

Electrical Engineering and Computer Science Department

Technical Report
Number: NU-EECS-15-04

November, 2015

Towards Application-Level Multi-Homing

Yong Wang, Hao Wu, Weihua Zhang, Yanwei Li, Aleksandar Kuzmanovic

Abstract

Hundreds of millions of users are attracted to many of the thriving Internet applications and
services, such as e-mail, online social networking, or video sharing. In an attempt to effectively
serve the large number of users, the application providers started deploying their own
application-specific network infrastructures. We demonstrate that the significant proliferation of
applications and the growth of associated networking infrastructures creates a considerable
application-induced diversity in end-to-end performance, measured in terms of the effective
throughput. We conduct a large-scale measurement study in an attempt to quantify, understand,
and utilize such application-driven network performance diversity. Moreover, we demonstrate
that the observed end-to-end performance diversity can be effectively utilized in numerous
networking contexts.

Keywords

Content providers; effective throughput; private networks; measurements; multi-homing;

fer and replication mechanisms and explain the key un-
derlying factors that cause the end-to-end performance
diversity. Finally, we demonstrate that the application-
driven end-to-end performance diversity can be effec-
tively utilized in various networking contexts to help
end users select the best among their applications to
transfer data over. While in this paper we do not imple-
ment such an automatic application selector, we show
that such a service can be feasibly deployed with neg-
ligible measurement overhead. This is because predict-
ing the right application to use is straight-forward in
the vast majority of scenarios due to high stability of
the effective end-to-end throughput in application net-
works.

1.1 Our Findings
Our findings are the following:
First, we evaluate four application networks, i.e., Gmail,

Hotmail, Youtube, and Flickr, and confirm that there
exists significant end-to-end performance diversity. We
show that application-specific paths can often and sig-
nificantly outperform regular Internet paths. We find
that 65.2% of Internet paths are improved by at least
one of the explored application networks. Moreover, we
find that the fully transparent e-mail application net-
works alone improve 44.3% of the paths.
Second, we provide a comprehensive analysis of the

application-network transfer properties in an attempt
to understand the root causes for the observed perfor-
mance diversity. We decompose the end-to-end transfer
times into the upload, replication, and download laten-
cies. We analyze the key reasons that impact each of
the three components in different application networks.
We find that aggressive replication applied by Gmail
and Youtube incurs the increased replication latency.
Still, this approach pays off since it brings the content
closer to end users who can download it at high rates.
Third, we explore the consistency of application-specific

path properties. We find that that contrary to the Inter-
net paths, the application-based paths show consistency
in effective throughput, and consequently data transfer
times. This is a very important feature because the ob-
served performance diversity can be effectively utilized
in various networking contexts. In particular, to help
end users select the best among their applications to
transfer data over, yet without incurring a significant
measurement overhead. We empirically confirm this re-
sult by transferring ∼ 100GBytes of data over various
application-network paths and by analyzing the corre-
sponding path properties.
Fourth, we explore how much a user can benefit by

using multiple application networks. We find that using
multiple applications is certainly beneficial, because it
increases a chance to improve end-to-end performance.
Still, we find that if a default Internet path is improved

by one application network, it is likely improved by
some other application network as well. In addition,
we find that the achieved performance improvements
in our experiments were strongly dominated by single
application networks, i.e., Gmail for the transparent
transfers, Youtube for the video transfers, and Flickr
for the photo transfers.
Fifth, we explore the properties of the application-

network-enabled multicast. In such a scenario, data is
pushed to an application network, then replicated to-
wards multiple recipients, and finally downloaded by
them. We show that this ”native” multicast service dra-
matically outperforms the basic direct multicast trans-
fer. We find that as the number of receivers increases,
even the least effective among the application networks,
Hotmail, manages to significantly outperform the direct
transfer multicast performance.
Sixth, we evaluate application-network-hopping paths,

i.e., scenarios in which a path over two or more appli-
cation networks shows better performance than over a
single application network. While such paths are not
particularly frequent, they reveal inefficiencies of the
inner-application-network replication and routing. We
demonstrate that such inefficiencies can be effectively
resolved by application-network-based overlays in the
same way the Internet overlays improve the default In-
ternet path performance.
Seventh, we explore application-level multi-homed over-

lays that opportunistically combine and utilize the best
Internet- and application-network paths. We show that
the use of application-network paths can further im-
prove the performance of the existing overlays, partic-
ularly for file transfers that otherwise experience the
poorest performance, i.e., have the longest transfer times.

2. BACKGROUND AND MOTIVATION

2.1 The New Internet
The structure of the Internet has experienced a sig-

nificant change in the last decade [20]. Indeed, a decade
ago, the core of the Internet was largely dominated
by the global transit backbone operators, e.g., Level
3, Global Crossing, or AT&T, while customer IP net-
works were scattered at the edges of the Internet. The
regional and local access providers — that connect the
Internet core on one side, and the customer IP networks
on the other side — were placed in between [20]. Conse-
quently, clients and content were placed at the opposite
edges of the Internet. Thus, requests from clients from
one customer IP network would usually transit the up-
per networks to access the content hosted at servers in
other customer networks.
A pioneering effort in bringing content closer to end-

users has been conducted by Akamai [1] and other CDN
providers. By deploying a large number of edge servers

2

Figure 1: A “Hyper Giant” Morphing into a

CDN

deep into customer ISPs, by further replicating content
(e.g., web or streaming) at these servers, and by ef-
fectively redirecting end users to close-by replicas, such
systems manage to fundamentally improve user-perceived
performance in both delay and throughput. Delay is im-
proved because the corresponding content replicas are
topologically closer to end users. Throughput is im-
proved both because the corresponding round-trip times
between clients and edge servers are decreased (hence
the TCP throughput increases [22]), and because net-
work bottlenecks near the origin servers or elsewhere in
the Internet are effectively avoided.
A major shift relevant both for the Internet structure

and content distribution started happening in the last
3 years [20]. In essence, this shift is caused by a sig-
nificant growth of a small number of content providers,
which started attracting majority of the clients. In-
deed, according to a recent report [20], the top 150 con-
tent providers nowadays account for as much as 50%
of the entire Internet traffic, while the top 30 content
providers alone are now responsible for generating as
much as 35% of the Internet traffic. Consequently, the
structure of the Internet started changing because the
largest among these providers (e.g., Google, Facebook,
Microsoft) started building their own application net-
works, by interconnecting their Internet data centers by
high speed links [9]. In addition, these content ”hyper
giants” [19] started to aggressively deploy their servers
deep into customer ISPs, effectively applying Akamai’s
CDN model [6]. As a result, the corresponding content
networks started morphing into CDNs [7].
Figure 1 illustrates this phenomenon. A content provider’s

application network consists of Internet data centers
(four shown in the figure) that are interconnected by

high-speed links, effectively creating an application net-
work core. The content providers typically purchase
unused fiber optic cable known as ”dark fiber” [9] to
connect their data centers. In addition, the provider
installs a number of edge servers in consumer networks
(five shown in the figure), thus effectively expanding
their application networks towards end users. An edge
server is connected to a data center via a peering link.
Currently, more than 60% of Google’s traffic flows di-
rectly between Google and consumer networks [18]. Face-
book is also aggressively peering with a number of last-
mile network providers [19].
Our key hypothesis is that these growing applica-

tion networks effectively create a diversity in end-to-end
data transfer performance. In particular, that the end-
to-end performance of the application networks, used
by millions of Internet users, can be better than that
provided by the regular Internet paths. We argue here
(and empirically show later in the paper) that this is
indeed the case. The main arguments on behalf of this
hypothesis are the following. First, breaking an end-
to-end path into several shorter paths (i.e., one from
the sender to the application-network edge server, one
or more paths within the application network, and fi-
nally one path from the receiving application-network
edge server to the recipient) should increase the effective
TCP throughput. As mentioned above, shorter RTTs
increase TCP’s throughput [22]. Second, traffic that
goes through the application networks can avoid poten-
tial bottlenecks on the regular Internet paths, hence im-
prove the data transfer times. Finally, if the replication
within the application network is sufficiently agile, then
the application-network-based data transfer can indeed
be beneficial.
In the following sections we conduct an extensive

study in an attempt to confirm the above hypothesis.
Our main goal is to understand the key architectural
and design properties of different application networks
that induce the application-driven end-to-end perfor-
mance diversity. Then, we analyze different networking
contexts in which the end users can opportunistically
utilize the observed end-to-end diversity, i.e., by select-
ing the application that shows the best performance for
a given destination or a group of users.

3. CHARTINGAPPLICATIONNETWORKS
In this section, our goal is to collect the data about

the physical structure of the application networks that
we evaluate. In particular, we are interested in discov-
ering the number and geographical locations of the cor-
responding edge servers or data centers that users get
redirected to. This knowledge helps us to isolate the
key factors that lead to application-driven end-to-end
diversity that we evaluate in the next section.

3

3.1 Application Network Selection
We evaluate four application networks, associated with

the following applications: Gmail, Hotmail, Youtube,
and Flickr. The applications could be divided into two
categories, (i) e-mail based application networks, i.e.,
Gmail and Hotmail, and (ii) online social networking
applications, i.e., Youtube and Flickr. E-mail based
application networks are transparent in the sense that
they support all file types (that can be sent as attach-
ments to e-mails). On the other side, online social net-
working application networks support a subset of file
types. In particular, Youtube supports video file types,
e.g., mp4 and mov, while Flickr supports popular photo
formats, e.g., jpg and png.
In addition to supporting selective file types, both

Flickr and Youtube opportunistically apply compres-
sion. In particular, the resolution of the picture or
video uploaded to the application network is typically
larger than the resolution of the same picture or video
downloaded from the network. Hence, the upload size
is typically larger than the download size. Despite these
effects, we selected the two application networks for the
following reasons. First, because analyzing them pro-
vides important insights about upload, download, and
replication performance, which have distinctive proper-
ties relative to e-mail application networks. Second, as
we demonstrate later in the paper, in certain scenar-
ios transparent e-mail application networks manage to
outperform the YouTube and Flickr, despite the lack of
compression. We analyze the underlying reasons that
lead to such scenarios.

3.2 Discovering Edge Servers
To comprehensively characterize the underlying ap-

plication networks, we strive for a platform that has a
large geographical distribution. This helps to success-
fully emulate users’ location diversity. We ”create” such
a platform by using a set of open recursive DNS servers.
Open recursive DNS servers are public DNS servers in
the Internet that provide DNS resolution service to any
requester, without any source-based filtering. To ob-
tain a list of such DNS servers, we retrieve the list of
one million most popular Web sites from Alexa [2], and
find their authoritative DNS servers. Next, we check
if they are open recursive DNS servers. By using this
approach, we successfully locate 13,816 open recursive
DNS servers located in six continents and 130 countries.

3.2.1 Finding CNAMEs, Servers, and their Locations
In order to chart the application networks, we must

first discover the CNAMEs associated with upload and
download servers for each of the networks. To this end,
we record the DNS traces while uploading content to
and downloading from these application networks (Sec-

Table 1: Geographical distribution of the appli-

cation network servers

Continent

of IPs
Gmail Hotmail Youtube Flickr
D U D U D U D U

N. America 17 17 4 1 1,917 15 12 1
Europe 6 6 0 0 2,591 8 0 1
Asia 0 0 0 0 1,186 4 0 0

S. America 0 0 0 0 154 1 0 0
Oceania 0 0 0 0 285 0 0 0
Unknown 0 0 2 1 99 0 0 0

Total 23 23 6 2 6,232 28 12 2

tion 4), and extract the CNAMEs. In this way, we
obtain one CNAME for Gmail download and upload,
respectively; one CNAME for Hotmail download and
upload, respectively; 256 CNAMEs for Youtube down-
load and one CNAME for upload; and six CNAMEs for
Flickr download and one for its upload.
Next, we query these CNAMEs from the recursive

DNS platform, and obtain the IPs corresponding to the
upload and download servers or data centers, which we
call serving points. Table 1 summarizes the number
of IPs of both upload and download serving points for
each application network. Starting with Google’s ser-
vices, Youtube has 6,232 download serving points and
28 upload points, while Gmail has both 23 download
and upload serving points. Flickr has 12 points for
download and 2 for upload. Hotmail has the smallest
number of serving points, six for download and two for
upload. We will show in Section 4 that the significant
difference among application networks affects the data
upload, download, and replication performance of each
application network.
Finally, we attempt to geolocate the discovered serv-

ing points. Because we were unable to resolve these
IPs using geolocation databases, we utilize a constraint-
based geolocation approach [15] to discover the loca-
tions of IPs for each application network at the conti-
nent level. Table 1 shows the results. More than 90%
of the download and the upload points for YouTube are
located in North America, Europe, and Asia. In com-
parison with Gmail and Flickr whose servers are located
in North America and Europe, Hotmail’s servers only
have presence in North America.

4. UNDERSTANDINGAPPLICATION-DRIVEN
END-TO-END PERFORMANCE DIVER-
SITY

In this section, we first explore the overall perfor-
mance of application-specific paths for the four applica-
tion networks. Next, we decouple the transfer times into
components, i.e., upload, download, and replication to
understand application-specific data transfer performance

4

of each component. We find that the application net-
works’ generic internal replication mechanisms and prop-
erties can fundamentally impact the end-to-end data
transfer performance.

4.1 Preliminaries

4.1.1 Measurement Infrastructure
The platform of open recursive DNS servers is effec-

tive in charting application networks. However, it is
technically impossible to measure the performance of
application networks, i.e., actively push and pull the
data from it. Hence, we use 46 servers from PlanetLab,
which are geographically distributed over 5 continents
and 25 countries. We use this platform for measure-
ments and evaluations in Sections 4 and 5.

4.1.2 Methodology
For each pair of PlanetLab nodes, we measure the

total time needed to transfer data over the four ap-
plication networks. The total transfer time consist of
three components, (i) upload delay, i.e., time needed to
upload data to an application-network edge server, (ii)
replication delay, i.e., time needed by the application
network to replicate the data towards designated edge
servers, and (iii) download delay, i.e., time needed by
the receiver to download data from the designated edge
server.
In the upload process, the sender uploads files to an

application network, and specifies the name of recip-
ients. In the e-mail application scenarios, the sender
specifies a single or multiple recipients by providing ap-
propriate e-mail addresses. On the contrary, in Youtube
and Flickr scenarios, the sender simply uploads a chunk
of data to the application network, without explicitly
indicating the receivers. The time needed to upload
the file to the application network is referred to as the
upload time.
Once the data is uploaded, the sender immediately

notifies the receiver by sending a message. In partic-
ular, the receiver first creates a server thread listening
message from sender. Then the sender uploads data to
application networks as explained above, and further
creates a client thread to notify the receiver once data
is uploaded.
The receiver records the time when the signal is re-

ceived. Next, in the e-mail application network sce-
nario, the receiver starts checking its mail box to see if
the data arrived. Once it arrives, the receiver records
the time. In the Youtube and Flickr application scenar-
ios, the receiver starts checking sender’s public space at
these Web sites to see if there is any newly uploaded
data by the sender. If the receiver observes new data,
it records the time. Finally, we consider the difference
between the time when the signal is received and the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
D

F

Transfer time [second]

Gmail
Hotmail

Youtube
Flickr

Direct Transfer

Figure 2: The overall performance comparison

between application-network transfer and direct

transfer

time when the uploaded data is visible to the receiver
as the replication delay.
In the download process, the receiver downloads the

requested data from either its mail box in the e-mail
case, or sender’s public space in the Youtube and Flickr
case, and records the time when the download is fin-
ished. Finally, we consider the difference between the
time when the data is visible to the receiver and the
download finish time as the download time.
In this way, we are able to measure the total transfer

time, and the time for its three components between any
pair of PlanetLab nodes for each of the four application
networks.

4.2 Overall Performance
Here, we evaluate the properties of the application-

specific data transfers when different application net-
works are used. In all cases, we transfer different 10MBytes
files from a source to a destination to avoid any WAN
acceleration technologies that may potentially be ap-
plied by the application networks. We then compare
the application-specific data transfer results to those
achieved when regular Internet paths are used. Finally,
we analyze the key reasons standing behind the perfor-
mance of each of the underlying application networks.

4.2.1 Per-Application-Network Performance
Figure 2 shows the cumulative distribution function

(CDF) of the data transfer time for the four application
networks as well as for regular Internet paths (denoted
by “direct transfer” in the figure). The most important
insight from the figure is that data transfers over appli-
cation networks can often, consistently, and significantly
outperform regular Internet paths. Indeed, whenever a
curve for an application based system is above the one
for the direct transfer, this implies better performance

5

for the given application networks. We evaluate this
issue in depth later in the paper. Below, we provide
additional insights.
First, the variance of transfer times for the Internet

paths is significantly higher than for application net-
works. Indeed, the Internet transfer times range across
almost three orders of magnitude, i.e., from several sec-
onds to almost one thousand seconds. This is not a sur-
prise given the highly distributed nature of our measure-
ment platform and the known heterogeneous properties
of Internet paths. At the same time, the data transfer
performance for the application networks is much more
smoother. For example, the transfer times for Youtube
are almost deterministic. This is because the transfer
times are determined by near deterministic replication
and download delays, as we explain in detail later in the
text. The transfer time variance for the other three ap-
plication networks is more variable than Youtube’s, yet
significantly less variable than that of the direct trans-
fer.
Next, Figure 2 shows that the data transfers over

Flickr show the best performance. Indeed, about 80%
of transfers are shorter than 30 seconds. This is counter-
intuitive given the results from Section 3, which showed
that Flicker’s infrastructure is not particularly widely
distributed. The reason for the superior performance
is the file (picture) size compression, used by Flickr to
reduce the file sizes to 10% of its original size. Fig-
ure 2 further shows that Youtube and Gmail have sim-
ilar data transfer performance, i.e., the median delays
are around 65 seconds. This is despite the fact that
Youtube also applies video files compression and typi-
cally reduces the file size to 50% of its original file size.
Finally, from the two transparent application networks,
Gmail outperforms Hotmail. This is because Gmail has
a larger-scale infrastructure, and aggressively replicates
data towards end users, as we show later.
Finally, we quantify the differences between the ap-

plication network-based data transfers and the direct
transfer. In particular, we compute the per-path statis-
tics (not directly viewable from Figure 2, but viewable
from Figure 9). It simply provides the percent of end-to-
end paths for which a given application network-based
transfer outperforms the direct transfer. For the trans-
parent file-transfer systems, we find that Gmail out-
performs direct transfers in 41% of cases, while Hot-
mail outperforms direct transfers in 19.4% of cases. For
the remaining two application networks, Flickr’s data
transfer time is better than the direct transfer in 63.5%
of scenarios, while Youtube surpasses direct transfer in
42.3% of cases. Below, we analyze the properties of the
paths that application networks are both able and not
able to improve.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

C
D

F

RTT between nodes [ms]

Improved by Gmail
Improved by Hotmail

Improved by Youtube
Improved by Flickr

No Improvement

Figure 3: The role of RTTs

4.2.2 The Role of RTTs
Here, we explore the properties of paths, i.e., the

RTTs between the corresponding nodes, that applica-
tion network-based data transfer can and cannot im-
prove. In particular, Figure 3 shows the CDF of RTTs
of the paths that are improved by particular application
networks, as well as the CDF of RTTs for the paths
(34.8% of all paths) that are not improved by any of
the application networks. Our initial hypothesis was
that the long Internet paths, which are known to have
poorer performance, would be the ones that are more
likely to be improved by application network systems.
At the same time, we expected that paths with shorter
RTTs would less likely be improved, because they in
general provide better performance.
Figure 3 shows that our hypothesis is only partially

true. In particular, the ”no improvement” curve is
shifted to the left, i.e., towards shorter RTTs relative to
the application network-based curves which are shifted
towards longer RTTs. However, the figure also shows
that RTTs are not the only factor that affects the per-
formance. For example, the figure shows that more than
60% of paths that are not improved have RTTs longer
than 100ms (curve ”no improvement”, point (x,y) =
(100ms, 0.38)). This shows that other factors, such as
proximity of an endpoint to the corresponding appli-
cation network edge server, also matters. If the edge
server is not close-by, even longer RTT paths may not
have better alternatives over application networks. This
is further confirmed by the fact that application network-
based paths are able to improve even short-RTT regular
Internet paths. For example, Hotmail, an application
network that improves the smallest number of Inter-
net paths relative to other application networks, still
can improve shorter RTT paths. In particular, 20% of
paths improved by Hotmail have RTTs below 100ms.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F

Upload time [second]

Gmail
Hotmail

Youtube
Flickr

Figure 4: The upload performance comparison

among application networks

4.3 Decomposing Application network-Based
Data Transfer Delays

Here, we investigate the reasons standing behind dif-
ferent data-transfer performance for different applica-
tion networks. To that end, we decompose the applica-
tion network-based data transfer delays into three com-
ponents: (i) upload delay, (ii) replication delay, and
(iii) download delay.

4.3.1 Upload Performance
Figure 4 shows the CDF of upload times for the four

application networks. The first insight is that Youtube
has by far the shortest upload times. Indeed, approx-
imately 50% of endpoints can upload the test file to
Youtube in less than 3 seconds, i.e., point (x,y) = (3,
0.5) in the figure. This is due to a significant presence
of the Youtube edge servers discussed above. Indeed,
providing fast file uploads is essential for a service such
as Youtube. A similar feature is needed by the Flickr
service. Still, because it is much less distributed than
Youtube, the upload times are up to 8 times longer.
Regarding e-mail based systems, Gmail outperforms

Hotmail by 2 times on average. While Gmail uses the
same serving points for upload and download, Hotmail
uses a smaller number of upload points, hence, the up-
load performance is the worst among the four applica-
tion networks. In particular, the median upload time
is around 55 seconds, which is approximately 17 times
longer than Youtube’s median.

4.3.2 Replication Latency
Figure 5 shows the CDF of the replication latency

for the four application networks. Flickr shows the
best performance among the four application networks.
There are several reasons for this phenomenon. First, as
explained above, Flickr compresses the file sizes by 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

C
D

F

Replication Latency [second]

Gmail
Hotmail

Youtube
Flickr

Figure 5: The replication latency comparison

among application networks

times. Hence, replicating short files is necessarily faster
than long ones. Moreover, given that all the replication
times are below 1 second, and the median replication
time is around 0.3 seconds, we conclude that the repli-
cation likely happens within the same server or data
center.
Next, Hotmail shows a comparable performance to

Flickr in 80% of cases. This again implies that the
replication is likely happening within the same server
or data center. Indeed, given that Hotmail provides
a transparent data transfer service without any com-
pression, the median transfer time of 0.3 seconds for a
10MBytes file implies effective replication rate of 266
Mbps. It follows that the data likely does not leave a
server or a data center, but is replicated within. At the
same time, Figure 5 shows that the replication among
edge servers does happen in 20% of cases for Hotmail.
This corresponds to the ∼10 seconds long tail at y = 0.8
for Hotmail. We find that when both the sender and
the receiver are outside the US, the additional latency
arises and generates the tail.
Figure 5 shows that Gmail and Youtube have simi-

lar replication delays. Still, Gmail shows a tail towards
shorter replication times. In particular, in∼5% of cases,
Gmail’s replication is below 0.3 seconds, hence the data
is likely replicated locally. Indeed, given that there are
23 Gmail locations, the probability that the sender and
receiver are associated with the same Gmail server is
around 5%. When that is not the case, the data is
replicated towards the designated receiver, i.e., the cor-
responding edge server. While this necessarily incurs
additional replication latency (at the order of ∼ 20 sec-
onds), we will demonstrate later that such proactive
replication brings data closer to end users and reduces
the overall transfer times.
Youtube shows a more deterministic behavior, i.e.,

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Download time [second]

Gmail
Hotmail

Youtube
Flickr

Figure 6: The download performance compari-

son among application networks

the corresponding CDF is rather steep, and does not
have a tail as Gmail’s CDF does. This happens due to
obvious synchronization within the Youtube application
network, i.e., the uploaded file will become available to
all edge servers at nearly the same time. On the con-
trary, the e-mail based application networks’ receivers
experience different replication and processing delays
depending on their locations. Nonetheless, we will show
later in Section 5.1 that the deviation of the transfer
time for a given application network-based end-to-end
path is very small. This has tremendously positive ef-
fects on application-level multi-homing system design
and control, as we demonstrate later in the paper.

4.3.3 Download Performance
Figure 6 shows the CDF of download times for the

four application networks. Given that Youtube and
Flickr compress files, we expected that their download
times would be much shorter than for the e-mail appli-
cation networks that do not compress data but trans-
fer it transparently. This is true in the Flickr case.
It achieves superior download times, i.e., the median
download time is ∼ 1.5 second. This happens because
Flickr aggressively compresses files (pictures) by a fac-
tor of ten.
Contrary to the Flickr case, we find that Youtube,

despite the compression rate of two, does not achieve
short download times. We find that Youtube rate-limits
the download transfers by 1.44Mbps. Hence, the almost
vertical Youtube CDF curve in Figure 6 corresponds to
the time needed to download 5MBytes at the rate of
1.44Mbps, i.e.. ∼ 27 seconds. Indeed, as an online
video provider, Youtube does not need to provide the
download rate that is much faster than the rate at which
users can perceive videos in real time.
Gmail and Hotmail, the two application networks

Figure 7: Application-Level Multi-Homing Data

Transfer Scenarios

that provide transparent data transfers, show signifi-
cantly different download performance. Indeed, as we
demonstrated above, Gmail aggressively replicates data
among edge servers, thus making the data closer to
end users. In particular, the median download time is
14 seconds in Gmail’s case, and 73 seconds in Hotmail’s
case, shown in Figure 6. Recall that Gmail typically
spends ∼ 20 seconds for replication within the appli-
cation network (Figure 5). Still, pushing data closer
to end users pays off, because the median total trans-
fer time is twice as shorter for Gmail than for Hotmail
(Figure 2).

5. UTILIZINGAPPLICATION-DRIVENEND-
TO-END PERFORMANCE DIVERSITY

Here, we explore several ways in which end-users can
benefit from the end-to-end performance diversity shown
above. Figure 7 illustrates several applications, that we
explain later in the text. One of the applications is the
one in which an endpoint (e.g., S1) opportunistically
selects one of its underlying application networks (e.g.,
application network 1) to transfer data over. The key
question for this and other related applications to be
feasible in the first place, is that the end-to-end per-
formance of the underlying application-network path
is sufficiently stable, such that the selection process
cab be simple and accurate. Below, we first analyze
application-networks’ path persistence properties, and
then evaluate other networking contexts in which appli-
cation networks can be utilized.

5.1 The Consistency of Application-Network
Path Properties

Here, we explore the consistency of the application-
network-based path properties. This issue is essential
for application-level multi-homing (outlined above) as
well as other application scenarios that we outline be-
low, such as overlay networks. This is because low
variability in performance implies smaller measurement

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

C
D

F

Standard Deviation [second]

Total Time
Replication Delay

Download Time
Upload Time

Figure 8: Standard deviation of the data-

transfer delay components for the same node

pairs over time

overhead. For the Internet paths, it is known that when
predicting throughput, remembering observations from
a number of minutes in the past is fine, but remem-
bering for more than an hour can mislead the estima-
tor [26]. Hence, Internet-based overlays have to eval-
uate underlying Internet paths often, which creates a
significant overhead [11], hence scalability challenges.
Figure 8 plots the CDF of the standard deviation of

data transfers and its components for the Youtube ap-
plication network. In particular, we repeatedly transfer
a 10MByte video between all pairs of PlanetLab nodes
via the Youtube application network twice in a day in
a period of 8 days. We then compute the standard de-
viation over the given samples (16 for each path), and
show the CDF of the standard deviation over the paths.
Figure 8 shows a negligible standard deviation for the

upload and download times relative to the standard de-
viation for the replication times. Hence, the variance
of the total time attributes to that of the replication
delay. The relatively higher deviation of the replication
delay is because it involves several processes: processing
delay, e.g., the compression of data as well as the repli-
cation over dispersed data centers. Still, the bottom
line is that the standard deviation of the total transfer
time is small overall, i.e., much smaller than that shown
in the Internet [26]. This is because each and every
link of an end-to-end path over the public Internet can
be affected by numerous issues and other applications
that use these paths. On the contrary, the application
network transfer effectively has three hops, where the
first and the third hop that pass the public Internet
are very short, while the middle one is handled by the
application network. Hence, the “effective” end-to-end
throughput is highly stable, hence predictable.
The implications of the above result are significant for

 0

 10

 20

 30

 40

 50

 60

 70

One app. network Combination of app. networks

Pe
rc

en
ta

ge
 [%

]

Gmail (G)
Hotmail (H)

Youtube (Y)

Flickr (F)
G-H

G-H-Y

G-H-F

Figure 9: The percent of paths for which ap-

plication network-based transfers outperform di-

rect transfers

the application-level multi-homing applications. Due to
the small variance in the total transfer time, paths need
to be re-evaluated over much longer time scales. Later
in the paper, we verify this finding in an operational
overlay scenario.

5.2 Utilizing Multiple Application Networks
Here, we explore if a combination of application net-

works could improve more Internet paths than when
single application networks are used.
We explore three types of application network combi-

nations. The first combination is the e-mail application
network, consisting of Gmail and Hotmail application
networks, which enable transparent (non-compressed)
data transfers. The second combination is the video
application network, consisting of Gmail, Hotmail, and
Youtube. Because Youtube is used, this application net-
work only supports the transmission of video file types.
The third combination is the picture application net-
work, consisting of Gmail, Hotmail, and Flickr. In this
case, because Flickr is used, only picture file types are
supported.
Figure 9 on the left side shows the performance for

individual application networks, discussed earlier at the
end of Section 4.2.1. The right side shows the perfor-
mance of application network combinations. The figure
shows that the Google-Hotmail application network im-
proves 41.3% of paths, only 0.3% more than the Gmail
application network itself. This is because most of the
paths that can be improved by Hotmail, can also be
improved by Gmail. Still, there are cases when a path
is improved by Hotmail, but not Gmail. For example,
the path planetlab1lannion.elibel.tm.fr (France)
— pl1.planetlab.uvic.ca (Canada) achieves by 28
seconds faster transfer via Hotmail than via Gmail.
Next, Figure 9 shows that the Google-Hotmail-Youtube

”video” application network improves by 4%more paths

9

relative to the Youtube application network alone. An
example scenario when the e-mail application network
outperforms Youtube is the path planetlab1.s3.kth.se

(Sweden) — planetlab1.citadel.edu (US), which achieves
by 76 seconds faster transfer via Gmail than via Youtube.
Finally, the figure also shows that the Google-Hotmail-

Flickr application network mostly improves the paths
(64.2% of total paths) that are already improved by
Flickr itself (63.5% of total paths). Despite signifi-
cant compression applied by Flickr, there still exist pic-
ture transfers over Internet paths that Flickr does not
improve, while Gmail does. For example, the path
planetlab1.csg.uzh.ch (Switzerland)— planet1.pnl.nitech.ac.jp

(Japan) achieves by 96 seconds faster transfer via Gmail
than via Flickr.

5.3 Multicast
Here, we explore the properties of the application-

network-based multicast. Indeed, as shown for applica-
tion network 1 in Figure 7, application networks natu-
rally provide a multicast service by concurrently repli-
cating content to multiple edge servers. In particular,
Figure 7 shows that the data from sender 1 is sent to
an edge server in application network 1, and then repli-
cated at the remaining three edge servers in the applica-
tion network. Finally, the data is uploaded to the three
recipients, R1, R2, and R3. This is possible to achieve
in all investigated application networks. Youtube and
Flickr support multicast by design. For the e-mail ap-
plication networks, sending the same message (with an
attached file) to multiple receivers triggers replication
at the appropriate edge servers closest to anticipated
receivers.
In our experiments, we use 46 PlanetLab nodes, each

of which sends data to a subset of randomly chosen
receivers in a multicast manner. In the application-
network-based multicast scenario, a sender sends a sin-
gle copy of a file to the application network. The ap-
plication network replicates the data, which are then
downloaded by the designated receivers. In the direct
transfer multicast scenario, a sender sends a file simul-
taneously (using a separate TCP connection for each of
the receivers) to the same group of receivers as in the
application network case.
Figure 10 shows the median transfer times computed

over all sender-receiver pairs as a function of the num-
ber of receivers. Given that there are 46 nodes, the
maximum number of receivers is 45. When the num-
ber of receivers is 1, i.e., in the unicast scenario shown
previously in Figure 2, the performance is as previously
explained. The median transfer time is the shortest for
Flickr, than for the direct transfer, then for Youtube,
Gmail, and Hotmail. As we increase the number of re-
cipients, the performance for the application-network-
based multicast does not change. This is because only a

5

500

1 10 25 45

Th
e

m
ed

ia
n

of
 to

ta
l t

im
e

[s
ec

on
d]

The number of recipients

Gmail
Hotmail

Youtube
Flickr

Direct Transfer

Figure 10: Multicast transfer times as a function

of the number of receivers

single file is uploaded by a sender to the application net-
work, and a single copy of a file is downloaded by each
of the receivers from the corresponding edge servers.
On the contrary, in the direct transfer case, the num-

ber of connections that share the upload bandwidth in-
creases with the number of receivers. Because the up-
load capacity of the sender is shared by multiple TCP
connections, it becomes a bottleneck. Hence, the trans-
fer times necessarily increase with the number of re-
ceivers. Figure 10 quantifies this effect. For 10 receivers,
the direct transfer multicast that uses regular Internet
paths is comparable to Gmail’s multicast performance.
Still, for 25 receivers, the direct transfer multicast per-
formance falls far below Gmail and becomes compara-
ble to Hotmail. For 45 receivers, the multicast direct
transfer performance falls far below the Hotmail multi-
cast service as well.
Much more effective direct transfer (non-application-

network-based) multicast protocols than the basic one
we applied above do exist, e.g., [3, 12, 17]. We do not
compare against these protocols for space constraints.
Nonetheless, we argue that the ”native” multicast prim-
itive enabled by application networks is quite effective.
Indeed, it requires the sender to send a single copy of
a file once over the upload link. Also, it requires each
of the receivers to download the file via the download
link. We observe that these two requirements are the
minimal possible requirements for any multicast sys-
tem. Thus, contrary to application-level multicast sys-
tems [3, 12, 17], which require collaboration of the par-
ticipating nodes and the use of their upload bandwidth,
this is not the requirement for the application-network-
based multicast. This makes the application-network-
based multicast more attractive, and capable of achiev-
ing superior performance.

10

5.4 Overlays
Here, we explore application-level multi-homing in

the context of overlay networks. As shown in Figure
7, data can be effectively transferred via multiple ap-
plication networks, i.e., in an overlay network scenario.
As shown in the figure, data from S1 can be uploaded to
application network 2, replicated towards a relay over-
lay node, uploaded to application network 3, replicated
towards R2, and finally transferred to it. Such end-user-
enabled use of relay nodes is common in various net-
working scenarios (e.g., [3, 17, 23]). Later in the paper
we explore if such an approach can, and in which sce-
narios, improve the performance. Intuitively, because
different application networks have different presence
in different parts of the world, hopping over multiple
application networks appears as a viable approach. We
evaluate this hypothesis below.
In particular, we first empirically verify the path con-

sistency properties and explore the application-network-
hopping path properties. Finally, we explore the ben-
efits of application-level multi-homing approach in the
scenarios where regular and application-network paths
are combined.

5.4.1 Application-Network-Based Overlays
Here, we construct overlay networks on top of appli-

cation networks. In an overlay network, nodes are Plan-
etLab nodes, and the underlying paths between overlay
nodes traverse application networks. In particular, we
have three types of application networks – transpar-
ent, video, and picture. For the case of transparently
transferring any type of data from a source to a desti-
nation, we choose a path between the Gmail and the
Hotmail application networks that shows better perfor-
mance, i.e., shorter transfer time. We assign this trans-
fer time value as the weight of the edge between the
pair of nodes over the given e-mail application network.
Similarly, when transferring a video file, we choose the
minimum value from Gmail, Hotmail, and Youtube, and
assign the corresponding value as the weight of the edge.
Finally, we apply the same approach for the “picture”
application network which is a combination of Gmail,
Hotmail, and Flickr.
For each of the above three overlay networks, we de-

ploy a routing algorithm to compute the shortest path
between any pair of nodes, i.e., by minimizing the total
time to transfer data among any two pairs. Certainly,
multiple hop paths are supported. We use Dijkstra’s al-
gorithm to compute the paths [14]. Finally, we transfer
the data over the paths computed by the algorithm.
Transfer Time Predictability Here, we empiri-

cally and systematically evaluate how the path con-
sistency properties can be explored to predict transfer
times. In particular, for each of the three networks,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000

C
D

F

Total time [second]

A Simple Predictor
Measured Performance

Figure 11: Achieved performance in theory VS

in practice

and for any pair of nodes for which the performance
is improved by application-network-based overlay over
the regular Internet paths, we transfer the data as fol-
lows. For N = 1, ..., 12, we transfer N ∗ 10MBytes of
data via the pre-determined application networks over
the calculated paths. In the experiments, we send in
total ∼ 100GBytes of data. We record the times taken
by all such transfers, and evaluate whether a simple
estimator can predict the transfer times. In particu-
lar, denote by T10M the transfer time corresponding to
transmitting 10MBytes of data. We evaluate whether
TN = N × T10M is an accurate predictor.
Figure 11 shows the results, confirming that the trans-

fer times are predictable even with a very simple estima-
tor. The results show that in 50% of cases, the difference
between the predicted time and the real time is less than
12%. The key reason is the small deviation of trans-
fer times shown in Section 5.1 above. Still, we observe
that the prediction can be further improved. Indeed, for
the longer file sizes for which the transfer last longer,
the simple estimator underestimates the actual transfer
times. This happens because the application-network-
based overlay is a store-and-forward network, where en-
tire files are first stored at ingress and egress application
network edge servers, before being forwarded. Hence,
the transfer times do not linearly increase with the file
sizes, as assumed by our predictor.
Application-Network Hopping. Here, we focus

on a subset of application-network-based overlay paths
that travel more than a single application network from
a source to a destination. Indeed, the shortest path
algorithm explained above aims to optimize the end-to-
end transfer times, which sometimes means using two
or more application networks, as illustrated for a path
traveling application networks 2 and 3 in Figure 7. We
explore this phenomenon below.

11

We find that among the paths that improve regu-
lar Internet paths, the percent of application network-
hopping paths, i.e., those that travel over at least two
application networks, is 3%. The reasons for the small
percent are the following. First, regular Internet paths
are already significantly improved by single application
network paths, as we demonstrated above. Second, ap-
plication network transfers are store-and-forward in na-
ture, and the data transfer unit is the entire file. Before
getting forwarded, a file is first stored at the ingress
edge server, and then at the egress one. Repeating such
processes in multiple application networks necessarily
increases the end-to-end transfer delays. Nonetheless,
there are cases when using two or three application net-
works between a source and a destination is beneficial.
We find that within the application network hop-

ping paths, 94.5% hop over two application networks,
while the remaining 5.5% of paths hop over three ap-
plication networks. A similar result has been shown
for regular Internet paths [11]. We evaluate an ex-
ample three-application network path next in the ”pic-
ture” category. In particular, when a 10MByte picture
needs to be sent from planetlab-n1.wand.net.nz to
planetlab1.cs.umass.edu, the best direct application
network path is the one via Flickr. The original file
is transmitted in its full size to a Flickr server in US,
and then a 1MByte compressed version is downloaded
by the receiver at Umass. The whole transfer takes
68.2 seconds. However, if the same file is sent by Gmail
from New Zealand to planetlab1.arizonagigapop.net,
then transferred via Flickr to planetlab1.cs.wayne.edu,
and then transferred to planetlab1.cs.umass.edu via
Flickr again, the received file size is 1MB again yet the
transfer lasts 57.7 seconds.
There are two reasons for the improved transfer time.

First, sending the 10MB file from New Zealand via
Gmail’s application network to a well-connected Planet-
Lab node improves the transfer time on this long-RTT
path. Moreover, the result further shows that inner-
application network routing is not always effective. In
this particular case, hopping through an external node
and then going back to the Flickr application network is
better than downloading a file from a suboptimal edge
server. Indeed, application networks can optimize their
internal routing decisions based on their local policies.
Moreover, they may be unaware of the properties of ex-
ternal Internet paths and their upload and download
characteristics. Because the application-network-based
overlay has a global view, it is able to more effectively
route data over application networks.

5.4.2 A Hybrid Overlay
Here, we do not constrain ourselves to application

network-based overlays, but rather explore hybrid, ap-
plication network-supported overlays, that can combine

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

C
D

F

Total transfer time [second]

Email-supported Transfer
RON

Direct Transfer

Figure 12: Email-supported transfer VS RON

the best Internet - and application network-based paths.
In particular, it has been shown [11, 24] that taking an
alternate Internet path can be beneficial. Thus, we ex-
plore a scenario in which an existing overlay, e.g., RON
[11], would combine Internet and application network-
based paths, and opportunistically choose the best di-
rect or indirect paths to improve the performance. To
avoid any issues with compressed files, we only use Gmail
and Hotmail application network paths, which trans-
fer data transparently. Then, we compute the shortest
paths among all node pairs.
Figure 12 shows the results. The ”Direct Transfer”

curve shows the performance of default Internet paths.
Next, the curve ”RON” shows that alternative Internet
paths are capable of improving the default Internet per-
formance. Finally, the curve ”E-mail-supported Trans-
fer” demonstrates that using application network-based
paths (e-mail in this case), brings additional benefits.
In particular, the figure shows that the transfer times
are improved by approximately 35% for the 30% of files
that experience the longest transfers relative to RON.
This corresponds to the gap shown in Figure 12 between
RON and e-mail-supported transfer for y ∈ (0.7, 1).
Given that application network-based paths are much
more stable and provide predictable performance, hence
require small overhead, they could be very attractive for
existing Internet overlays.

6. DISCUSSION AND RELATED WORK

6.1 Discussion
Uneven traffic distribution? One might think

that the application-level multi-homing approach can
lead to uneven traffic distribution in the sense that
some application providers (e.g., Gmail, which shows
the best performance in our study) will ”pick up” most
of the traffic from users that apply this approach. There

12

are several issues here. First, attracting users is one
of the main goals of the application providers. Hence,
those application providers that manage to provide bet-
ter networking services should certainly attract more
user traffic, which is the measure of application net-
works’ success. Second, in this paper we evaluated 4
representative application providers and their network
infrastructures. Because the number of such providers
is much larger, it should be expected that the traffic dis-
tribution will be more even. Third, different application
providers have different presence in different regions,
which should further help more evenly distribute the
traffic. Finally, a lot of traffic micro-level ”load balanc-
ing” is naturally happening due to inherent randomness
in the Internet, i.e., due to bottlenecks and round-trip
time variability, which are the factors that help differ-
ent applications to achieve different performance among
different endpoints.

6.2 Related Work
Akella et al. [10] showed that peering with multiple

ISPs is beneficial for reliability and performance rea-
sons. In particular, they demonstrated that cleverly
scheduling traffic across the ISPs can improve Internet
RTTs and throughputs by up to 25% and 20% respec-
tively. In our work, we explore a similar, yet fundamen-
tally different concept in which an end user can oppor-
tunistically utilize one of its applications to send data.
Because the throughput performance in our case is very
stable over longer time scales, the application selection
process does not have to be particularly clever in order
to be successful.
Savage et al. [24] demonstrated that taking an al-

ternate Internet path, and not a default one, can be
quite beneficial in terms of delay, packet loss, and band-
width. To an extent, our work here is a modern ”de-
tour” version that reuses content application networks
by utilizing the corresponding application protocols. In-
deed, we demonstrate that high-bandwidth application-
network-based paths that exhibit superior quality and
incur much smaller measurement overhead relative to
the Internet paths are feasible.
Anderson et al. [11] designed a resilient overlay net-

work (RON), which improves the end-to-end path char-
acteristics by opportunistically selecting Internet paths
with optimal performance. In particular, RON moni-
tors the functioning and quality of Internet paths among
its nodes, and selects the optimal route between any
pair of nodes. Thus, an application-level multi-homed
overlay and RON share the same goals. Still, con-
trary to RON, the application-level multi-homed over-
lay works on top of several users’ application networks
and leverages the fast replication properties of content
application networks to transfer data, while RON uti-
lizes the regular Internet infrastructure. In Section 5.4.2,

we demonstrated synergistic potentials between the two
approaches.
Application networks provide an effective multicast

service. Hence, it relates to a huge body of work ded-
icated towards designing and deploying such a service.
Our overview here is necessarily not comprehensive –
we simply select two representative designs. Deering et

al. [13] proposed IP multicast where packet replication
happens at the router level. Because such a feature
has not for a long time been actually enabled on the
Internet, a natural alternative was an end-point mul-
ticast system, e.g., [12]. In such a system end-points
themselves replicate data without requiring any under-
lying network support. Our work relates to both ap-
proaches. On one hand, we reuse a “native” multi-
cast support enabled by content application networks
such as Youtube, which replicates content to a number
of edge servers. At the same, by using this ”native”
underlying multicast service, we further improve it by
providing an application-level multicast service where
application-network-based paths are also supported.
Our work to some extent relates to the “split TCP”

idea applied in mobile ad hoc networks [16] or satellite
networks [21] to improve end-to-end performance. In
particular, it is known that TCP’s fairness and through-
put suffer when it is used in such networks. This is
a direct consequence of long RTTs or TCP wrongly
attributing packet losses due to link failures to con-
gestion. Hence, by introducing proxies the split TCP
emulates shorter TCP connections and achieves higher
throughput. One issue with this approach is that it
does not retain the end-to-end semantics, hence cre-
ates problems to applications [25]. Application-level
multi-homing does not experience such issues because
it operates transparently at the application layer. More
fundamentally, by routing traffic through the content
application networks, application-level multi-homing is
capable of effectively avoiding the Internet bottlenecks,
thus achieving better performance. Moreover, contrary
to split TCP approaches, a generic application network-
based transfer does not require any dedicated proxy in-
frastructure, but rather reuses existing application net-
work systems.

7. CONCLUSIONS
In this paper, we demonstrated that the significant

proliferation of applications and the growth of asso-
ciated networking infrastructures created a significant
application-level diversity in end-to-end performance,
measured in terms of the effective throughput. We con-
ducted a large-scale measurement study in an attempt
to quantify, understand, and utilize such application-
driven network performance diversity.
Our findings are the following: (i) application-network-

13

based paths can often and significantly outperform reg-
ular Internet paths, i.e., we find that 65.2% of Inter-
net paths are improved by at least one of the four ap-
plication networks. (ii) The fully transparent e-mail
application networks manage to improve 44.3% of the
paths. (iii) Longer RTT Internet paths are more likely
to be improved, but the key factors determining the
performance of application-network-based data trans-
fers is the proximity of the endpoints to the applica-
tion network edge servers and an application network’s
replication agility. (iv) Using multiple application net-
works can improve the performance, even though the
achieved performance improvements in our experiments
were strongly dominated by single application networks,
i.e., Gmail for the transparent transfers, Youtube for
the video transfers, and Flickr for the photo transfers.
(v) Application-network-basedmulticast can significantly
outperform the direct transfer multicast. With the in-
crease in the number of receivers, even the least effective
among the four application networks, Hotmail, manages
to significantly outperform the direct transfer multicast
performance.
We have further explored application-level multi-homing

in various networking scenarios. We have found that (i)
contrary to Internet paths, application-network-based
paths show significant consistency in effective through-
put. This is because the upload, replication, and down-
load latencies show very small variability. (ii) This
can significantly simplify the application-network-based
overlay control and design, and reduce the measure-
ment overhead. We have empirically demonstrated the
high predictability of the data transfer times. (iii)
Application-network hopping paths rarely outperform
single application network paths. This is because single
application networks already perform well. (iv) Application-
network-based overlays are capable of improving ineffi-
ciencies of the inner-application network replication and
routing decisions in the same way the Internet overlays
improve the default Internet performance. (v) Hybrid
overlays can improve the performance of regular over-
lays. For example, we have demonstrated that an e-
mail-supported overlay can help improve RON’s per-
formance.
All the above properties demonstrate that application-

level multi-homing is a viable approach that can help
end-users improve their end-to-end performance. We
plan to deploy a multi-homing application-selector plu-
gin and make it publicly available.

8. REFERENCES
[1] Akamai. http://www.akamai.com/.
[2] Alexa. http://www.alexa.com/.
[3] BitTorrent. http://www.bittorrent.com/.
[4] Email and webmail statistics.

http://www.email-marketing-reports.com/metrics/
email-statistics.htm.

[5] Facebook statistics.
http://www.facebook.com/press/info.php?statistics.

[6] Google Peering Policy.
http://lacnic.net/documentos/lacnicxi/
presentaciones/Google-LACNIC-final-short.pdf.

[7] Is Google’s Network Morphing Into a CDN?
http://www.datacenterknowledge.com/archives/2010/03/
18/google-boosts-peering-to-save-on-bandwidth/.

[8] YouTube statistics.
http://www.youtube.com/t/press_statistics.

[9] YouTube’s Bandwidth Bill Is Zero. Welcome to the New
Net. http://www.wired.com/epicenter/2009/10/
youtube-bandwidth/.

[10] A. Akella, B. Maggs, S. Seshan, and A. Shaikh. On the
performance benefits of multihoming route control.
IEEE/ACM Transactions on Networking, 2006.

[11] D. Anderson, H. Balakrishnan, M. Kaashoek, and
R. Morris. Resilient overlay networks. In ACM SOSP ’01.

[12] Y. Chu, S. Rao, and H. Zhang. A case for end system
multicast. In ACM SIGMETRICS ’00.

[13] S. Deering, D. Estin, D. Farinacci, V. Jacobson, C. Liu,
and L. Wei. An architecture for wide-area multicast
routing. In ACM SIGCOMM ’94.

[14] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1959.

[15] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida.
Constraint-based geolocation of internet hosts. IEEE/ACM
Transactions on Networking, 2006.

[16] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and
S. Tripathi. Split TCP for mobile ad hoc networks. In
GLOBECOM ’06.

[17] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: high bandwidth data dissemination using an overlay
mesh. In ACM SOSP ’03.

[18] C. Labovitz. How Big is Google? http://asert.
arbornetworks.com/2010/03/how-big-is-google/.

[19] C. Labovitz. The Battle of the Hyper Giants (Part I).
http://asert.arbornetworks.com/2010/04/
the-battle-of-the-hyper-giants-part-i-2.

[20] C. Labovitz, S. Iekel-Johnosn, D. McPherson, J. Oberheide,
F. Jahanian, and M. Karir. ATLAS Internet Observatory
2009 Annual Report.
http://www.nanog.org/meetings/nanog47/presentations/
Monday/Labovitz_ObserveReport_N47_Mon.pdf.

[21] M. Luglio, M. Sanadidi, M. Gerla, and J. Stepanek.
On-board satellite ”split TCP” proxy. IEEE Journal on
Selected Areas in Communications.

[22] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical
validation. In ACM SIGCOMM ’98.

[23] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in
BitTorrent? In NSDI, ’07.

[24] S. Savage, A. Collins, E. Hoffman, J. Snell, and
T. Anderson. The end-to-end effects of Internet path
selection. In ACM SIGCOMM ’99.

[25] F. Xie, N. Jiang, Y. Ho, and K. Hua. Semi-split TCP:
Maintaining end-to-end semantics for split TCP. In LCN
’07.

[26] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the
consistency of Internet path properties. In IMW ’01.

14

