

Taming User-Generated Content in Mobile
Networks via Drop Zones


Ionut Trestian
Northwestern University


Evanston, IL, USA


ionut@northwestern.edu


Supranamaya Ranjan
Narus Inc.


Sunnyvale, CA, USA


soups@narus.com


Aleksandar Kuzmanovic
Northwestern University


Evanston, IL, USA


akuzma@northwestern.edu


Antonio Nucci
Narus Inc.


Sunnyvale, CA, USA


anucci@narus.com


Abstract—Smartphones have changed the way people com-
municate. Most prominently, using commonplace mobile device
features (e.g., high resolution cameras), they started producing
and uploading large amounts of content that increases at an
exponential pace. In the absence of viable technical solutions,
some cellular network providers are considering to start charging
special usage fees to address the problem.


Our contributions are twofold. First, we find that the user-
generated content problem is a user-behavioral problem. By
analyzing user mobility and data logs of close to 2 million users
of a cellular network, we find that (i) users upload content from
a small number of locations, typically corresponding to their
home or work locations; (ii) because such locations are different
for different users, we find that the problem appears ubiquitous,
since user-generated content uploads grow exponentially at most
locations. However, we also find that (iii) there exists a signif-
icant lag between content generation and uploading times. For
example, we find that 55% of content that is uploaded via mobile
phones is at least 1 day old.


Second, based on the above insights, we propose a new cellular
network architecture. Our approach proposes capacity upgrades
at a select number of locations called Drop Zones. Although
not particularly popular for uploads originally, Drop Zones
seamlessly fall within the natural movement patterns of a large
number of users. They are therefore better suited for uploading
larger quantities of content in a postponed manner. We design
infrastructure placement algorithms and demonstrate that by
upgrading infrastructure in only 963 base-stations across the
entire United States, it is possible to deliver 50% of total content
via the Drop Zones.


I. INTRODUCTION


Cellular network providers are faced with an increasing
challenge when offering data services over their networks.
In the last several years, the production and consumption of
digital media over cellular networks has evolved dramatically,
and it is continuing to grow at an exponential pace [7]. As
an example, it is expected that more than 140 million mobile
subscribers worldwide will use social networking applications
that enable them to share photos, videos with their friend circle
on their phones by 2013 [9].
The problem incurred by the booming activity on mobile


devices is that users are no longer only consuming data but
have started producing content at an exponential pace. This
happened due to high processing power and high capability
mobile devices (e.g., enabled with high-resolution cameras)
that became available for mass-market prices around the world.
The load induced by the user-generated content creates


problems to mobile network providers on a daily basis [3],
[5]. AT&T officials warned that the Internet will not be able to
cope with the increasing amounts of video and user-generated


content being uploaded [1]. For example, users are likely to
upload ‘heavy’ content, e.g., photos and videos, that range
from several tens of KBytes up to several MBytes, to popular
sites such as Flickr, Facebook, or Youtube, or send directly to
their friends. Contrary to ‘traditional’ content (e.g., the one
shared at popular peer-to-peer applications), user-generated
content is unique and often meaningful only to a user and
his social circle. Hence, traditional content delivery methods,
including caching that would at least reduce the long-haul
burden on the provider are incapable of addressing the issue.
In light of the above changes, cellular network providers


are rushed to address the problem and keep up with the
explosion of content production and consumer interest that
drives the traffic increase. In the absence of viable solutions
some providers are considering charging special usage fees to
heavy data users [2]. Moreover, the current efforts conducted
by the providers are focused on “educating customers about
what represents a megabyte of data and improving systems to
give them real-time information about their data usage” [2].
Our key contribution is in demonstrating that a feasible win-


win solution to this emerging problem does exist. In particular,
our approach enables users to freely upload their content. Also,
it helps providers effectively cope with growing uploading
trends. We demonstrate that providers can reach this goal by
strategically upgrading small parts of their networks, (that we
call Drop Zones) where users can upload their heavy content
as they pass by in their daily commute. We base our approach
on the following observations.
First, by analyzing mobility and upload properties of nearly


2 million users of a mobile 2.5G, and 3G network, we confirm
that users are likely to upload ‘heavy’ content from most
locations, implying that the problem is wide-spread. However,
a structural analysis of joint user mobility and uploading prop-
erties shows that the user-generated content problem is a user


behavioral problem. We find that an individual user is likely
to upload ‘heavy’ content from a small subset of locations,
typically corresponding to his home or work locations. Given
that such locations are different for different users, the problem
appears ubiquitous since the user-generated content uploads
grow exponentially at most locations.
Second, we analyze properties of user-generated content: (i)


uploaded via mobile devices to popular sites such as Flickr, or
(ii) directly sent to friends. We find that large amounts of such
content is uploaded in a postponed manner, i.e., there exists
a time lag ranging from several hours to weeks, from when
the content is generated to when it is uploaded. For example,







from our trace, we find that 40% of images are sent via mobile
devices at intervals longer than 10 hours since such content
was generated; likewise, for 55% of the content the difference
is longer than a day in the Flickr case.


Our Drop Zone approach is based on (i) changing a user’s
upload patterns and (ii) disproportionally upgrading band-
width in a small subset of existing networks. In particular,
users can tag content for postponed delivery immediately
after generating it, and remove the burden of worrying about
uploading such content from home or work locations. At
the same time, providers can take advantage of users’ daily
commute properties to increase bandwidth at a small number
of locations. We call these locations Drop Zones, and let users
opportunistically upload content while in such zones. The
underlying intuition, that we confirm in our analysis, is that
most users visit a smaller number of common locations during
daily commutes. Thus, by strategically upgrading small parts
of their networks, providers can serve growing user-generated
content with minimal resources. In our approach, a user would
not necessarily have to plan moving to a Drop Zone in order to
upload content. He would hand-over content to a background
application that will transparently upload content at the first
Drop Zone that he encounters during his regular movement.


The key research questions we explore in this paper is where
to place Drop Zones such that they absorb the most content
possible? How to design effective algorithms to approximate
this infrastructure placement problem?What is the relationship
between postponed content delivery intervals users can tolerate
and needed infrastructure? What is the limiting behavior of this
approach as content keeps increasing?


Our analysis shows that by upgrading only 1,303 base-
stations of the current nationwide infrastructure and assuming
users would postpone content delivery by 1 day, the analyzed
provider can become capable of absorbing 50% of user-
generated content delivered in a postponed manner as part of
the user daily movement.


The rest of this paper is structured as follows. In Section
II we introduce our Drop Zone content upload approach and
we give insights into how users currently upload content. In
Section III we present our Greedy Drop Zone placement algo-
rithm. In Section IV we thoroughly evaluate the performance
of our Drop Zone placement and investigate how Drop Zones
will be used. We present related work in Section VI and
conclude in Section VII.


II. THE CASE FOR DROP ZONES


Here, we briefly introduce the Drop Zone architecture.
Then, we show empirical results that motivate our approach.
In particular, we demonstrate that (i) users tend to upload
content from ‘comfort zone’ locations, (ii) this makes the user-
generated problem widespread, and (iii) the time lag between
content generation and upload can be significant for large
content fractions.


A. A Drop Zone Architecture


Figure 1 shows our Drop Zone architecture. The network is
fragmented into normal connectivity zones. These correspond
to base-stations using the technology that is common place in
the provider network, e.g., 3G, or 2.5G. On the other hand,


Fig. 1. Postponed delivery example


there exist better connectivity zones, that we call Drop Zones,
shown with a darker color in Figure 1(b). We do not tie our
approach to a particular technology that can be used in Drop
Zones for two reasons. First, because it can come in different
forms. For example, this could be WiMAX [10] or LTE [6], for
which base-station ranges can be roughly matched among 3G,
2.5G and WiMAX and LTE. Second, our goal is to understand
system performance in limiting scenarios. In particular, if the
user-generated content will keep growing at an exponential
pace, we want to explore where should the Drop Zones be
placed and how should their capacity scale.


Figure 1 illustrates the difference between state-of-the-art
user uploading and our Drop Zone approach. Take three users,
who generate three independent pieces of content, marked by
A, B, and C. Figure 1(a) shows how the content is currently
uploaded. Independently from where a user may generate the
content, we find that with a high probability, the user uploads
the content from certain locations. We call such user- affine
locations as the user’s ‘comfort zones’, that most of the time
correspond to the user’s home or work locations. We validate
this phenomenon in Section II-B1 below. Because such loca-
tions are different for different users, the user-generated load
grows nearly uniformly at most locations. We demonstrate that
this is indeed the case in Section II-B2 below.


Figure 1(b) shows the Drop Zone uploading scenario. Users
do not upload content from comfort zones, but rather upload
it in a postponed manner from Drop Zones. In particular, all
three pieces of content, A, B, and C, are uploaded from the
same Drop Zone marked by X in the figure. As we show in
Section II-B3, users even now upload content in a postponed
manner. In this paper we aim to quantify benefits and trade
offs involved in using the architecture shown in Figure 1.


B. Analyzing User Behavior


Here, we provide details about the dataset we use for this
study. We use an anonymized trace collected from the content
billing system for the data network of a large 3G, and 2.5G
mobile service provider. The trace contains information about
1,959,037 clients across 64,670 base stations during a seven
day period. It preserves user privacy as all identifiers such as
users’ phone numbers, email addresses and ip-addresses were
anonymized. More details about the dataset can be found in
Appendix A.







TABLE I
SENDING STATISTICS


Total Nr. messages Avg. size Max. size
[MB] [bytes] [MB]


Text 73 1,231,411 58 0.42
Appl. 826 2,193,443 376 3.5
Image 77,495 2,022,361 38,318 3.1
Audio 34,831 531,133 65,577 3.2
Video 5,998 31,345 191,339 3.5
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Fig. 2. Sending probability depending on location rank


The trace contains MMS messages exchanged among users,
as well as uploaded to social networking websites such as
Facebook, Myspace, Flickr, 1 etc. Table I summarizes upload-
ing statistics. We use various attachment types to categorize
content in one of the five categories: text (plain, xml, etc),
application (word, excel, pdf, etc), image (gif, jpg, jpeg, etc),
audio (mp3, acc, midi, etc), and video (3gpp, h264, mp4, etc).


The trace provides the location of a user in terms of
the base-station. The area serviced by a base-station in this
network varies from hundreds of square meters (in densely
populated areas) to several square miles (in sparsely populated
areas). In the remainder of the paper, we use the term location
to refer to the area serviced by a specific base-station. Thus,
while our trace does not provide finer-grained location infor-
mation, it serves our capacity provisioning and infrastructure
placement needs perfectly.


1) Users upload content from their top locations: Here, we
explore from what locations do users upload their content to
the network. To answer this question, we proceed as follows.
First, for each individual user, we rank the locations he
encounters based on the amount of time the user spends in
that location. We find that there exists a significant bias in
user behavior. In particular, independently from the number
of locations that users visit in their daily commute, they tend
to upload their content from the top three locations.


Figure 2 shows this effect. In particular, more than 85% of
content of all types is uploaded from a user’s top three lo-
cations. Analyzing deeper these results, using straightforward
time and space analysis (details omitted for space constraints
- identifying locations where a user spends most time during
day hours and night hours), we find that in the vast majority
of scenarios, two of the three locations can be confidently
associated with a user’s home and work locations. Thus, users
prefer to send their content, including the ‘heavy’ ones that


1In order to upload pictures, Facebook Mobile users for example, receive
from Facebook a unique email address that they can use to send emails or
MMS with attached images from their mobile phones. The pictures they
upload in such manner are shown on their Facebook profile. Our trace
contains such information, yet we cannot identify individual uploads since
the corresponding identifiers are anonymized.
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Fig. 3. Sent content type breakdown across base-stations


we focus on in this paper, from their top ranked locations.


2) The user-generated content problem is wide-spread:


Here, we explore the user uploading behavior from the
network-wide perspective. Above, we demonstrated that in-
dividual users tend to upload content from top locations.
However, we show that the problem is the fact that different
users have different top locations. Hence, the problem is wide-
spread, as we demonstrate below.


Figure 3 shows the amount of uploaded content for each
application type as a function of top base-stations in terms
of messages sent from that location. We make the following
insights. First, in terms of content size, images are dominant,
then audio, then video, then applications, then text. Second,
the figure shows that while some base-stations are necessarily
more popular than others, the popularity difference among
base-stations is not dramatic, implying that user-generated
content uploads grow nearly uniformly at these locations.
Indeed, the peak to mean ratio across base-stations is approx-
imately 2:1 for images and audio, that dominate the trace.
Third, the relative ratio among content types stays nearly
constant for most base-stations, that implies similar upload
trends at most locations.


Summarizing the results from the entire trace, we find
that out of all locations that users upload their content from,
80.57% of such locations are top locations for some users.
We conclude that the user-generated content problem is wide-
spread and induced by users’ habit to upload such content to
the network from top locations.


3) Lag between producing and uploading content: Here, we
present evidence showing that not all user-generated content
is posted or sent after it has been produced. In particular, we
have crawled Flickr mobile photography groups where users
upload pictures taken via their camera phones [8]. The pictures
are also uploaded via the phone. It contains 49,054 pictures
uploaded over a period of 3 years. For this part, we were able
to extract the time information at the granularity of days. In
addition, we have also explored the same issue using our trace.
We obtain the time when the content was created by observing
that a subset of the image filenames in our trace contain such
information (the default setting of the camera is to insert in
the filename the date and time of creation). For this part we
have the results at the granularity of hours.


Figure 4 shows the results, implying that users do not
necessarily upload their pictures as soon as they shoot them.
For example, the Flickr data shows that as much as 55%(100 -
45%) of content is uploaded at a lag longer than one day, while
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Fig. 4. Delay between shooting and uploading pictures using mobile phones


25% at a lag longer than a week. At the same time, the results
extracted from our trace show good match for lags above one
week, yet imply shorter lags between picture generation and
upload times for less than a week time scales. Still, the results
show that 40% of content is uploaded after 10 hours or longer
since it has been generated.
The statistics about the lag between content generation


and uploading show that users are already willing to tolerate
delays. While we cannot make strong statements for content
that is uploaded after generated, we argue that a portion of this
content might be possible to deliver in a postponed manner.
This is because some users might have a tendency to ‘hand
over the content immediately’, while they might not require it
to be uploaded so fast2. Nonetheless, the observed postponed
content delivery behavior validates our assumption that some
user-generated content can be uploaded in such way.
Other incentives for users to upload or download content


in a postponed manner include: (i) longer battery life - it
has been shown in [13] that batching transmissions improves
battery life by reducing the tail energy incurred in wireless data
transmission, (ii) pricing, clients can be given discounts for
uploading or downloading some content through Drop Zones.


4) Summary: We have demonstrated that users tend to
upload content from a subset of top locations, unique to each
user. Because such locations are widely dispersed for different
users, the observed load increase incurred by such uploads is
widespread. At the same time, we have demonstrated that large
portions of user-generated content is uploaded in a postponed
manner, but still from top locations. Putting all the pieces
together, we argue that a Drop Zone approach can help both
users and providers. Users can mark content for postponed
upload and do not worry about it. Providers can strategically
place upgraded technology at a small number of locations that
can absorb large portions of heavy content. Below, we develop
infrastructure placement algorithms, to determine where to
place better connectivity infrastructure.


III. METHODOLOGY


In this section, we will introduce and analyze the mechanics
of our approach for providing better infrastructure for content
delivery at certain special locations. Some content can be
marked as postponed for delivery by the user and will be
delivered only at these locations that have better connectivity.
Below we introduce the specific methodology we use for
identifying candidate locations for better connectivity.


2Certain phones offer users the option to directly upload a picture after
taking it, to sites such as Facebook or to send it to a friend via MMS.


A. Problem Statement


Our Drop Zone placement problem formulation is based on
the following observations. First, that users already inherently
postpone delivery of content after generating the same as
shown via Figure 4. Further, we argue that once an architecture
such as that proposed here is in place, users can be given the
option to either deliver content immediately (using whatever
type of infrastructure is available at the current location) or
asked about how much delivery delay are they willing to
tolerate. Hence, in the Drop Zone placement problem, we
assume a tolerable delivery delay for all users to come up
with a placement. Second, due to users’ mobility patterns,
there exist a set of common locations, through which many
users pass by at some point in time. Hence, in our problem
formulation, we combine the two observations and determine
the common locations through which users will pass by after
generating content within the tolerable delay assumed. The
Drop Zone placement problem can be stated:


Problem Statement 1: Given:


• B base-stations and U nomadic users with the associated
tempo-spatial mobility patterns, i.e., which base-station
is serving each user at any time;


• a description of the temporal content generation process
for each user, i.e., number of content units being gener-
ated by any user at any point in time;


• for all content, a description of the delay that would be
encountered by content generated by a user at time ti, if
it is delivered at time tj , that is quite simply: tj − ti;


Find the minimum number of Drop Zones to be co-located at
the base-stations, such as to satisfy the below constraints:


• the amount of content that a Drop Zone can deliver at a
point in time is less than a maximum capacity, (in terms
of aggregated rate across users);


• the delay between original and postponed delivery for any
content in the system is less than a maximum delay.


1) Inputs: For the Drop Zone placement problem, we
use a one week long trace from one of the largest cellular
providers in the US. The trace provides information about
users’ trajectories in terms of what locations (base-stations)
they were present at, and at what time. It also provides
information about uploaded content. First, we define a single
indivisible unit of content as content chunk of maximum λ
bits. Hence, each content could consist of several chunks. We
assume that any solution to the Drop Zone placement problem
must ensure that a content chunk is delivered from within one
location only. We divide time in to discrete units of length τ
seconds each, such that the entire trace spans over the set of
bins: T = {t1, t2, ..., tT }. Let C be the set of content chunks,
c ∈ C denote a chunk and |c| represent the size of a chunk
in bits. Let T = {t1, t2, ..., tT } be the sequence of temporal
snapshots at which the system is observed. Let ∆i


c represent
the number of new content bits generated by the user for
content chunk c ∈ C at time ti ∈ T . Let Rij


c be the delay for
content chunk c ∈ C generated at time ti ∈ T and delivered
at time tj ∈ T with ti ≤ tj . Let ζmax


b be the maximum
number of content bits that can be uploaded at the Drop Zone
placed at base-station b ∈ B within any time bin, and Dmax


be the maximum delay allowed for any content chunk to be







uploaded since its generation. Furthermore, let ni
c ∈ {0, 1}


indicate whether content chunk c ∈ C was generated at time
ti (i.e., n


i
c = 1) or not (i.e., ni


c = 0). Similarly, let mjb
c ∈ 0, 1


indicate whether user u corresponding to content chunk c ∈ C
is covered by base-station b ∈ B at time tj (i.e., mjb


c = 1) or
not (i.e., mjb


c = 0). This notation is also used in Appendix B.


B. Greedy Algorithm


As described in the problem formulation above, we wish to
place the minimum number of Drop Zones that would cover
all the content that was uploaded originally (under no delivery
postponement) under a maximum tolerable delay. This can be
mapped to a set covering problem, where given a universe
set of content, and given a set of base-stations, where each
base-station covers a subset of the content universe, we are
interested in choosing the minimum number of base-stations
that cover the entire content universe set. Determining the
minimum cover in the set covering problem is a well known
NP-Hard problem [15]. Given the large size of the data we
are dealing with (a cover over a set of several millions of
elements), in this paper we take a Greedy approach as shown in
Algorithm 18. It has been shown [18], that the worst case ap-
proximation ratio achieved by our Greedy algorithm when base
station capacity is ignored is H(s), i.e., the solution achieved
by Greedy can not be more than H(s) times worse than
optimal. In our case, s is the number of distinct content chunks
covered by the base-station that covers the maximum number
of distinct content chunks and H(s) is the corresponding
Harmonic number given as: H(s) =


∑s


k=1
1/k ≤ ln(s) + 1.


The greedy algorithm is iterative and determines which
base-stations should be considered for placing Drop Zones
until all content is covered by at least one Drop Zone. At
each step, the greedy algorithm selects the base-station that
has the maximum number of distinct content chunks that have
not been covered yet.


Algorithm 1 Greedy algorithm to determine which base-
stations serve as candidate Drop Zones


Initialize X = ∅, where X is set of base-stations selected as Drop Zones.
Create C = Set of content chunks in the system over all ti ∈ T .
Create B = Set of base-stations at which we have at least one chunk not
yet covered, c ∈ C at any time.
Create ζ(b, ti) = Unused capacity at base-station b at time bin ti. At any
time, ζ(b, ti) ≤ ζmax


b
.


while |C| > 0 do
b=RankBaseStations(B);
X = X ∪ b;
RC=RankContent-AT-BaseStation(C, b);
for (c,b) in RC do


th=DeliverContent (c,b);
if th 6= −1 then


ζ(b, th) = ζ(b, th)− |c|;
C = C − c;
RC=RankContent-AT-BaseStation(C, b);


end if
end for
Create B;


end while


Function 1: RankBaseStations(B) assigns priority to base-
stations b ∈ B by counting the maximum number of distinct
content chunks not yet covered, that can be served by each
base-station over all time ti ∈ T . It then sorts these base-
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Fig. 5. Greedy placement versus Optimal placement obtained from the ILP.


stations in ascending order and returns the base-station with
largest number of distinct content chunks.
Function 2: RankContent-AT-BaseStation(C,b) assigns


priority to each content chunk c ∈ C served by input
base-station b by counting the number of capacity units that
content chunk c will have at base-station b within the time
the content was originally uploaded (ti) and the maximum
tolerable delay, i.e. tj ∈ [ti, ti + Dmax]. It sorts these pairs
in ascending order, with the most critical as the first to be
served, i.e. with the fewest number of capacity units available
to it for being served. It returns this list in RC=(c,b).
Function 3: DeliverContent(c,b) delivers the content c at


base-station b by selecting the earliest time bin th ∈ [ti, ti +
Dmax] at which ζ(b, th) > 0. Then it returns the time bin th.
It returns th = −1, in case no time bin is available.


C. Parameters


In the next section, we evaluate the performance of Greedy
and Optimal algorithms (described in Appendix B). Where
not specified, we use the following values for parameters. We
assume τ = 1 minute, i.e., time is divided in to bins of length
1 minute. We evaluate the performance of the algorithms
assuming that Drop Zones are to be serviced by LTE, and
hence we use the maximum capacity at any Drop Zone, ζmax


b


to be 75 Mbps, ∀b ∈ B [6]. Many factors such as errors due to
signal propagation obviously decrease this aggregate capacity
yet we ignore them for the purpose of this study as we do not
have access to them. We choose maximum chunk size λ = 3.5
MB as it is the biggest content piece in our dataset and can
fit in one minute considering the LTE technology.


IV. EVALUATION


In this section we evaluate the Drop Zone architecture
and the effectiveness of various infrastructure placement al-
gorithms. We then explore multiple system parameters and
their impact on performance.


A. Greedy vs. Optimal


Here, we present results to compare the placement obtained
by the Greedy algorithm with respect to the Optimal shown
in Appendix B. We solve the ILP by using the ILOG CPLEX
software [4]. Because of the large scale of the data involved,
we compare the optimal placement given by the ILP with
our Greedy algorithm on a limited dataset extracted from the
original dataset. We extract uploads across 98 base-stations
that cover a medium size United States town. We only extract
uploads originally carried out across the first day of our
dataset. Figure 5 shows the results. We vary the maximum
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postponed delivery interval among the values of 6, 12, 18, 24,
48, 72, and 96 hours.


The insights from Figure 5 are as follows. First and
foremost, Greedy stays very close to optimal. Indeed, for
all maximum postponed delivery intervals we considered,
Greedy selects only 1%-2% more Drop Zones than the optimal
placement does. Second, we can see a tendency for Greedy to
select a relatively larger number of Drop Zones as compared
to optimal, when the maximum postponed delivery interval
increases. We make two points here: (i) despite the increased
difference, the absolute difference is still very small, i.e., less
than 2% in all cases. (ii) We will demonstrate below that
in any case we cannot obtain significant gains for maximum
postponed delivery intervals greater than a few days.


B. Greedy vs. Greedy Zero


Here, we evaluate the impact of postponed content delivery
intervals on the infrastructural requirements needed by the
Drop Zone approach. For comparison, we use Greedy Zero,
an instance of our Greedy algorithm that greedily selects as
Drop Zones the locations from where users originally uploaded
the largest quantities of content and evaluates them under the
considered postponed delivery assumption.


Figure 6 shows the results. The x-axis shows the number
of Drop Zones, while the y-axis shows the ratio of content
delivered by our Greedy algorithm vs. Greedy Zero. For
example, point (x,y) = (200,1.24) shows that the Greedy
algorithm manages to deliver 24% more content than Greedy
Zero when 200 Drop Zones are used in both cases and with a
maximum postponed delivery interval of 96 hours. This is not
a surprise: when the postponed delivery is considered during
the selection process, locations that can deliver more content
in a postponed manner are selected.


Figure 6 shows that the Greedy approach manages to de-
liver approximately 5%-25% more content than Greedy Zero.
Necessarily, the gap between the two steadily increases as the
maximum postponed delivery interval increases. Also, the gap
between the algorithms is particularly high within the first
200 Drop Zones. This happens because the Greedy algorithm
manages to select locations that were not so popular originally,
yet they are good Drop Zone locations when postponed
delivery is considered during the selection process. Because
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Fig. 7. Number of locations where Drop Zones are installed.


Greedy Zero has no knowledge about user mobility, it either
neglects such locations or selects them much later.


The gaps shown in the figure translate to additional infras-
tructure the order of a few hundred additional Drop Zones
needed to deliver the amount of content. In particular, for
1,000 Drop Zones placed by Greedy with 96 hours postponed
delivery,Greedy Zero needs 1,201 Drop Zones (not shown in
the figure). Thus, an approach that does not consider user
mobility and postponed content delivery during the selection
process requires 20% larger infrastructural deployment.


C. Infrastructural Needs


Here, we explore the infrastructural needs as a function
of postponed delivery intervals. In this scenario, we take the
percent of delivered content as a parameter.


Figure 7 shows the results. It depicts the number of Drop
Zones (y-axis) needed to serve the given percent of content
by assuming the maximum postponed delivery interval (x-
axis) varied in the range from 1 to 168 hours. Necessarily,
Drop Zone architectures that target to absorb larger amounts
of traffic need more Drop Zone locations. Indeed, to deliver
80% of traffic via Drop Zones for 1 hour postponed delivery
interval, one needs to deploy three times more Drop Zones
(6,066 vs. 1,960) relative to the 50% content case.


Another insight is that the Drop Zone deployment rate
reduces as the postponed delivery increases. Note that the
largest benefits come early. Focusing on the 50% content
delivery case, one needs Drop Zones in 12% less places when
comparing 1 hour (1,960 Drop Zones needed) to 6 hours
for maximum postponed delivery (1,716 Drop Zones needed).
This is because the probability that users change their location
within 6 hours intervals is high. Thus, it becomes possible to
offload the same content at a smaller number of Drop Zones.


Figure 7 shows that all curves ’flatten’ as the postponed
delivery interval increases over 4 days. One would expect that
as the postponed delivery interval increases, users see more
locations, and hence, almost infinite gains can be obtained
from user mobility. However, previous studies on human mo-
bility, reported on the high predictability of human movement
and observed that users spend significant time in just a few
locations [19]. This effect can be observed in Figure 7. After
a time interval of approximately 4 days, the curves level off
and only marginal gains can be obtained. Our explanation is
that since users spend time in just a few locations, benefits in
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(b) Average distance between source and Drop Zone.
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(c) Average number of content pieces batched per delivery.
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Fig. 8. Infrastructural usage


Drop Zone placement come from considering these locations.
However, as the time interval increases, the probability to visit
other locations increases. However, after 4 days, it is unlikely
for users to visit locations not seen before.


D. Infrastructural Usage


Here, we take a user view and analyze how users interact
with the Drop Zone architecture. We explore the following:
(i) average content delay: even though we specify a maximum
postponed delivery interval, content could be delivered much
earlier, (ii) average distance between source and Drop Zone,
(iii) average pieces of content batched: since users postpone
delivery, they have a larger amount of content when encoun-
tering a Drop Zone, and (iv) average number of drop zones
encountered during the trace interval. In all scenarios, we take
the percent of delivered content as a parameter. For delivery,
we have users opportunistically deliver their postponed content
upon encountering the first Drop Zone with available capacity
to deliver the content.


Figure 8(a) shows the actual delay experienced by users
(y-axis) considering the given postponed delivery interval (x-
axis). Necessarily, the experienced delay is shorter than the
maximum postponed interval shown on the x axis. Indeed, the
scale on y-axis is approximately 5 times shorter than on the
x-axis. Another insight is that delay grows sub-linearly with
the postponed delivery interval. In all cases, users experience
on average four times less delay than given by the maximum
postponed delivery interval.


Figure 8(b) shows the actual average distance between the


source and the Drop Zone. The figure shows that the average
distance increases with the increase in content delivered by
Drop Zones. Given that the more delivered content necessarily
correspond to a larger number of Drop Zones, this further
means that the average distance between the source and the
Drop Zone increases with the number of Drop Zones. This
result may seem counter intuitive at first. Indeed, if there are
more Drop Zones, they should be on average closer to users,
not further away. By examining the data we realize that the
reason is: with a smaller number of Drop Zones, there is still
a large number of users close to those locations. Hence, the
smaller distance. As the number of Drop Zones increases,
users already close to existing Drop Zones are further covered,
while the larger number of Drop Zones singles out the users
who are further away. Hence, the larger distance.


Figure 8(c) shows the average number of content pieces
batched per delivery. As mentioned above, batching delivery
is beneficial for a mobile device as it improves battery life
[13]. The figure shows that in all Drop Zone placements, users
deliver on average 2.4 more content per delivery for 1 hour
postponed delivery interval. As the delivery interval increases,
so does the batching effect.


Figure 8(d) shows the average number of Drop Zones that
users interact with during the seven day trace interval. As users
‘see’ only a few base-stations that are part of their predictable
daily routine, the Drop Zone usage necessarily captures this
effect. Hence, users interact with a small number of Drop
Zones on average, i.e., 1-3.5, depending on the amount of
Drop Zones placed.







E. What-If Scenarios


Here, we study implications derived from the research
presented in this paper. In particular, we address the following
3 problems: (i) how would our architecture deal with an
exponential increase in content size in the future, ,and (ii) what
are the number of missed upload opportunities for the content
pieces for which we have determined the actual creation date?
In all the cases below, we analyze the impact of a Drop
Zone architecture placed to cover 50% of the content for the
maximum postponed delivery intervals of: 6 hours (1,717 Drop
Zones), 24 hours (1,303 Drop Zones), and 72 hours (963 Drop
Zones). In all cases, we assume the maximum upload capacity
of 75Mbps, corresponding to the LTE technology.
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Fig. 9. Increase in infrastructure due to increasing the size of content.


1) Content size increase: Here, we try to understand how
the proposed architecture would deal with an increase in the
content size in the future. Figure 9 shows the results we
obtained. In particular, we increase the content size in our
trace by the multiplier shown on the x axis in the figure, and
rerun the Greedy placement. The number of Drop Zones is
shown on the y axis. Note that our Drop Zone architecture
can handle a five order of magnitude size increase, i.e., 10,000.
If we assume that the amount of content doubles every year,
this gives approximately 14 years lifetime under the 75Mbps
LTE technology assumption. An increase beyond a 10,000
multiplier would require a deployment of a significantly larger
number of Drop Zones, as shown in Figure 9 for x=100,000,
or an increase in capacity for existing Drop Zones.


2) Missed connections: Here, we focus on a subset of users
from our trace that produce and upload content for which we
know the creation date, i.e., photos, in a postponed manner,
as explained in detail in Section II-B3 above. In particular,
we try to quantify missed upload opportunities. For example,
if content is created at time t1, and it is uploaded by the
user at time t2, we explore how many locations our algorithm
upgraded to Drop Zones did the user visit between t1 and
t2. Figure 10 shows the CDF of upload opportunities for
considered content. Our figure shows that close to 50% (more
in some cases) of content can be uploaded through Drop
Zones. This is consistent with the infrastructure dimensioning
that we have performed.


V. DISCUSSION


Advanced Content Drop-off. In our evaluation we used an
opportunistic drop-off policy, where a user uploads his content
to the first Drop Zone that he meets. A more sophisticated
drop-off policy could be deployed by the service provider as
follows. The service provider could keep track of locations
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Fig. 10. Missed opportunities for content with known creation date.


visited the most by each user, and the times of day when the
location is visited. Next, when the user presents content to be
uploaded in a postponed manner, the network determines the
amount of available capacity at the Drop Zone, that is nearest
to the user as well as predicts the capacity that would be
available at the next Drop Zone(s) where the user is expected
to move. The service provider selects the Drop Zone with the
most unused capacity to upload the content. Deploying such a
sophisticated delivery mechanism requires prediction of users’
trajectories as well as sharing of capacity at each Drop Zones
with a centralized system. We consider this as a challenging
problem out of scope of our current work, but certainly the
most interesting problem we wish to study next.
Generality. Our proposed Drop Zone architecture is generic


and refers to increased bandwidth at a base-station. In this
regards, our placement algorithms can be used to determine the
base station locations at which to increase capacity (WiMax or
LTE) first rather than everywhere at the same time. Although
the data that we use for our study represents user generated
content uploaded by users, the problem we tackle is more
general and any content that potentially has a delay tolerant
nature could be delayed and eventually uploaded/downloaded
only when users encounter better connectivity options.


VI. RELATED WORK


When addressing increased load in cellular networks, most
research e.g., [11], [12], [22] assumes the existence of a
diversity of networks in some locations and introduce systems
for exploiting [11], [22] or predicting locations that have such
diversity [12]. On the contrary, our goal is to determine where
placing such new technology is meaningful.
Delay-tolerant networking has been widely studied in the


recent years [16]. Most research on delay tolerance for human-
carried devices considers encounters between different users
(e.g., [17], [20], [21], [24]). Recent work in the area exam-
ines how human mobility influences the design of different
forwarding algorithms [14], or how performing delay tolerant
transfers reduces energy consumption of a mobile phone
[13]. While we also take delay tolerance as a block of our
approach, our key goal is to study how human mobility might
influence large scale infrastructural placement. As we have
network-wide views of human mobility and mobile transfers,
we can design placement strategies helpful for operators, and
effectively evaluate the performance of such approaches.


VII. CONCLUSIONS


In this paper we have presented a novel cellular network
architecture that attempts to deal with the emerging problem
of increase in user generated content. The key idea is to







selectively upgrade infrastructure in a few select locations
we call Drop Zones. We developed and evaluated placement
algorithms that position Drop Zones in locations that fall
within the daily movement patterns of a large number of users
and could manage to deliver larger quantities of content in
a postponed manner. We show that users already postpone
content uploads in a substantial number of cases and argue
that they could be further incentivized to postpone uploads by
pricing schemes. We demonstrated that our algorithm manages
to place Drop Zones in a way that is very close to optimal.
Thus, it can be effectively used by network operators.


Our findings are as follows: (i) A Drop Zone architecture
reduces infrastructural requirements by up to 24% relative to
a mobility-oblivious and delay-unaware architecture. (ii) Our
approach can effectively tame the exponentially increasing
user-generated content surge for the next 14 years, under the
LTE technology assumption; after that, a faster technology or
a much wider Drop Zone deployment must be applied. On
the research side, our key contribution lies in advancing the
field in delay tolerant transfers by shifting focus from random
interactions between human carried devices to performing
infrastructure placement and upgrades at a large network-level
scale.
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APPENDIX A
DATASET DESCRIPTION


The dataset used in this paper was collected for one entire week
from the content billing system of a nation-wide cellular provider
from the United States. The trace provides details of user sessions
defined as beginning from the time the user is authenticated by the
Remote Authentication Dial in User Service (RADIUS) server to the
time the user logs off. When logged in and out, the event is stored
in our trace. Among the fields we store, we count the anonymized
user identifier, the local timestamp and the base-station that serves
the user. Further changes in location are reported to the server. We
also store the event type (Start, Stop, Update) [23].


With regards to content, our trace consists of MMS (Multimedia
Messaging Service) messages (that carry rich content such as photos,
audio or video in addition to plain text) uploaded (to friends or
popular websites such as Facebook), or downloaded by users using
their phones. In particular, for messages we have logged the content
filename, the size, if it was uploaded or downloaded, the base-station
that was used, and the anonymized identifiers for the sender and
receiver.


With regards to base-station location, we have the latitude and
longitude of the base-stations and since the cell phone only reports
the current base-station that it uses, we make the assumption that
the current position of the user is given by the position of the base-
station.


APPENDIX B
OPTIMAL ALGORITHM


We present an Integer Linear Programming formulation to de-
termine the optimal Drop Zone placement. We use the notation
introduced in Section III-A1.


A. Decision Variables


Two types of binary variables are introduced into the formulation:
xb and δijc . The variables xb ∈ {0, 1} describe whether a Drop Zone
is placed at base-station b (i.e., xb = 1) or not (i.e., xb = 0). The
variables δijc ∈ {0, 1} describe whether the content chunk c ∈ C
that was generated at time ti ∈ T is delivered at time tj ∈ T with
ti ≤ tj (i.e., δijc = 1) or not (δijc = 0).


B. Constraints


• Drop Zone Placement:


xb ≤
∑


c∈C


∑
i,j∈T :i≤j


δijc mjb
c ∀b ∈ B (1)


xb ≥ δijc mjb
c ∀b ∈ B,∀c ∈ C,∀i, j ∈ T : i ≤ j (2)


• Content Delivery (No Splitting):


δijc ≤ ni
c ∀c ∈ C,∀i, j ∈ T : i ≤ j (3)


∑
j∈T :j≥i


δijc = ni
c ∀c ∈ C,∀i ∈ T (4)


• Drop Zone Capacity:∑
c∈C


∑
i∈T :i≤j


δijc mjb
c ∆


i
c ≤ ζmax


b ∀b ∈ B,∀j ∈ T (5)


• Maximum Delay Allowed:


δijc Rij
c ≤ Dmax ∀c ∈ C,∀i, j ∈ T : i ≤ j (6)


C. Objective Function


min


∑


b∈B


xb (7)






