-station

is serving each user at any time;

• a description of the temporal content generation process

for each user, i.e., number of content units being gener-

ated by any user at any point in time;

• for all content, a description of the delay that would be

encountered by content generated by a user at time ti, if
it is delivered at time tj , that is quite simply: tj − ti;

Find the minimum number of Drop Zones to be co-located at

the base-stations, such as to satisfy the below constraints:

• the amount of content that a Drop Zone can deliver at a

point in time is less than a maximum capacity, (in terms

of aggregated rate across users);

• the delay between original and postponed delivery for any

content in the system is less than a maximum tolerable

delay.

1) Inputs: For the Drop Zone placement problem, we use a

one week long trace from one of the largest cellular providers

in North America. The trace provides information about users’

trajectories in terms of locations (base-stations) they were

present at, and at what time. The trace provides details about

user’s activity at times when (s)he was active.

While the trace provides the tuple, “time, location, content”

per user, we extract separately the content uploaded by a user

and the user’s trajectory. First, we define a single indivisible

unit of content as content chunk of maximum λ bits. We

assume that any solution to the Drop Zone placement problem

must ensure that a content chunk is delivered from within one

location only. We divide time into discrete units of length τ
seconds each, such that the entire trace spans over the set of

bins: T = {t1, t2, ..., tT }. So a user’s trajectory that straddles

across two time bins is modified such that it begins at the

beginning of the first bin and ends at end of the second bin.

What we need as variables in our algorithm is a mapping

of content to the base stations where it might potentially be

delivered by means of delay and user travel. We formalize as

follows. Let C be the set of content chunks, c ∈ C denote

a chunk and |c| represent the size of a chunk in bits. let the

function u = ctou(c) map the user u ∈ U who produced the

content chunk c. Let T = {t1, t2, ..., tT } be the sequence of

temporal snapshots at which the system is observed. Let ∆i
c

represent the number of new content bits generated by the

user for content chunk c ∈ C at time ti ∈ T . Let Rij
c be the

delay for content chunk c ∈ C generated at time ti ∈ T and
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delivered at time tj ∈ T with ti ≤ tj . Since the base stations

necessarily have finite capacity let ζmax

b be the maximum

number of content bits that can be uploaded at the Drop Zone

placed at base-station b ∈ B within any time bin, and since we

do not want content delivery to be postponed indefinitely let

Dmax be the maximum delay allowed for any content chunk to

be uploaded since its generation. Furthermore, let ni
c ∈ {0, 1}

indicate whether content chunk c ∈ C was generated at time

ti (i.e., n
i
c = 1) or not (i.e., ni

c = 0). Similarly, let mjb
c ∈ 0, 1

indicate whether user u corresponding to content chunk c ∈ C
is covered by base-station b ∈ B at time tj (i.e., mjb

c = 1) or
not (i.e., mjb

c = 0).

We explain the variables via an example. Suppose from

the trace, we obtain information about a user who uploads a

content of 10 Kb in a session over which the user was present

at base-station B1. Let the maximum chunk size λ = 10 Kb,

time bins of τ = 1 minute, maximum capacity at any Drop

Zone, ζmax

b = 100 Kbps, ∀b ∈ B, and maximum tolerable

delay Dmax = 5 minutes. Let the binned trajectory for the

user be {B1, 0, 0, B2, 0, B3, B3, 0} over T = {t1, ..., t8}. We

assume that the content generation time for the chunk is the

beginning of time bin t1. Hence, ∆
i
c1

= {10, 0, 0, 0, 0, 0, 0, 0}
over ti ∈ T . The variable R1j

c1
provides an idea of delay that

is suffered by content c1 generated at t1, if it is delivered at

time tj ∈ T and is given as: R1j
c1

= {0, 1, 2, 3, 4, 5,∞,∞}.
This variable computes the time delay regardless if the user’s

presence is known or not at the time, e.g., at time t5, the
value is 4. User u is known to have been in location B3

at time bins t6, t7 as well. However, the content can be

delivered in B3 at time t6 only and not at t7 since that

would violate the maximum tolerable delay of 5 minutes.

Hence, the value ∞ we have at time t7 as well as t8. Finally,
ni
c1

= {1, 0, 0, 0, 0, 0, 0, 0}, mjB1

c1
= {1, 0, 0, 0, 0, 0, 0, 0},

mjB2

c1
= {0, 0, 0, 1, 0, 0, 0, 0}, mjB3

c1
= {0, 0, 0, 0, 0, 1, 1, 0},

over T . This notation is further used in Appendix A where

we introduce an Integer Linear Program.

B. Greedy Algorithm

As described in the problem formulation above, we wish to

place the minimum number of Drop Zones that would cover

all the content that was uploaded originally (under no delivery

postponement) under a maximum tolerable delay. This can be

mapped to a set covering problem, where given a universe

set of content, and given a set of base-stations, where each

base-station covers a subset of the content universe, we are

interested in choosing the minimum number of base-stations

that cover the entire content universe set. Determining the

minimum cover in the set covering problem is a well known

NP-Hard problem [23]. Given the large size of the data we

are dealing with (a cover over a set of several millions of

elements), in this paper we take a Greedy approach as shown

in Algorithm 1. It has been shown [27], that the worst case ap-

proximation ratio achieved by our Greedy algorithm when base

station capacity is ignored is H(s), i.e., the solution achieved

by Greedy can not be more than H(s) times worse than

optimal. In our case, s is the number of distinct content chunks

covered by the base-station that covers the maximum number

of distinct content chunks and H(s) is the corresponding

Harmonic number given as: H(s) =
∑s

k=1
1/k ≤ ln(s) + 1.

The greedy algorithm is iterative and determines which

base-stations should be considered for placing Drop Zones

until all content is covered by at least one Drop Zone. At each

step, the greedy algorithm selects the base-station that has the

maximum number of distinct content chunks that have not

been covered yet. While the algorithm is intrinsically similar

to the greedy set cover algorithm, in addition, it incorporates

the capacity constraint, that the aggregate content uploaded

from candidate Drop Zones should not exceed a maximum

capacity (in terms of content bits per time unit). In this regards,

the algorithm assigns priority to each uncovered content in

terms of how many chances a content has to be covered. More

precisely, the priority of each uncovered content at a base-

station is computed as an aggregate of unused capacity across

time bins where the user corresponding to this content was

present, since the content was originally uploaded and within

the maximum tolerable delay bound (see Function 2).

Algorithm 1 Greedy algorithm to determine which base-

stations serve as candidate Drop Zones

Initialize X = ∅, where X is set of base-stations selected as Drop
Zones.
Create C = Set of content chunks in the system over all ti ∈ T .
Create B = Set of base-stations at which we have at least one
chunk not yet covered, c ∈ C at any time.
Create ζ(b, ti) = Unused capacity at base-station b at time bin ti.
At any time, ζ(b, ti) ≤ ζmax

b .
while |C| > 0 do

b=RankBaseStations(B);
X = X ∪ b;
RC=RankContent-AT-BaseStation(C, b);
for (c,b) in RC do

th=DeliverContent (c,b);
if th 6= −1 then

ζ(b, th) = ζ(b, th)− |c|;
C = C − c;
RC=RankContent-AT-BaseStation(C, b);

end if
end for
Create B;

end while

Function 1: RankBaseStations(B) assigns priority to base-

stations b ∈ B by counting the maximum number of distinct

content chunks not yet covered, that can be served by each

base-station over all time ti ∈ T . It then sorts these base-

stations in ascending order and returns the base-station with

largest number of distinct content chunks.

Function 2: RankContent-AT-BaseStation(C,b) assigns

priority to each content chunk c ∈ C served by input

base-station b by counting the number of capacity units that

content chunk c will have at base-station b within the time

the content was originally uploaded (ti) and the maximum

tolerable delay, i.e. tj ∈ [ti, ti + Dmax]. Then it sorts these

pairs in ascending order, with the most critical pair as the

first one to be served, i.e. with the fewest number of capacity

units available to it for being served. It returns this list in

RC=(c,b).

Function 3: DeliverContent(c,b) delivers the content c at

base-station b by selecting the earliest time bin th ∈ [ti, ti +



7

Dmax] at which ζ(b, th) > 0. Then it returns the time bin th.
It returns th = −1, in case no time bin is available.
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Fig. 7. Example for Greedy Drop Zone Placement.

We further explain the Greedy Drop Zone placement algo-

rithm (see Algorithm 1 via an example as shown in Figure 7.

Assume time bins of length τ = 1 bin and content is chunked

in to sizes of 1 unit. Further, assume maximum capacity at

any Drop Zone is 2 units per time bin and maximum tolerable

delay to deliver any content chunk since original upload is

Dmax = 3 time bins. Initialize the unused capacity at each

base-station b for each time bin ti as ζ(b, ti) = 2. Assume the

following original content upload process, where at time t1,
the following chunks were first uploaded: {c1, c2, c3, c4}, at
time t2: {c5, c6, c7} and at t3: {c8, c9, c10}. For simplicity,

we assume that all content chunks are of the same size:

1 unit. Moreover, the user corresponding to content chunk

c1 had the following trajectory: (B1, t1), (B2, t2), (B2, t3)
and (B2, t4). Note from Figure 7, that the content that was

originally uploaded at time t1 is shown with circles, that in t2
with diamonds and in t3 with pentagons. Content that was not

uploaded at a location, but it could be potentially delivered

there by virtue of user’s movement there, is shown in plain

black. Hence, note that while the user corresponding to content

c1 did not upload any new content at time bins t2, t3, t4,
these times are candidates for him to still upload content in

a postponed manner. The final allocation of which content

is uploaded from which Drop Zone is as shown by content

enclosed in squares.

The algorithm initializes: X = {}, C = {c1, ..., c10} and

B = {B1, B2, B3, B4}. At the first Iteration (|C| = 10 that is

> 0) and hence, we evaluate RankBaseStations(B) to obtain

{(B1, 2), (B2, 8), (B3, 7), (B4, 4)} and output b = B2 and

X = {B2}. RankContent-AT-BaseStation(C, B2) produces

the following initial set of priorities for users at B2, {(c1, 6),
(c2, 4), (c3, 4), (c4, 2), (c5, 4), (c6, 4), (c7, 4), (c8, 6)}. Hence,
first content that is selected is (c4, 2) that is then delivered

at time t4 as determined by DeliverContent(c4, B2). Next,

we reduce unused capacity by one to obtain ζ(B2, t4) =
1, and modify the set of content chunks not yet placed

as C = C − c4. Next, RankContent-AT-BaseStation(C,

B2) produces the following set of priorities amongst users

at B2, {(c1, 5), (c2, 4), (c3, 3), (c5, 4), (c6, 3), (c7, 3), (c8, 5)}.
Next content to be selected is (c3, 3), that is then delivered

at B2 at time t2. Thus, we reduce unused capacity at B2

at time t2 by one unit and obtain ζ(B2, t2) as 1, and set

C = C− c3. We continue this way and produce the following

final allocation of content at B2: (c4, B2, t4), (c3, B2, t2),
(c2, B2, t2), (c5, B2, t3), (c1, B2, t3), (c6, B2, t4), (c7, B2, t5),
(c8, B2, t5). We exit the for loop with C = {c9, c10}, and
B = {B3, B4}. In the second iteration, |C| = 2 > 0,
and hence we enter the while loop. RankBaseStations(B)

produces the following {(B3, 2), (B4, 2)}, and since both

base-stations are of equal priority, it randomly chooses b =
B3. Hence, the final Drop Zone placement as output by

Greedy algorithm is X = {B2, B3}. Finally, RankContent-AT-
BaseStation(C, B3) produces the following set of priorities for

users at B3: {(c9, 6), (c10, 6)} and the consequent allocation

(c9, B3, t4), (c10, B3, t4).

C. Parameters

In the next section, we evaluate the performance of Greedy

and Optimal algorithms (described in Appendix A). Where

not specified, we use the following values for parameters. We

assume τ = 1 minute, i.e., time is divided in to bins of length

1 minute. We evaluate the performance of the algorithms

assuming that Drop Zones are to be serviced by LTE, and

hence we use the maximum capacity at any Drop Zone, ζmax
b

to be 75 Mbps, ∀b ∈ B. Many factors such as errors due to

signal propagation obviously decrease this aggregate capacity

yet we ignore them for the purpose of this study as we do not

have access to them. We choose maximum chunk size λ = 3.5
MB as this is the biggest content piece in our dataset and can

safely fit in one minute considering the LTE technology. We

vary the maximum tolerable delay over the duration of the

trace, as [1-168] hours.

IV. EVALUATION

In this section we evaluate the Drop Zone architecture

and the effectiveness of various infrastructure placement al-

gorithms. We then explore multiple system parameters and

their impact on performance.

A. Greedy vs. Optimal

Here, we present results to compare the placement obtained

by the Greedy algorithm with respect to the Optimal shown

in Appendix A. In the following experiments, we assume the

maximum capacity of each Drop Zone to be the same as the

maximum aggregate upload rate possible under LTE, 75 Mbps

i.e. ∀b ∈ B, ζmax

b = ζmax = 75 Mbps. We solve the Integer

Linear Program by using the ILOG CPLEX software [8].

Because of the large scale of the data involved, we compare

the optimal placement given by the Integer Linear Program

with our Greedy algorithm on a limited dataset extracted

from the original dataset. We extract uploads across 98 base-

stations that cover a medium size United States town. We only

extract uploads originally carried out across the first day of our

dataset. Figure 8 shows the results. We vary the maximum

postponed delivery interval among the values of 6, 12, 18, 24,

48, 72, and 96 hours. The reduced dataset contains uploads

originally carried out over a single day, yet we also extract
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Fig. 8. Greedy placement compared to the Optimal placement obtained from
the Integer Linear Program.

the upload opportunities that such content has across the above

longer time intervals.

The insights from Figure 8 are as follows. First and

foremost, Greedy stays very close to optimal. Indeed, for

all maximum postponed delivery intervals we considered,

Greedy selects only 1%-2% more Drop Zones than the optimal

placement does. Second, we can see a tendency for Greedy to

select a relatively larger number of Drop Zones as compared

to optimal, when the maximum postponed delivery interval

increases. We make two points here: (i) despite the increased

difference, the absolute difference is still very small, i.e., less

than 2% in all cases. (ii) We will demonstrate below that

in any case we cannot obtain significant gains for maximum

postponed delivery intervals greater than a few days.

B. Greedy vs. Greedy Zero

Here, we evaluate the impact of postponed content delivery

intervals on the infrastructural requirements needed by the

Drop Zone approach. For comparison, we use Greedy Zero,

an instance of our Greedy algorithm that greedily selects as

Drop Zones the locations from where users originally uploaded

the largest quantities of content and evaluates them under the

considered postponed delivery assumption.

Figure 9 shows the results. The x-axis shows the number

of Drop Zones, while the y-axis shows the ratio of the

content delivered by our Greedy algorithm vs. Greedy Zero.

For example, point (x,y) = (200,1.24) shows that the Greedy

algorithm manages to deliver 24% more content than the

Greedy Zero algorithm when 200 Drop Zones are used in

both cases and a maximum postponed delivery interval of 96

hours is considered. This is not a surprise: when the postponed

delivery is considered during the selection process, locations

that can deliver more content in a postponed manner are

selected. Thus, a better infrastructural placement is possible

to achieve, and hence more content is delivered.

Figure 9 shows that the Greedy approach manages to de-

liver approximately 5%-25% more content than Greedy Zero.

Necessarily, the gap between the two steadily increases as the

maximum postponed delivery interval increases. Also, the gap

between the algorithms is particularly high within the first

200 Drop Zones. This happens because the Greedy algorithm

manages to quickly select locations that were not so popular

originally, yet they are excellent Drop Zone locations when

postponed delivery is considered during the selection process.

Because Greedy Zero has no advanced knowledge about user
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mobility, it either neglects such locations or selects them much

later in the process.

Furthermore, the gaps shown in the figure translate to

additional infrastructure the order of a few hundred additional

Drop Zones needed to deliver the particular amount of content.

In particular, for 1,000 Drop Zones placed by Greedy with 96

hours postponed delivery, the Greedy Zero needs 1,201 Drop

Zones (the result is not shown in the figure). Thus, an approach

that does not consider user mobility and postponed content

delivery during the selection process requires 20% larger

infrastructural deployment to achieve the same performance.

C. Infrastructural Needs

Here, we explore the infrastructural needs as a function

of postponed delivery intervals. In this scenario, we take the

percent of delivered content as a parameter.

Figure 10 shows the results. It depicts the number of Drop

Zones (y-axis) needed to serve the given percent of content

by assuming the maximum postponed delivery interval (x-

axis) varied in the range from 1 to 168 hours. Necessarily,

Drop Zone architectures that target to absorb larger amounts

of traffic need more Drop Zone locations. Indeed, to deliver

80% of traffic via Drop Zones for 1 hour postponed delivery

interval, one needs to deploy three times more Drop Zones

(6,066 vs. 1,960) relative to the 50% content case.

Another insight is that the Drop Zone deployment rate

reduces as the postponed delivery increases. Note that the
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Fig. 11. Infrastructural usage

largest benefits come early. Focusing on the 50% content

delivery case, one needs Drop Zones in 12% less places when

comparing 1 hour (1,960 Drop Zones needed) to 6 hours

for maximum postponed delivery (1,716 Drop Zones needed).

This is because the probability that users change their location

within 6 hours intervals is high. Thus, it becomes possible to

offload the same content at a smaller number of Drop Zones.

Figure 10 shows that all curves ’flatten’ as the postponed

delivery interval increases over 4 days. One would expect

that as the postponed delivery interval increases, users see

more locations, and hence, infinite gains can be obtained from

mobility. This is not the case as shown in Figure 10.

Previous studies on human mobility, reported on the high

predictability of movement and observed that users spend

significant time in just a few locations. For example in [30],

the authors note that even for users seen at as much as 30 or

50 different locations they spend more than 40% of their time

in just two locations. This effect can be observed in Figure

10. After a time interval of approximately 4 days, the curves

level off and marginal gains can be obtained on increasing

the delivery interval. Our explanation is that since users spend

time in a few locations (as shown in previous work), benefits in

Drop Zone placement come from considering these locations.

However, as the time interval increases, the probability to visit

other locations increases. However, after 4 days, it is unlikely

for users to visit locations not seen before.

D. Infrastructural Usage

Here, we analyze how users will interact with the Drop Zone

architecture. We explore the following aspects: (i) Average
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content delay: even though we specify a maximum postponed

delivery interval, content could be delivered much earlier;

hence, we take a look at the actual delay experienced by users,

(ii) average distance between source and Drop Zone, (iii) av-
erage pieces of content batched: since users postpone content

delivery, they might carry a larger number of pieces of content

when encountering a Drop Zone, and (iv) average number

of drop zones encountered during the seven day interval. In

all scenarios, we take the percent of delivered content as a

parameter. For the delivery, we have users opportunistically

deliver their postponed content upon encountering the first

Drop Zone with available capacity to deliver the content.

Figure 11(a) shows the actual delay experienced by users

(y-axis) considering the given postponed delivery interval (x-

axis). Necessarily, the experienced delay is shorter than the

maximum postponed interval shown on the x axis. Indeed, the

scale on y-axis is approximately 5 times shorter than on the

x-axis. Another insight is that delay grows sub-linearly with

the postponed delivery interval in the range (x,y) = (1hour,

15 minutes) to (100 hours, 25 hours). In all cases, users

experience on average four times less delay than given by

the maximum postponed delivery interval.

Figure 11(b) shows the actual average distance between the

source and the Drop Zone. The figure shows that the average

distance increases with the increase in content delivered by

Drop Zones. A larger amount of content delivered implies

a larger number of Drop Zones. This further means that

the average distance between the source and the Drop Zone

increases with the number of Drop Zones. This result may

seem counter intuitive at first. Indeed, if there are more Drop

Zones, they should be on average closer to users, not further

away. By examining the data we realize that the reason is as

follows: when there are a smaller number of Drop Zones, there

is still a large number of users close to those locations. Hence,

the smaller distance. As the number of Drop Zones increases,

users who are already close to existing Drop Zones are further

covered, while the larger number of Drop Zones singles out

the users who are further away. Hence, the larger distance.

Figure 11(c) shows the average number of pieces batched.

As mentioned above, batching content delivery is beneficial

for a mobile device as it improves battery life [19]. The figure

shows that in all Drop Zone placements, users deliver on

average 2.4 more content per delivery for 1 hour postponed

delivery interval. As the delivery interval increases, so does the

batching effect. As expected, more content pieces are batched

with less Drop Zones, corresponding to smaller percent of

content (e.g., 50%) uploaded via Drop Zones.

Figure 11(d) shows the average number of Drop Zones that

users interact with during the seven day trace interval. As users

‘see’ only a few base-stations that are part of their predictable

daily routine, the Drop Zone usage necessarily captures this

effect. Hence, users interact with a small number of Drop

Zones on average, i.e., 1-3.5, depending on the amount of

Drop Zones placed. The more content the infrastructure needs

to absorb, the larger the number of Drop Zones is, and hence

the larger the number of Drop Zones that users encounter.

E. Heavy Uploaders, Travellers, and Delayers

Finally, we evaluate how the users we identified in Section

II-B4 perform with respect to the Drop Zone infrastructure.

Figures 11(e), and 11(f) show the results. In particular, we

have examined the delays, and distances experienced by heavy

travelers, heavy uploaders, and heavy delayers. Figure 11(e)

shows the average delay. One can see that the heavy travelers

and heavy uploaders fare better in terms of average delay than

the rest of the users. In fact this shows that the heavy tail of

uploads is made up of users who do not upload, or move as

much. Note that Figure 11(e) shows only the case when 100%

of content is delivered via Drop Zones but all other curves

behave similarly (not shown).

The average distance is shown in Figure 11(f). Here, one

can see that the heavy uploaders have on average a shorter

distance between them and a Drop Zone. This is natural as

our algorithm tries to capture as many upload opportunities

as possible, and as soon as possible. Heavy travelers are on

average further away than the rest since heavy movement is

not particularly related to heavy uploads (what our algorithm

tries to optimize for).

F. What-If Scenarios

One needs to understand that there are multiple (often

unpredictable) ways in which the mobile world can evolve.

In particular, some trends might involve large increases in

the number and percentages of users with smart devices, an

increase in the number of mobile smart devices per-user,

increases in the desire for real-time high-fidelity audio/video

communications, etc. Because of this, we aim to address

the following 3 problems: (i) how would our architecture

deal with an exponential increase in content size in the

future, (ii) what benefits might arise from users deliberately

changing movement patterns to drop off content or from bigger

radius wireless technologies, and (iii) what are the number of

creation date? In all the cases below, we analyze the impact

of a Drop Zone architecture cover 50% of the content for the

maximum postponed delivery intervals of: 6 hours (1,717 Drop

Zones), 24 hours (1,303 Drop Zones), and 72 hours (963 Drop

Zones). In all cases, we assume the maximum upload capacity

of 75Mbps, corresponding to the LTE technology. We agree

that studied in isolation some of the above scenarios can be

seen as limited, however we consider them a useful exercise

for predicting future growth to a limited extent.
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1) Content size increase: Here, we try to understand how

the proposed architecture deals with an increase in content

size in the future. Figure 12 shows the results obtained. In

particular, we increase the content size in our trace by the

multiplier shown on the x axis in the figure, and rerun the

Greedy placement. The number of Drop Zones is shown on

the y axis. Note that our Drop Zone architecture can handle

a five order of magnitude size increase, i.e., 10,000. If we

assume that the amount of content doubles every year, this

gives approximately 14 years lifetime under the 75Mbps LTE

technology assumption. Further, an increase beyond a 10,000

multiplier would require a deployment of a significantly larger

number of Drop Zones, as shown in Figure 12 for x=100,000,

or an increase in the capacity of the existing Drop Zones.

By considering only the heavy uploaders in the above

scenario, we still require close to the same amount of in-

frastructure (just 8% less) to serve them in the first place

without considering content increase. The reason is that the

heavy uploaders are not particularly clustered in just a few

locations. When considering content increase we still witness

the same substantial increase in infrastructure needs at 5 orders

of magnitude. So the heavy uploaders are the ones driving the

infrastructure changes.

2) Drop Zones influencing movement: Here, we try to

quantify benefits that might arise if people would change their

movement patterns to explicitly deliver content via Drop Zones

or if Drop Zones would employ a higher radius wireless tech-

nology. Movement might occur on the basis of an application

pointing them the areas close by with a better connectivity.

While it is hard to predict whether such behavioral change

is a viable option in the future, we nonetheless argue that

it is worth quantifying gains of such potential scenarios. We

rerun the Greedy placement algorithm with the following

modification. When considering a base-station for a Drop

Zone, we include the content that comes from the base-stations

located at a distance given by the number of kilometers shown

on the x axis in Figure 13. The y-axis shows the amount of

content that would have been delivered in such a scenario. In

the case of movement, we thus make the assumption that if

a user is at a given distance from a certain Drop Zone, he

would choose to travel that distance to deliver his content. In

this way, we aim to quantify how close in space is the content

to the actual Drop Zones we have placed.

Figure 13 shows that considering just content that is deliv-

ered 2 kilometers away from the given Drop Zone placements,

we manage to cover more than 60% of the content for all

maximum postponed delivery intervals we analyzed. This is
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Fig. 14. Missed opportunities for pieces of content that we know the creation
date.

more than the baseline when there are no changes to users’

movement patterns, when 50% of content is covered by the

Drop Zones in all scenarios (see x = 0). This further fortifies
our finding stated in the context of Figure 11(b): for a smaller

number of Drop Zones, there exists a large number of users

close to those locations. Hence, perturbing their movement

slightly brings big gains. Note also from Figure 13 that ranking

of the curves suggest that even though we have a large number

of Drop Zones for the 6 hours postponed delivery intervals

(1,717 Drop Zones) than for the 72 maximum postponed

delivery interval (963 Drop Zones), we manage to deliver more

content in the later case. This is due to the increased time

interval (72 hours vs. 6 hours) that brings more content closer

to a smaller number of Drop Zones.

3) Missed connections: Here, we focus on a subset of

users that produce and upload content for which we know the

creation date, i.e., photos, in a postponed manner, as explained

in Section II-B3 above. In particular, we try to quantify missed

upload opportunities for this content. For example, if content

is created at time t1, and it is uploaded by the user at time

t2, we explore how many locations our algorithm upgraded to

Drop Zones did the user visit between t1 and t2.

Figure 14 shows the CDF of upload opportunities for

considered content. Our figure shows that approximately 50%

of users see no upload opportunity. This is consistent with

insights from Figure 4, that shows that around 50% of users

upload their content within the first hour (within or outside a

Drop Zone). Somewhat counter intuitively, Figure 14 further

shows that the Drop Zones for shorter maximum postponed

intervals provide more postponed opportunities. For example,

for Drop Zones for postponed intervals of 6 hours, the prob-

ability to have more than 5 opportunities is 0.15, (= 1-0.85),

corresponding to (x,y) = (5, 0.85) in the figure. On the other

side, the probability to have more than 5 drop opportunities

is approximately 0.1, (= 1-0.9), corresponding to (x,y) = (5,

0.9) for the Drop Zones placed for the 72 hours postponed

delivery interval. This happens because the shorter postponed

delivery interval incurs more Drop Zones, i.e. 1,717 vs. 963,

hence the larger number of drop opportunities exist.

V. NETWORK ARCHITECTURE

The Drop Zone architecture implementation that we de-

scribe in this section was motivated by two requirements that

we subsequently incorporated in the design: (i) as noted above
we wish to minimize the network impact that concentrating

uploads in a smaller number of locations might have, (ii)
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Fig. 15. Network architecture. Some base-stations (BT) are enhanced with
Drop Zone Equipment.

the equipment and implementation we suggest should use the

available standards as they are.

Note that this design was obtained from an existing (IPv4

based) cellular network in which we have integrated our Drop

Zone architecture. The usage of a Foreign Agent in IPv4

implies MIPv4 that is currently not compatible with IPv6 and

inconsistent with the portions of 3GPP2 specifications that are

built on Ipv6. Switching to IPv6 would imply changing the

some Drop Zone functionality also.

In current mobile networks, a base-station contains 3 radio

sectors and a switch/router. The router has a T1/T3 line that

goes out to the Relay Network Control (RNC) that is also

known as the Base Station Controller (BSC). This T1/T3 line

is referred to as the back haul link. The radio interface is

the most stressed in a typical 3G network. The second most

stressed portion is the back haul link. In architectures such as

ours where the radio link in drop zones would have a higher

capacity, the back haul link will be the main bottleneck and

some expensive ways to increase the capacity of the back

haul link include: (i) using optical fiber, (ii) connecting to

a third party that runs a metropolitan area network (usually

Ethernet based), (iii) microwave point to point connections,

(iv) WiMax-D.

Regardless of the rate at which the radio interface and

back haul capacity will be improved in newer networks, it

is reasonable to expect that the user appetite for content will

grow faster than capacity. This fact provides a solid motivation

for why postponing content uploads can serve to reduce the

utilization on older technology base-stations and at the already

stressed back haul links.

Regarding our main addition, the Drop Zone Equipment,

it consists of two interfaces: (i) the first interface called the

Mobile IP interface has an IP-Address assigned by the Home

Agent (the Drop Zone Equipment appears as a Mobile IP client

towards the Foreign Agent/Home Agent and has Mobile IP

capability as a client, (ii) the second interface is the sniffer

that sniffs all traffic that goes in and out of the base-station.

The reason for the sniffing interface is that this way, we do

not need to change the way the base station functions. It still

receives and handles traffic for the mobile phone yet the traffic

is stopped from going over the backhaul link.

On the device we have a simple uploader application. The

user can select a list of services that his files can be uploaded

to (Facebook, Twitter, MySpace etc.). Whenever he wants to

upload a set of files he goes to the application, selects the files,

and sets a maximum delay he tolerates or if he wants them to

be uploaded instantly. Even now the photo camera of particular

phones is integrated with Facebook. Users are directly being

asked upon snap if they want to share the photo via Facebook

or Flickr and the photo is uploaded when network connectivity

is available. In our scenario they will also be asked if they

can tolerate upload delays in which case the picture upload is

handled by a daemon that uploads it only when a Drop Zone

is available. Newer services can also be integrated with the

phone camera and given the same options for upload.

The flow for the transfer goes as this. If the client has data

to send but the current tower is not Drop Zone enabled it waits

for a tower which is Drop Zone enabled. When it gets handed

over to a tower that is, it sends a packet on a specific IP address

that is seen by the Drop Zone Equipment at the tower. The

Drop Zone Equipment reads the packet (the packet has inside

the client’s IP address). The Drop Zone Equipment sends a

message to the client on the port listed in the signaling packet

telling it that it is present at the tower and to start sending

the data (detecting if a Drop Zone is present can be done as

simple as sending a packet and obtaining a reply from a special

IP address such as 0.0.0.0 with the Drop Zone equipment

providing the reply). The client starts sending the data and

The Drop Zone Equipment picks it up. The stream is stopped

from crossing the back haul link by an Access Control List.

After receiving it, the Drop Zone Equipment eventually sends

the file to the designated server.

VI. DISCUSSION

Advanced Content Drop-off. In our evaluation of delay

experienced by users who drop-off content at a Drop Zone,

(see Figure 11(a)), we assumed an opportunistic drop-off

policy, where a user uploads his content to the first Drop

Zone that he meets. A more sophisticated drop-off policy

could be deployed by the service provider as follows. The

service provider could keep track of locations visited the most

by each user, and the times of day when the location is

visited. Next, when the user presents content to be uploaded

in a postponed manner, the network determines the amount of

available capacity at the Drop Zone, that is nearest to the user

as well as predicts the capacity that would be available at the

next Drop Zone(s) where the user is expected to move. The

service provider selects the Drop Zone with the most unused

capacity to upload the content. Deploying such a sophisticated

delivery mechanism requires prediction of users’ trajectories

as well as sharing of capacity at each Drop Zones with

a centralized system. Several other enhancements could be

included such as a user interface that asks the user if he intends

to change his normal routine. We consider this a challenging

problem out of scope of our current work, but certainly the

most interesting problem that we wish to study.

Generality. Although the data that we use for our study

represents user generated content uploaded by users, the

problem we tackle is more general and any content that

potentially has a delay tolerant nature could be delayed and

eventually uploaded/downloaded only when users encounter

better connectivity options.



13

Also, it is generally accepted that growth in mobile data de-

mand outpaces growth in capacity provided through upgrades.

One only needs to look at the Cisco Global Mobile Data Traffic

Forecast [4] and can see that the CAGR for data consumption

is at about 92% depending on device while the increase in

connection speeds has a CAGR of around 60% (from 2010

to 2015). So, on the long run, providers will most likely have

to upgrade their networks again and again making our Drop

Zone approach a viable first step to conduct upgrades.

VII. RELATED WORK

The content delay-energy saving trade off has been recog-

nized in several other recent projects [18, 29] that propose

offloading 3G data to already existing WiFi networks. We too

believe in the effectiveness of such offloading approaches and

in this paper we take a more systematic view by considering

the natural perspective of a mobile provider that selectively

upgrades the cellular network.

When addressing increased load in cellular networks, one

argument is on how pricing should be done, e.g., [22] assumes

the existence of multiple technologies that offer different per-

formance and focuses on competitive pricing. Others, e.g., [15,

16, 35] assume the existence of a diversity of networks in

certain locations and introduce systems for exploiting [15, 35]

or predicting locations that manifest such diversity [16]. On

the contrary, our goal is to determine where placing such new

technology is meaningful. While there is work on placement of

relays in multi-hop wireless networks (e.g., [34]) or vehicular

networks (e.g., [25]), our work differs as we incorporate both

content postponement and mobility in to the problem.

Delay-tolerant networking has been widely studied in the

recent years [24]. Most research on delay tolerance for human-

carried devices considers encounters between different users

(e.g., [26, 28, 31, 33, 38]). Recent work in this area exam-

ines how human mobility influences the design of different

forwarding algorithms [21], or how performing delay toler-

ant transfers helps reduce energy consumption of a mobile

phone [19]. While we also take delay tolerance as a building

block of our approach, our key goal is to study how human

mobility influences infrastructural placement at large scale.

Another body of work deals with reducing the amount of

data delivered on the wireless interface. Proxies are employed

that customize content such as images to specific device

characteristics (e.g., device resolution) [17]. Our approach is

orthogonal to such approaches. Finally, our work also relates

to prior work on predicting user movement to effectively

schedule network usage (e.g., [20, 32]). Indeed, by knowing

where the user is currently, one could predict his next location

based on his past movement history.

VIII. CONCLUSIONS

In this paper we have presented a novel cellular network

architecture that attempts to deal with the emerging problem

of increase in user generated content. The key idea is to

selectively upgrade infrastructure in a few select locations

we call Drop Zones. We developed and evaluated placement

algorithms that position Drop Zones in locations that fall

within the daily movement patterns of a large number of users

and could manage to deliver larger quantities of content in

a postponed manner. We show that users already postpone

content uploads in a substantial number of cases and argue

that they could be further incentivized to postpone uploads by

pricing schemes. We demonstrated that our algorithm manages

to place Drop Zones in a way that is very close to optimal.

Thus, it can be effectively used by network operators.

Our findings are as follows: (i) A Drop Zone architec-

ture reduces infrastructural deployment requirements by up

to 24% relative to a mobility-oblivious and delay-unaware

architecture. (ii) Our approach can effectively tame the ex-

ponentially increasing user-generated content surge for the

next 14 years, under the LTE technology assumption; after

that, a faster underlying technology or a much wider Drop

Zone deployment must be applied. (iii) Slight perturbation

in human movement or slightly bigger coverage wireless

technologies can bring substantial gains both for users and

network operators; thus, such an approach should be seriously

considered. (iv) Considering user profiles in our Drop Zone

architecture, heavy uploaders, and heavy travelers fare better

in terms of average delay than heavy delayers. On the research

side, our key contribution lies in advancing the field in delay

tolerant transfers by shifting focus from random interactions

between human carried devices to performing infrastructure

placement and upgrades at a large network-level scale.
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APPENDIX A

OPTIMAL ALGORITHM

We present an Integer Linear Programming formulation

to determine the optimal Drop Zone placement. We use the

notation introduced in Section III-A1.

A. Decision Variables

Two types of binary variables are introduced into the

formulation: xb and δijc . The variables xb ∈ {0, 1} describe

whether a Drop Zone is placed at base-station b (i.e., xb = 1)
or not (i.e., xb = 0). The variables δijc ∈ {0, 1} describe

whether the content chunk c ∈ C that was generated at time

ti ∈ T is delivered at time tj ∈ T with ti ≤ tj (i.e., δijc = 1)
or not (δijc = 0).

B. Constraints

• Drop Zone Placement:

xb ≤
∑

c∈C

∑
i,j∈T :i≤j δ

ij
c mjb

c ∀b ∈ B (1)

xb ≥ δijc mjb
c ∀b ∈ B, ∀c ∈ C, ∀i, j ∈ T : i ≤ j (2)

• Content Delivery (No Splitting):

δijc ≤ ni
c ∀c ∈ C, ∀i, j ∈ T : i ≤ j (3)

∑
j∈T :j≥i δ

ij
c = ni

c ∀c ∈ C, ∀i ∈ T (4)

• Drop Zone Capacity:∑
c∈C

∑
i∈T :i≤j δ

ij
c mjb

c ∆i
c ≤ ζmax

b ∀b ∈ B, ∀j ∈ T (5)

• Maximum Delay Allowed:

δijc Rij
c ≤ Dmax ∀c ∈ C, ∀i, j ∈ T : i ≤ j (6)

C. Objective Function

min
∑

b∈B

xb (7)
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