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Abstract—The prevalence of digital cameras and video-capable
mobile phones enables the common practice of audiences captur-
ing recordings of live music performances. It is now increasingly
common to find some of these personal recordings online, up-
loaded to popular video hosting websites. Recognizing the desire
of music fans to obtain a recording of good audio quality, we offer
a time-domain fusion technique for combining these samples to
achieve higher signal-to-noise ratio (SNR) than the single best
original sample. When no composite output can improve SNR,
the best original sample recording is returned.


The scenario is modeled as a single blind source with multiple
diverse receivers. As every live performance is unique, we assume
no prior knowledge of a reference signal, and no knowledge of the
original recordings’ SNRs. Using statistical characteristics among
the samples, we infer relative SNR, rank samples by quality,
and determine whether a composite delivers improvement. The
technique can be applied in a variety of contexts where multiple
receivers have opportunity to capture audio, speech, or other
signals.


Keywords: Audio, acoustic noise, blind signal, estimation.


I. INTRODUCTION


The concert-going experience now commonly includes the


sight of hundreds of digital cameras and mobile phones


aimed at the stage. Audience members record their experience


for later enjoyment, and increasingly share them online. On


popular video hosting websites like YouTube, it is not unusual


to find five to ten recordings of a popular song within days of


its performance. These recordings represent multiple vantage


points on the same song performed at the same event.


Recognizing that music fans get unique enjoyment from


hearing recordings of a performance they personally attended,


we attempt to generate an improved audio recording from the


raw audience-generated content. Given a sample set, i.e., a


collection of available recordings of the same event, our goal


is to identify the “best” raw sample, and generate a noise-


reduced composite that is “better” than the original “best.”


The problem is modeled as a single blind source with


multiple diverse receivers and unknown SNR. Consider the


following scenario. Signal is generated from stage-speakers.


Typically the signal is broadcast as a mono mix, and even


if not, receivers record multi-tracking as mono. The speakers


may be spread apart on-stage, but relative to the venue’s scale


they are quite close together resulting in synchronization from


a listener’s perspective (though various recordings need not be


synchronized to each other). Receivers are distributed arbitrar-


ily throughout the audience, all capturing a noise-corrupted


representation of exactly the same underlying music signal.


Noise occurs in the form of cheering, clapping, shouting, in


addition to the expected static, multi-path fading, etc. Noise


near a particular receiver is not the same noise near another


receiver, unless both receivers happen to be close together.


This local noise will not reach distant receivers, because


it is drowned out by noise local to the distant receivers.


(Note, this assumption is inappropriate in the context of a


quiet auditorium, where one cough may appear on every


recording.) Finally, because every live performance is unique


(e.g., different tempo, arrangements, embellishments, etc.),


there is no prior reference of what part of each recording


comes from the signal and what part comes from noise,


thus the SNR is unknown. Even a noiseless studio recording


does not provide adequate reference, since live performances


often deviate significantly. The music may even purposely


incorporate some amount of clapping or shouting that serves


to further blur the distinction between signal and noise.


This problem is not easily addressed by established tech-


niques. Methods of estimating unknown SNR, such as those


found in digitial signal processing, typically assume prior


knowledge of M-ary waveforms [9]. In the current sce-


nario, there is neither an absolute reference waveform nor


any opportunity to pre-code the signal’s waveform prior to


broadcast. Independent component analysis (ICA) is often


applied to blind separation of independent audio sources,


e.g., overlapping speech signals or musical instruments [8].


In the current scenario, our aim is to selectively enhance a


single source, itself composed of many instruments, among


uncountably many noise sources. This is not a conceptual fit


for the separation problem, nor are there enough receivers to


satisfy the requirements of ICA’s mathematical model.


Instead, our problem belongs to the broad area of sensor


fusion, in which data captured from disparate sources is com-


bined to achieve better outcomes than the individual sources


offer alone. In a general sense, fusion is applied to improve


decisions [4] [11]. This includes detection, localization, and


has also proven a useful tool in the enhancement of images


[12]. Speech enhancement has also benefitted from fusion,


for example in [1], where phase deviations between two


microphones are used to reduce noise. [7] builds on this tech-


nique and points out some challenges of not having a-priori


knowledge of input SNR. Returning to the current scenario,


we offer a complement to existing lines of work while tackling


the large problem of enhancing a source composed of many


individual voices and instruments.







In this paper we propose a time-domain fusion technique


for combining raw sample audio recordings in a way that


preserves the sameness among the samples while reducing


the differentness. The scope is not limited to speech, and is


specifically presented in the context of complex music signals.


Improvement depends on the uncorrelatedness of the noise.


Correlation among the noise results in confusion with the


signal, so that portion of noise cannot be reduced. However,


listeners already accept some amount of crowd noise in live


recordings, and even a modest improvement is of value to


fans. Translation of time-domain fusion to a corresponding


frequency-domain approach offers comparable results.


We believe that making this tool available as an application


will encourage more sharing of live recordings, leading to


larger sample sets with the potential for more significant noise


reduction. However, the technique’s applicability is not lim-


ited to entertainment. Any context in which unknown audio,


speech, or other signals are captured by multiple receivers is


a potential application. Such contexts can range from wireless


communications to espionage.


In Section II we introduce characteristics of sample sets


allowing for an improved composite. Three idealized cases


enable analysis of potential SNR gain. One case is then


selected as the basis of a signal fusion algorithm. In Section III,


the algorithm synchronizes, normalizes, ranks, and optimally


combines samples. The resulting output is either the improved


composite, or, if the composite offers no improvement, the


best single sample from the original set. Of special importance


is a novel iterative normalization procedure that successfully


equalizes signal powers (as opposed to total powers) among


samples without prior knowledge of SNR. In Section IV, we


investigate real noise and discuss the fusion algorithm’s effect


on simulated and real samples.


II. SNR GAIN ANALYSIS


Here we establish conditions under which audio samples can


be averaged to enhance SNR. This is related to work done in


the context of averaging noisy images [12]. Three idealized


cases offer tractable SNR analysis. Since real sample sets are


not expected to fit neatly into any of the cases [2], the signal


fusion algorithm of Section III transforms the samples into


conformance with Case II, Section II-B, provided that sample


noise is uncorrelated.


Assume sample recordings are already of equal length, per-


fectly synchronized, and ranked in order of decreasing SNR.


Section III describes how this is achieved in real samples.


Other details impacting real-world implementation, such as


encoding, sampling rate, etc., are also discussed in Section


III, under Data Preparation. Assume that noise is white in


each sample and uncorrelated between samples. Section IV


investigates the characteristics of real noise.


Let N be the number of available samples, xi, where i =
1, 2 . . . N . Let ni be uncorrelated white noise corrupting an


instance of the transmitted signal si, such that Cov(ni, nj) =
0, i 6= j and Cov(si, ni) = 0, ∀i. Then xi = si + ni and


σ2


xi
= σ2


si
+ σ2


ni
.


A. Case I: Identical signals, equal noise powers


This is an idealized scenario in which each sample xi


contains an identical signal with power σ2


s and independent


noise ni with equal power σ2


n. Direct averaging returns the


composite x with unchanged signal power but reduced noise


power proportional to the number of samples N .


Assume


{


si = s, Cov(ni, nj) = 0 for i 6= j
σ2


si
= σ2


s , σ2


ni
= σ2


n


Then, the signal power and noise power of the sample


average are given by


σ2


s =
1


N2
Var(Ns) = σ2


s (1)


σ2


n =
1


N2


N
∑


i=1


Var(ni) =
σ2


n


N
(2)


Thus, an SNR gain of N is attained due to multireceiver


fusion by direct averaging of N independent identically dis-


tributed samples [3].


B. Case II: Identical signals, unequal noise powers


Now relax the noise constraint of Case I by allowing each


sample xi’s noise power σ2


ni
to differ from σ2


n by some scaling


factor ki. Assume k1 = 1, and k1 ≤ k2 ≤ . . . ≤ kN . This


sets the least noisy sample as a benchmark for comparison.


All samples xi still contain the same signal power σ2


s . Direct


averaging returns x with unchanged signal power but a noise


power that is increased or decreased depending on the growth


rate of ki. It can be shown that if ki grows too fast, noise


contributes too much to the composite and overwhelms the


effect of Section II-A. If ki grows slowly enough, then


improved SNR is possible from averaging. Finally, the largest


SNR gain may result from combining only a subset of the


samples.


By having equal signal powers among all samples, the


differences among the samples’ total powers σ2


xi
are due


exclusively to the noise components σ2


ni
. The ability to use


total power as a proxy for noise power is a significant


convenience when the actual signal power is unknown. It


allows us to rank samples in order of quality and judge whether


a composite results in more or less noise power than any of the


original samples. The critical task then becomes normalizing


real samples such that all have equal signal power, even if it


is not known exactly what that signal power is. Normalization


with unknown SNR is achieved through an iterative procedure


described in Section III-D.


Let M be the number of samples actually incorporated


into the composite such that the resulting noise power is


minimized, where 1 ≤ M ≤ N .


Assume


{


si = s, Cov(ni, nj) = 0 for i 6= j
σ2


si
= σ2


s , σ2


ni
= ki · σ2


n


Then, the signal power and noise power of the sample


average are given by







σ2


s =
1


M2
Var(Ms) = σ2


s (3)


σ2


n = Var
[ 1


M
(
√


k1n1 +
√


k2n2 + . . . +
√


kMnM )
]


(4)


=
1


M2


[


k1σ
2


n + k2σ
2


n + . . . + kMσ2


n


]


(5)


=
σ2


n


M2


M
∑


i=1


ki (6)


Thus, whereas the original best sample x1’s SNR is σ2


s/σ2


n,


the SNR of the composite is (M2/
∑M


i=1
ki) · (σ2


s/σ2


n).
SNR is improved over the original best sample x1 when


(M2/
∑M


i=1
ki) > 1. For example, a growth rate of ki < 2i−1


is a sufficient condition to meet the threshold for improvement.


C. Case III: Unequal signal powers, equal noise powers


This third idealized scenario introduces assumptions which


at first glance are a slight alteration of Case II, but result in


unwieldy complications. Assume that the noise components ni


of each sample xi have equal power, i.e., σ2


ni
= σ2


n. Assume


each sample contains the same signal but of different powers,


i.e., σ2


si
= ki · σ2


s . Without loss of generality, assume k1 = 1,


and k1 ≥ k2 ≥ . . . ≥ kN . Averaging now changes both the


signal and noise powers simultaneously.


Let M be the number of samples actually incorporated


into the composite such that the resulting SNR is maximized,


where 1 ≤ M ≤ N .


Assume


{


si =
√


ki · s, Cov(ni, nj) = 0 for i 6= j
σ2


si
= ki · σ2


s , σ2


ni
= σ2


n


Then, the signal power of the sample average is given by


σ2


s =
1


M2


M
∑


i=1


M
∑


j=1


Cov(
√


kis,
√


kjs) (7)


=
σ2


s


M2


M
∑


i=1


M
∑


j=1


√


kikj (8)


From Eq.2, the composite noise power becomes σ2


n =
σ2


n/M . Whereas the best sample’s SNR is σ2


s/σ2


n, the com-


posite’s SNR becomes
(


1


M


∑M


i=1


∑M


j=1


√


kikj


)


· (σ2


s/σ2


n).


Although this case appears similar to Case II, fitting real


samples with unknown SNR into Case III proves difficult


to work with. Mainly, we must normalize noise power in


the samples, which is impossible. Further, we must track


the composite’s changing signal power while its noise power


changes simultaneously. For these reasons, Case II is selected


for algorithmic implementation as described in Section III.


III. PROCESSING AND FUSING ALGORITHM


The algorithm that deals with real music samples consists


of five main stages: data preparation, selecting a reference


and synchronization, windowing, normalization and ranking,


and combining. These steps transform the samples to fit


the assumptions of Case II, Section II-B. Explanations are


provided in a mix of math notation and MATLAB-inspired


pseudocode. Noise is assumed uncorrelated between samples.


Figure 1. Block diagram of algorithm stages.


To acquire real sample recordings, we have used our


own custom-written search application that interfaces with


YouTube via API. This application takes standard search


terms as its input, such as song title, city, venue, date, or


artist. It delivers the search query to YouTube, resulting in a


comprehensive list of potential matches. Then, applying TF-


IDF [10] and cluster analysis [5] to the files’ meta data, it


sorts the results into groups likely to be recordings of the


same performance. For example, a search for a particular song


title and the city “New York” may return performances of that


song spanning the artist’s many different visits to New York.


The application distinguishes the performance of June 1, 2010


from the performance of March 1, 2011. Detailed explanation


of these mechanisms are beyond the scope of this paper. After


successful grouping, the files of interest are downloaded on-


demand (e.g., five recordings of the song performed in New


York on March 1, 2011).


A. Data Preparation


We begin with a set of N raw samples with unknown SNRs.


Each sample xi is a time series stored as a single column


(mono) vector of amplitudes. Samples are not necessarily of


equal vector lengths. In practice this is the effect of converting


YouTube MP4 files to single track audio WAV format. One


advantage of using YouTube as the primary source of content


is that live mono audio recordings are typically stored with


one of only a few sampling rates (22.05kHz or 44.1kHz), and


this parameter can be read from meta data. We identify the


maximum length vector, and zero-pad the remaining vectors


such that all vectors are of equal length. Let this equal length


be denoted L, for later use.


B. Reference Selection And Synchronization


Lacking an external reference of what a “good” sample is,


we use an internal reference chosen from the sample set. This


is accomplished by computing the correlation matrix P of


the sample set and summing across rows (or columns). The


row with the largest sum represents the sample with the most







similarity to all other samples, i.e., the highest SNR, since


noise components do not correlate to each other. This sample


is designated as the reference. In practice, we have observed


that this procedure consistently selects a good quality sample.


Direct computation of P is not possible while the samples


are unsynchronized. So, we construct each entry ρij of the


correlation matrix from the maximal cross-correlation among


each sample pair. This returns both the synchronized corre-


lation ρij and the corresponding lag τij that would achieve


synchronization.


for i = 1 : N do


for j = 1 : N do
[ρij , τij] = max(xcorr(xi, xj))


end


end


Then, sum along rows (or columns) of P ,


for i = 1 : N do


rowi =
∑N


j=1
ρij


end


where i corresponding to max(row) identifies the reference


sample. We call this sample xref, and perform a circular


vector shift of each remaining sample according to the already


computed τref,j . Now all samples are synchronized to the


reference.


C. Windowing


In practice, a sample’s noise power may vary with time.


For example, an audience member may move his cellphone


such that a low-noise recording suddenly changes to high-


noise, or vice versa. This is a form of low-frequency noise


that contributes to an unstable sample being treated as more


noisy overall. To help avoid penalizing the low-noise segment


of such a sample, the algorithm may optionally process


synchronized sample sets as a sequence of shorter-duration


windows. Each window effectively becomes a new instance


of the fusion problem. This stabilizes the noise power within


each window’s duration while creating freedom for adjacent


windows to return a composite output uniquely “best” for


its time period within the overall recording. The composite


outputs of each window are concatenated prior to playback.


Recall that all N synchronized samples are of equal length


L, as a result of Section III-A. With the windowing op-


tion enabled, the samples are segmented into shorter-duration


windows of length L/Wt data points, where Wt indicates


windowing in the time domain. This results in Wt adjacent


windows, each containing N synchronized excerpts, or sub-


samples, of the original full recordings. Each window then


becomes its own instance of the fusion problem (Fig. 2).


Subsequent processing steps apply unchanged, without loss


of generality, to each individual window of length L/Wt, for


Wt = 1 . . . L. Adjacent windows may then return different


Figure 2. N = 3 synchronized time-series samples xi of total length L =


40, 000 data points, segmented into Wt = 4 windows (a), (b), (c), (d) of
length L/Wt = 10, 000.


composite outputs based on the noise conditions specific to


that time period.


Note that there is a trade-off as windows become exceed-


ingly short in duration, in that uncorrelated noise tends to


become increasingly correlated with fewer data points. This


implies there should be an optimal window size that balances


noise correlation against time-dependency. Recommending the


optimal window size is the subject of ongoing work, and for


now window size is left as a tunable parameter.


Figure 2 depicts an approximately 1s excerpt (40,000 data


points sampled at 44.1kHz) of three synchronized audio


samples. In this example, segmenting each time-series into


windows of 10, 000 data points results in four instances of the


fusion problem. Each instance operates on three synchronized


audio samples with a duration of approximately 1


4
s.


D. Normalization and Ranking


All windowed samples are now of equal length L/Wt data


points (Wt = 1 if windowing is not enabled) and time-


synchronized to a reference, but with unequal total powers and


unknown SNRs. Absolute SNR cannot be known, but total


power can be used to infer relative noise power among the


samples under certain conditions. Specifically, this is possible


only when all samples’ signal powers are equal, as defined in


Section II-B, Case II. Thus it is necessary to scale samples


and measure whether the signal components are of equal


power. Correlation as applied in Section III-B is insensitive to


scale, i.e., multiplying a sample by a scaling factor does not


change ρij . Instead, we use covariance as the measurement. If


noise is uncorrelated, then covariance between two samples is


proportional to the signal components’ strengths. This leads to


a novel iterative approach to normalizing signal powers and


consequently measuring relative SNR among samples when


absolute SNR is unknown.







(a) Samples xi (b) Line up non-ref xi


(c) Line up xref, rank by σ2


xi
(d) σ2


xi
implies σ2


ni


Figure 3. Normalization & ranking of unknown signal powers.


Given Cov(xref, xi) = ci, and Cov(xref, xj) = cj ,


Cov(xref, xi) = ci ≡ hj · cj (9)


= hj · Cov(xref, xj) (10)


= Cov(xref, hjxj) (11)


Scaling xj by hj (the ratio of the covariances) results in xi


and hjxj having equal covariance to the reference, xref. This


relationship can be used to scale all non-reference samples


such that they have equal covariance to xref. Without loss of


generality, assume xref = x1 and Cov(xref, x2) = c2. Finding


hj such that Cov(xref, hjxj) = c2 for 2 ≤ j ≤ N results in


all scaled non-reference samples having the same signal power


(Fig.3b). Finally, xref = x1 must be scaled such that its signal


power equals that of the non-reference samples. Now note


Cov(hixi, hjxj) = constant ≡ C, for i, j = 2 . . . N, i 6= j.


We temporarily select the scaled non-reference sample with


lowest total power as a new reference, xtemp, and find h1 such


that Cov(xtemp, h1x1) = C.


Now all samples have equal signal power, though the exact


value of the signal power remains unknown (Fig.3c). This


process is loosely inspired by [6].


With signal power normalized, it is straightforward to rank


the samples in order of increasing total power, and thus


increasing noise power, completing the prerequisites of Case


II (Fig.3d).


E. Combining


With all samples normalized and ranked, we compute the


average of the first M samples such that total power σ2


x is


minimized. This is the new “best” composite, x. Ranking


eliminates the need to evaluate many combinatorial subsets,


as there are no more than M = N averages to consider, and


M = 1 is simply xref itself. If M = 1, then no composite


was successful in surpassing the SNR of the original “best”


sample, xref.


(a) Sample1 vs. sample2 (top), noise1 vs. noise2 (bottom)


(b) Sample1 vs. noise2 (top), sample2 vs. noise1 (bottom)


Figure 4. Cross-correlation ρ vs. lag τ .


for m = 1 : N do


power-of-avgm = Var( 1


m


∑m


i=1
hixi)


end


[σ2


x, M ] = min(power-of-avg)


Recall that the composite only offers improvement when


the threshold (M2/
∑M


i=1
ki) > 1 is met, as described in


Section II-B. An attractive outcome of the algorithm is that


even when the threshold is not met, the original “best” sample


is identified. This feature alone is of value to users who


would otherwise manually search through many poor quality


recordings before finding one of good quality.


IV. CHARACTERIZATION OF NOISE REDUCTION


These processes depend on noise being uncorrelated among


samples. Inspection of real samples suggests this assumption


is imperfect but acceptable. Figure 4 shows an example of


cross-correlations between two typical song samples. Sample-


to-sample correlation is strong, whereas noise-to-sample and


noise-to-noise correlation is weak. Noise-only clips come from


the song samples just before or after music is performed.


We have applied the algorithm to samples with real


noise and to studio recordings with artificial noise. In


both cases, synchronization and normalization are effec-


tive. Artificial noise is noticeably reduced. On real sam-


ples, perceived noise reduction varies depending on the


sample set and listener. Interested readers may visit


networks.cs.northwestern.edu/∼aaron/fusion to hear before-


and-after examples.


To visually illustrate blind noise reduction, Figure 5 (top)


shows six waveforms ranked and concatenated left to right in


order of decreasing noise power. A noiseless studio recording


was corrupted with varying levels of noise to generate four







Figure 5. Identical time-series interval of 100 data points repeated six times
with differing amounts of noise (top), and corresponding RMSE (bottom). (a–
d) Left to right, clips ranked in order of decreasing noise, (e) noise-reduced
composite, and (f) noiseless studio recording


noisy samples. These noisy samples were fed through the


fusion algorithm, resulting in a noise-reduced composite. Each


window of Figure 5 represents 100 data points excerpted from


the same respective time interval of each sample recording.


Intervals (a) through (d) are the ranked noise-corrupted input


samples. Interval (e) is the noise-reduced composite returned


by the signal fusion algorithm. Interval (f) is the original


noiseless studio recording. Figure 5 (bottom) indicates each


interval’s root mean squared error (RMSE) relative to the


noiseless studio recording. The fused composite of interval


(e) offers the least RMSE relative to the noiseless reference.


V. EXTENSION INTO THE FREQUENCY DOMAIN


Though the technique presented in this paper operates in


the time-domain, it is also instructive to consider the noise


spectrum. Noise uncorrelated in the time domain remains


uncorrelated in the frequency domain. This noise need not be


strictly white, and its energy may appear stronger in certain


frequency ranges. So long as the threshold (M2/
∑M


i=1
ki) >


1 is satisfied in a given frequency range, noise reduction is


possible in that frequency range regardless of the spectrum’s


overall shape. Figure 6 shows frequency responses of selected


real music and noise samples. The sampling rate represented


is 44.1kHz, thus frequency content ceases beyond 22.05kHz.


Noise occupies the entire bandwidth of the music-plus-noise


samples. Noise energy is fairly flat but exhibits a consistently


“pink” character [13], having a stronger low frequency com-


ponent that smoothly rolls off toward the higher frequencies.


This is a characteristic typical of speech and audio that persists


across samples.


Now consider a case where noise does not exhibit a con-


sistent overall spectral shape among the samples (e.g., not all


white or all pink). For example, assume a particular sample


has almost no low frequency noise, but considerable high


frequency noise, while all other samples’ noise is pink. This


sample’s high quality audio content in the lower frequency


(a) Sample1, music with noise


(b) Sample2, music with noise


(c) Noise1, no music


(d) Noise2, no music


Figure 6. Frequency spectrum of real music and noise samples, 0–22.05
kHz. Phase plots not shown.


range will not benefit from fusion with other noisy samples.


However, its noisy high frequency content could benefit from


fusion with the high frequency noise of the other samples.


To accommodate this, we adapt the time-domain fusion


algorithm to operate separately on frequency sub-bands. This


is analogous to Section III-C’s time-domain windowing. Note


that a performance advantage over the pure time-domain


approach is not expected unless noise exhibits inconsistent


spectra among samples.


Let L be the length of each synchronized input sample


vector xi, and let Wf be the number of windows in the


frequency domain. Let F and F−1 indicate the FFT and


IFFT operators, respectively.


for i = 1 : N do
Xi = F{xi}
for j = 1 : Wf do


Xij = Xi[(j − 1) L
Wf


+ 1 : j L
Wf


]


xij = F−1{Xij}
end


end


Figure 7a illustrates where this new stage fits in the overall


block diagram. After synchronization, all samples are pro-


cessed through FFT, windowed into Wf frequency sub-bands


of width L/Wf , and then converted back to the time domain


by IFFT. Each original sample xi has now been decomposed


into Wf time domain sub-samples xij , with j indicating which


frequency sub-band is represented. For each j, the set of







(a) Block diagram with frequency-domain extension


(b) Frequency-domain stage with x1 flow highlighted


Figure 7. Each incoming xi undergoes FFT, followed by segmentation into
Wf = 3 frequency ranges. In this example, low, mid, and high ranges are
defined (phase not shown). Each frequency segment undergoes IFFT, followed
by sorting into groups corresponding to like ranges. The three groups, xi,low ,
xi,mid, and xi,high are treated as distinct fusion instances fed separately to
the normalization stage.


sub-samples xij , i = 1 . . . N constitutes a distinct instance


to be processed by the fusion algorithm. The outputs of the


combining stage become xj , the new “best” representations of


each particular frequency sub-band. Figure 7b illustrates the


decomposition of three input time series into nine time series


grouped according to low, medium, and high frequency. These


sub-samples xj , still synchronized, are ultimately recombined


by weighted addition in the time-domain, where any reason-


able weighting scheme may be applied (not illustrated). For


example, each sub-sample xj may be scaled such that the


overall spectrum of the final recombined output x adheres to


a white or pink shape.


Returning to the example of a sample with little low


frequency noise, its good quality audio from the low frequency


range may be returned unaltered by the algorithm, while the


noisy high frequency component may be fused with other


samples for noise reduction. The preceding discussion assumes


equal-width windows, but this is not required. Variable win-


dows, e.g., by octave corresponding to a pink spectrum, are


possible but beyond the scope of this paper. Importantly, the


frequency-domain extension gives the algorithm the ability


to address a wider variety of noise characteristics while still


operating fundamentally in the time-domain.


VI. CONCLUSION


This paper takes advantage of real-world user behavior and


statistical signal processing to achieve signal enhancement


without conventional inputs. No reference signal, waveform, or


SNR is known beforehand. Samples are successfully synchro-


nized, normalized by signal power, and combined such that


the composite’s SNR is maximized. If no composite achieves


improvement, the best original sample is returned.


Audio quality enhancement is of clear benefit to users.


Equally important is the automation of an otherwise manual


search for the “best” single sample among many. Users save


time while getting the assurance of a listenable recording. In


addition, the ability to equalize signal powers among multiple


receivers without prior knowledge of SNR may be useful in


many other areas of statistical signal processing. It is hoped


that the availability of this service will encourage more user-


generated sharing of sample recordings, leading to further


improvements in audio quality.
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