Synthoid: Endpoint User Profile Control

Marcel Flores and Aleksandar Kuzmanovic

WI 2014
Tracking Background

• Large scale advertising offers fresh vantage point on user behavior.

• Trackers can measure users across sites,
 • Construct interest profiles for users.

• Deliver of targeted ads.
Tracking Background

- AdNet1
 - (1) Site A
 - (2) Site A
 - (3) Site B
 - (4) Site B
Existing Approaches

• Block or disrupt the ad interaction
• Privacy preserving infrastructures
• Do Not Track, Opt-out mechanisms
Synthoid

- Return power over user profiles to the user.
- No cooperation from trackers.
- Control the signal that advertisers measure:
 - Provide synthetic signal.
 - Consistently and regularly visit sites of specific topics which include tracking ads.
Goals

• Influence the user’s advertising profile.
• Hide a user’s behavior amongst synthetic interests chosen by the user.
• Do so generically for all trackers and tracking methods.
• User specifies a set of topics.
• Synthoid browses websites of these topics,
 • Performs usual cookie transaction.
• Ad loads inform trackers of topics of visited sites.
Browsing

• Want to generate meaningful traffic:
 • Draws sites from Open Directory
 • Human-like diurnal behavior
 • Loads a site, follows 4 links
 • Can be entirely configured by users.
 • Directly uses the user’s browser via Selenium
Synthoid
Tracker Feedback

• Require feedback to measure our performance.
 • DoubleClick, Yahoo, BlueKai make profiles available.

• We select DoubleClick.
 • Largest and most influential
Scoring System

- Consider vector space where each dimension is a topic.
- Generate vector from observed profile:
 - 1 if topic-dimension present,
 - 0 otherwise.
- Compute cosine similarity with unit vector.
Evaluation

- Choose a random sample of 10 topics.
- Use the same topics for duration of experiments.
- Run Synthoid on a fresh cookie for 7 days.
- Observe the profile at regular intervals.
Volume

- How does changing the total traffic volume of the system affect its ability to imprint a profile?
- Vary duty-cycle from 1% to 100%.
Volume

![Bar chart showing the relationship between Duty Cycle (%) and Score. The x-axis represents Duty Cycle (%) ranging from 1 to 100, and the y-axis represents Score ranging from 0.0 to 1.0. The bars for Duty Cycle 1, 5, 25, 50, 75, and 100 are all approximately the same height, indicating a constant score across different duty cycle values.](chart.png)
Volume
Other Analysis

- Size of the pool of sites used
 - Controls number of repeats
- Interference
 - Volume Dependent
 - Volume Independent
Case Studies

- Collected week long traffic traces from 5 individuals.
- Recreated each trace with Synthoid running at 25% duty-cycle.
- Also ran separate control runs of each human trace.
Case Studies

<table>
<thead>
<tr>
<th>User</th>
<th>Number of Pages</th>
<th>Unique Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2019</td>
<td>251</td>
</tr>
<tr>
<td>2</td>
<td>559</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>1031</td>
<td>186</td>
</tr>
<tr>
<td>4</td>
<td>1772</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>2369</td>
<td>147</td>
</tr>
</tbody>
</table>
Case Studies

![Bar chart showing scores for different users.](chart.png)
Case Studies

- No overlap between user’s control profiles and profiles with Synthoid.
- Except where desired profile overlapped.
- Original profile was entirely obscured.
Generalizability

- Yahoo - Generally performed well.
 - Had difficulty with certain topics, suggest covers different topics from DoubleClick.

- Blue Kai
 - Much smaller profiles, suggests narrower scope.
 - Still performed well.
Generalizability

• Endpoint design makes it compatible with any trackers it encounters

• Trackers still have a total view of information.

• Can completely alter profiles.

• Cooperates with fingerprinting techniques, as traffic comes from the user.
Conclusions

- Demonstrated ability of Synthoid to imprint profiles with user preferences.
- Effectively hid user interests with selected topics.
- Demonstrated simultaneous functionality across multiple trackers.
Thank you!
Scoring System

• Consider the cosine similarity of these two vectors:

• Increased similarity indicates more matching topics (i.e. target matches observations).

• Ignores topics in observed profile not in target profile.
Scoring System

- Build 2 binary vectors
 - Input: each dimension has a value 1
 - Output:
 - 1 if that topic-dimension appeared
 - 0 if it did not
- Score is then the cosine similarity.
Scoring System

Input:

- /Art/Movies/Action
- /Science/Biology
- /Sports/Soccer

Output:

- Art - Movies - Martial Arts
- Science - Bio - Anatomy
- Travel - Destinations - Parks

<table>
<thead>
<tr>
<th>Topic</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts & Entertainment</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>1</td>
</tr>
<tr>
<td>Sports</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts & Entertainment</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>1</td>
</tr>
<tr>
<td>Sports</td>
<td>0</td>
</tr>
</tbody>
</table>