

ARTICLE IN PRESS

Computer Networks xxx (2007) xxx–xxx

www.elsevier.com/locate/comnet

Receiver-centric congestion control with a misbehaving
receiver: Vulnerabilities and end-point solutions q

A. Kuzmanovic a,*, E.W. Knightly b

a Northwestern University, Department of EECS, 2145 Sheridan Road, Evanston, IL 60208, United States
b Rice University, Department of ECE, 6100 South Main, Houston, TX 77005, United States

Received 23 April 2006; received in revised form 20 November 2006; accepted 21 November 2006

Responsible Editor: Vassilis Tsaoussidis

Abstract

Receiver-driven TCP protocols delegate key congestion control functions to receivers. Their goal is to exploit informa-
tion available only at receivers in order to improve latency and throughput in diverse scenarios ranging from wireless
access links to wireline and wireless web browsing. Unfortunately, in contrast to today’s sender-driven protocols, recei-
ver-driven congestion control introduces an incentive for misbehavior. Namely, the primary beneficiary of a flow (the recei-
ver of data) has both the means and incentive to manipulate the congestion control algorithm in order to obtain higher
throughput or reduced latency. In this paper, we study the deployability of receiver-driven TCP in environments with
untrusted receivers which may tamper with the congestion control algorithm for their own benefit. Using analytical mod-
eling and extensive simulation experiments, we show that deployment of receiver-driven TCP must strike a balance
between enforcement mechanisms, which can limit performance, and complete trust of endpoints, which results in vulner-
ability to cheaters and even DoS attackers.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Receiver-centric TCP; Congestion control; Misbehavior; Trust; Performance

1. Introduction

Recent advances in TCP congestion control
design have demonstrated the ability to significantly

1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2006.11.021

q A subset of this work appears in the Proceedings of IEEE
ICNP ’04 (42).

* Corresponding author. Tel.: +1 847 467 5519; fax: +1 847 491
4455.

E-mail addresses: akuzma@northwestern.edu (A. Kuzmano-
vic), knightly@rice.edu (E.W. Knightly).

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

improve TCP performance in a variety of scenarios,
ranging from high-speed (e.g., [1,2]) to mobile and
wireless networks (e.g., [3,4]). However, each such
advance introduces the following dilemma: if a user
can obtain a significant increase in throughput via
an optimized congestion control algorithm, how
can the network or the other end point distinguish
among (i) users with optimized protocol stacks, (ii)
‘‘cheater’s’’ that have modified protocol stacks that
maximize their own throughput without regard to
fairness or network stability, and (iii) attackers that
seek only to transmit at a high rate in order to deny

.

tly, Receiver-centric congestion control with a misbehav-
21

mailto:akuzma@northwestern.edu

mailto:knightly@rice.edu

2 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

service to others. More precisely, the question
becomes how can misbehavior be detected in the
presence of widely variable protocol performance
profiles? And most importantly, protocol innova-
tions often introduce novel security challenges,
which, if not considered a priori, may have devastat-
ing consequences once such innovations become
deployed.

TCP variants that are widely deployed today
are sender-centric protocols in which the sender
performs important functions such as congestion
control and reliability, whereas the receiver has min-
imum functionality via transmission of acknowledge-
ments to the sender. Yet, it is becoming evident that
increasing the functionality of receivers can signifi-
cantly improve TCP performance [5–10]. Indeed, a
key breakthrough in this design philosophy is repre-
sented by fully receiver-centric protocols in which
all control functions are delegated to receivers
[11,12]. The benefits that are being established for this
innovative design include improved TCP throughput
and an array of other performance enhancements: (i)
improved loss recovery; (ii) more robust congestion
control; (iii) improved power management for mobile
devices; (iv) a solution to the handoff problem in wire-
less networks; (v) improved behavior of network-
specific congestion control; (vi) easy migration to a
replicated server during handoffs; (vii) improved
bandwidth aggregation; and (viii) improved web
response times.

However, both sender- and receiver-centric pro-
tocols implicitly rely on the assumption that both
endpoints cooperate in determining the proper rate
at which to send data, an assumption that is increas-
ingly invalid today. With sender-centric TCP-like
congestion control, the sending endpoint may mis-
behave by disobeying the appropriate congestion
control algorithms and send data more quickly.
Fortunately, the lack of a strong incentive for selfish
Internet users to do so (uploading vs. downloading)
appears to be the main guard against such misbe-
havior. Moreover, while it has been discovered that
misbehaving receivers can perform DoS attacks or
steal bandwidth even with sender-centric protocols
[13], it has been shown that it is possible to modify
TCP to entirely eliminate this undesirable behavior
[14,13].

On the other hand, receiver-centric congestion
control presents a perfect match for a misbehaving
user: the receiving endpoint performs all congestion
control functions, and has both the incentive (faster
web browsing and file downloads) and the opportu-

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

nity (open source operating systems) to exploit
protocol vulnerabilities. In this paper, we explore
the tradeoffs and tensions between performance
and trust for receiver-centric transport protocols.
In particular, given the above benefits (i)–(viii),
and clear vulnerabilities, our goal is to evaluate
whether it is possible for HTTP, file, and streaming
servers in the Internet to deploy receiver centric
transport protocols while striking a balance between
performance enhancements and protection against
misbehavior. We focus on the class of receiver-dri-
ven protocols because their deployment introduces
a set of novel security challenges that can have dev-
astating effects on the widely-deployed HTTP, file,
and streaming servers in the Internet. Moreover,
we show that none of the existing solutions are able
to efficiently protect the servers from such receiver
misbehaviors.

In this paper, we first anticipate and analyze a set
of possible receiver misbehaviors, ranging from clas-
sical denial-of-service attacks, e.g., receiver request
flooding, to more moderate and consequently
harder-to-detect misbehavior. We divide misbehav-
iors into two classes: the first is long-time-scale mis-
behaviors that manipulate the additive-increase-
multiplicative-decrease (AIMD) or retransmission
timeout (RTO) parameters such that flows steal
bandwidth over longer time-scales; the second class
is short-time-scale misbehaviors that forge parame-
ters such as the initial congestion-window size, such
that these flows improve the short-file response times
at the expense of well-behaved flows. We develop an
analytical model by generalizing [15] to predict the
throughput that a misbehavior will obtain as a func-
tion of modified AIMD parameters. Moreover, for
small files we derive an expression for the response
time for file download under modifications of the ini-
tial congestion window. In both cases, we show that
such modifications can lead to misbehaving flows
achieving dramatically higher bandwidths and
reduced latency as compared to behaving flows.

Second, we evaluate and discuss a set of state-of-
the-art router- and edge-based mechanisms designed
to detect and thwart denial-of-service attacks and
other flow misbehaviors. Unfortunately, we find that
some of the schemes, e.g., [16], are completely unable
to detect any receiver misbehavior, whereas others,
e.g., [17], are fundamentally limited in their ability
to detect even very severe end-point misbehaviors.
The key reason is the lack of knowledge of flows’
round-trip times, which forces such schemes to
penalize flows based on their absolute throughput,

tly, Receiver-centric congestion control with a misbehav-
21

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 3

ARTICLE IN PRESS

which in a heterogeneous-RTT environment typi-
cally results in punishing short-RTT flows. More-
over, even when a high-rate attack can be detected
at a router, we show that protection schemes such
as pushback [18], can have catastrophic conse-
quences: not only that the scheme cannot prevent
the attack, but it can actually significantly improve
its effectiveness.

Next, we propose and evaluate a set of sender-
side mechanisms designed to detect and thwart
receiver misbehavior, yet without any help from a
potentially misbehaving receiver. We initially focus
on long time-scales and develop a TFRC-based
scheme in which senders (i) independently estimate
RTT and loss rate without any cooperation from
a potentially misbehaving receiver, (ii) dynamically
compute the TCP-friendly rate, and (iii) detect
out-of-profile behavior. While this end-point
approach at the sender-side is able to accurately
detect even slight receiver misbehaviors and strictly
enforce TCP-friendliness, we show that a funda-
mental tradeoff arises from the fact that in the
absence of trust between the sender and receiver, it
becomes problematic for the sender to infer whether
the receiver is misbehaving or legitimately trying to
optimize its performance with an enhanced protocol
stack. For example, we show that a client applying
receiver-driven TCP together with the congestion-
control mechanisms of [3,19] can improve through-
put six times in a simple wireless scenario. We there-
fore propose a detection methodology that protects
the system against DoS attacks and severe resource
stealing and ignores modest stealing that is not
easily distinguishable from enhanced TCP stacks.
In this way, we attempt to strike a balance between
performance and trust – fostering innovation and
deployment of enhanced TCP stacks while also
providing counter-measures against severe abuse.

Finally, we analyze short-time-scale receiver
misbehaviors, and show that the performance vs.
trust tension significantly magnifies over shorter
time-scales. For example, we conduct a web experi-
ment and show that a malicious client that uses
excessively long initial window size and also forges
exponential backoff timers, can not only signifi-
cantly improve its own response time, but can also
drastically degrade the response times of the back-
ground traffic. While sender-based enforcement
mechanisms (e.g., rate limiting) are again success-
ful against DoS attacks, we show that in HTTP
scenarios dominated by short-lived flows, such
mechanisms can often limit receiver-driven TCP

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

performance to a level below that achievable by
today’s sender-based TCP.

The remainder of this paper is organized as fol-
lows. In Section 2, we present background on recei-
ver-based transport protocols. Next, in Section 3,
we analyze and analytically model protocol vulner-
abilities. Sections 4 and 5 propose and evaluate a set
of sender-based solutions targeted to protect the
system over long- and short-time-scales, respec-
tively, while Section 6 analyzes limitations of exist-
ing solutions in detecting end-point misbehaviors.
Finally, in Section 7 we conclude.

2. Background

In this section, we review transport protocols
that delegate some or all control functions to receiv-
ers. For scenarios ranging from web browsing to
wireless networks, the key advantages of receiver-
driven protocols are improved response times and
throughput due to exploitation of information
available at the receiver.

2.1. Delegating control functions to receivers

One of the first transport protocols that exploits
increased receiver functionality is Clark et al.’s
NETBLT [5], which makes error recovery more effi-
cient by placing the data retransmission timer at the
receiver. In later work, an increased set of control
functions appear at the receiver, either for perfor-
mance or practical reasons (e.g., to decrease the
computation burden at the sender). For example,
Sinha et al.’s WTCP [8] calculates the sending rate
at the receiver; Floyd et al.’s TFRC [6] maintains
the loss history and computes the TCP-friendly rate
at the receiver; Tsaoussidis and Zhang’s TCP-Real
[10] tracks loss events and determines the data deliv-
ery rate at the receiver; Spring et al. [9] and Mehra
et al. [7] add functionality to the receiver to control
the bandwidth shares of incoming TCP flows, i.e.,
by adapting the receiver’s advertised window and
delay in transmitting ack messages, the receiver is
able to control the bandwidth share on the access
link according to the client’s needs.

2.2. Fully receiver-driven transport protocols

In contrast to the above protocols, all control
functions are delegated to receivers in Web Trans-
port Protocol (WebTP) [11] and Reception Control
Protocol (RCP) [12]. Hsieh et al. [12] argue that the

tly, Receiver-centric congestion control with a misbehav-
21

1 While we focus on RCP, similar receiver incentives and
protocol vulnerabilities hold whether protocols delegate some or
all control functions to receivers, e.g., TFRC [6] and WebTP [11],
respectively.

2 Figs. 1 and 2 are taken from Refs. [12].

4 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

key advantage of fully receiver-centric transport
protocols is that the receiver controls how much data

can be sent, and which data should be sent by the sen-
der. Below, we summarize some of the performance
and functionality gains that a fully receiver-centric
protocol can achieve in the large-scale server scenar-
ios as well as in a scenario where the mobile host
acts as the receiver for traffic from a wireline sender.

2.2.1. Performance gains

We elaborate on two of the sources of perfor-
mance gains explored in [12]. The first is improved
loss recovery. In particular, while TCP ack packets
are resilient to losses due to their cumulative nature,
they provide little information that the sender can
use to effectively recover from losses. While TCP
Sack [20] is able to recover from losses by using
three ‘‘Sack blocks’’, the effectiveness of recovery
is limited to the extend to which the sender can
accurately construct the receiver buffer in a timely
fashion. Hence, heavy losses on the forward path,
coupled with a lossy reverse path (typical for wire-
less environments), may prevent the TCP Sack sen-
der from accurately constructing the receiver’s
buffer state. On the contrary, the receiver has direct
access to the receive buffer, and hence can always
recover from losses in an effective fashion, without
incurring the overhead inaccuracies of TCP Sack.

The second source of performance gains arise via
wireless-aware congestion control. Namely, the
wireless link typically plays a defining role in deter-
mining the characteristics of an end-to-end path.
Hence, ‘‘wireless-aware’’ congestion control algo-
rithms exploit information about the characteristics
of the wireless link (e.g., loss classification, RTT
sample filtering or reasons for non-congestion
related outages (handoffs or channel blackouts)).
Since the receiver is adjacent to the wireless last-
hop, it has first-hand knowledge about the above
information. We will show in Section 4.3 that such
an approach can improve throughput for six times
in a simple wireless scenario.

2.2.2. Functionality gains
The fact that receiver-centric protocol design del-

egates the entire protocol ‘‘intelligence’’ to the recei-
ver yields a number of functionality improvements.
First, sender-based TCP places all protocol state on
the servers which must handle large scale workloads
(e.g., web servers). On the other hand, receiver-dri-
ven transport protocols can significantly reduce
the complexity of the server implementation since

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

they distribute the state management across the
large number of clients.

Second, during periods of mobility, a mobile host
with heterogeneous wireless interfaces can benefit
from the fact that the transport protocol functional-
ity is concentrated at the receiver. For example,
when a mobile host performs a handoff from one
access network to another, it can avoid connection
disruptions due to temporary link outage by using
both interfaces simultaneously if the transport layer
is able to use multiple interfaces without suffering
from performance degradation due to persistent
packet reordering. Furthermore, the mobile user
can benefit from migrating to a replicated server,
either because the new interface has no access to
the old server, or for performance considerations.

2.3. RCP protocol

Here, we provide a brief overview of RCP, vari-
ants of which we consider for the remainder of the
paper.1

All TCP variants provide reliable in-sequence
data delivery to the application, with protocol oper-
ations consisting mainly of four mechanisms: con-
nection management, flow control, congestion
control, and reliability. Fig. 1 depicts a schematic
view of the interaction between sender and receiver
in TCP, together with several state variables.2

Observe that except for connection management,
which needs to be implemented at both ends, Fig. 2
indicates that RCP delegates all other control func-
tions to the receiver. Thus, either the sender or recei-
ver can initiate connection setup, after which the
receiver becomes fully responsible for reliability,
flow control, and congestion control, using the same
window-based mechanisms employed in sender-
driven TCP. Since RCP shifts the control of data
transfer from the sender to receiver, the data-ack

style of message exchange in TCP is no longer appli-
cable. Instead, to achieve the self-clocking charac-
teristics of TCP, RCP uses req-data exchange for
data transfer, where any data transfer from the sen-
der is preceded with an explicit request (req) from
the receiver. Equivalently, the RCP receiver uses
incoming data packets to clock the requests for

tly, Receiver-centric congestion control with a misbehav-
21

Fig. 1. TCP functionalities at the sender and receiver.

Fig. 2. RCP functionalities at the sender and receiver.

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 5

ARTICLE IN PRESS

new data. In summary, RCP represents a clone of
sender-side TCP which simply transfers all impor-
tant control functionalities to the receiver. (We
interchangeably use the terms RCP and receiver-dri-
ven TCP.)

However, the fact that all control functions are
delegated to receivers raises a fundamental security
concern for misbehaving receivers that will manipu-
late protocol parameters (all available at the recei-
ver) and gain significant performance benefits.
This concern is amplified by the fact that receivers
would have the opportunity (open source operating
systems requiring a minor change), and incentive
(faster web browsing and file downloads) to perform
such activities.

3. Vulnerabilities

In this section we analyze receiver misbehaviors
which range from DoS attacks to more moderate

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

(hence harder to detect) manipulations of conges-
tion control parameters. We then develop an analyt-
ical model by generalizing [15] to predict the
throughput that a misbehavior will obtain as a func-
tion of the modified AIMD parameters a and b, as
well as the retransmission timeout RTO. Finally, for
small files we derive an expression for the response
time for file download under modifications of the
initial congestion window.

3.1. Receiver misbehaviors

Here, we treat two classes of misbehaviors in the
context of receiver-driven transport protocols:
denial-of-service attacks and resource stealing. The
key distinction between the two lies in the primary
goal of the misbehaving client: DoS attackers aim
to deny service to the background flows without
necessarily achieving a particular benefit for them-
selves, whereas resource stealers aim to gain a

tly, Receiver-centric congestion control with a misbehav-
21

6 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

performance benefit by stealing resources from the
background flows (without necessarily starving
them).

3.1.1. Denial of service attacks

We begin with an extreme scenario and show
that an RCP sender can become an easy target of
a DoS attack. Indeed, Fig. 2 shows that the RCP
sender listens to the request packets from the
receiver, and replies by sending data packets with-
out any control, as all control functions are dele-
gated to the receiver for performance reasons.
Hence, flooding the sender with short req packets
(the same size as the ack packets, �40 Bytes) may
force the RCP sender to flood the reverse path
(from the server to the client) with much longer data

packets (typically �1500 Bytes), and congest the
network.

To demonstrate the vulnerability of fully receiver-
driven transport protocols, we use ns2 to simulate
the above request-flood attack and show the result
in Fig. 3. In this scenario, seven TCP Sack flows
share a link, and at time 300 s, an RCP flow joins
the aggregate (we provide the exact simulation
parameters and topology in Section 4). However,
we remove the congestion control functions from
the RCP flow (by re-tuning the appropriate RCP
parameters at the receiver – details are given below),
such that it floods the server with requests. Conse-
quently, the RCP flow utilizes the entire bandwidth
and denies service to the background traffic by
exploiting TCP’s well-known vulnerability to
attacks by high-rate non-responsive flows.

3.1.2. Resource stealing

In contrast, an unscrupulous receiver may mod-
erately re-tune its parameters in an attempt to steal
bandwidth from other flows in the network while
eluding detection. Indeed, we will quantify the
extent to which it is harder to detect flows that

0

0.2

0.4

0.6

0.8

1

1.2

250 300 350 400 450 500

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Time (sec)

A misbehaving RCP flow
TCP aggregate

Fig. 3. RCP receiver performs a DoS attack by flooding the
sender with requests.

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

moderately disobey some (but not all) congestion
control rules (e.g., decrease the window size upon
a packet loss, but do not halve it), than it is to detect
flows that dramatically violate one or more conges-
tion control rules. While we do not underestimate
the creativity of misbehaving receivers, in this paper
we treat only easy-to-implement misbehaviors that
can be achieved by changing protocol parameters;
namely, each parameter can be modified by chang-
ing a single line of code.

While the space of possible receiver misbehaviors
is vast, we focus on parameter-based misbehaviors
simply because they are easy to implement. While
receivers could clearly use other mechanisms to
achieve similar rates, we demonstrate in Section 4
that this does not affect the detection problem. In
other words, the proposed solutions are capable of
detecting user misbehaviors independently of the
method used to implement the same. Furthermore,
in this paper we do not treat the problem of applica-
tion-level misbehaviors such as parallel download
(where a malicious user opens multiple transport-
layer connections to parallely download different
partitions of a file from a server). Nevertheless,
observe that the misbehaviors analyzed in this paper
are much more generic: (i) they can be simply and
entirely implemented at the receivers; (ii) a mali-
cious receiver can achieve a performance benefit
even in scenarios where a single transport connec-
tion is used for download (e.g., in the HTTP 1.1
web-server scenarios or in the non-partitioned
FTP-download scenarios).

The first parameter of interest is the additive-

increase parameter a, which has a default value of
one packet per round-trip time. By increasing the
window size more aggressively (a > 1), a flow can
achieve higher throughput.

The second parameter is the multiplicative-

decrease parameter b which has a default value of
0.5 such that the congestion window is halved upon
the receipt of congestion indication. Again, the
receiver can potentially utilize more bandwidth
by decreasing the window only moderately via
b > 0.5.

The third parameter is the retransmission timeout

RTO. Both TCP and RCP use a retransmission
timer to ensure data delivery in the absence of any
feedback from the remote peer.3 In both cases, this

3 In the sender-driven TCP scenario, it is the absence of ack

packets from the TCP receiver, while in the receiver-driven RCP
scenario, it is the absence of data packets from the RCP sender.

tly, Receiver-centric congestion control with a misbehav-
21

1

10

100

1000

0.001 0.01 0.1 1

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

Loss Rate (p)

PFTK
SQRT

alpha=4
beta=0.8
RTO=0.1

alpha=4, beta=0.8, RTO=0.1

Fig. 4. Long-time-scale misbehaviors – numerical results.

4 A deterministic model for TCP-friendly AIMD congestion
control with arbitrary a and b could be found in [24]. Likewise, a
stochastic model similar to the one proposed in Appendix could
be found in [25].

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 7

ARTICLE IN PRESS

value is computed using smoothed round-trip time
and round-trip time variation. RFC 2988 [21] rec-
ommends to lower- and upper-bound this value to
1 and 60 s, respectively. Thus, a malicious receiver
may easily change these values. For example, by set-
ting the RTO to a small value (e.g., 100 ms), one can
expect to achieve throughput improvements in high
packet loss ratio environments, because the misbe-
having flow would back-off significantly less aggres-
sively than behaving flows would.

Finally, the fourth parameter of interest is the

initial window size W. The default is two segments,
whereas RFC 2414 [22] recommends increasing
this parameter to a value between two and four
segments (roughly 4 Kbytes) to achieve a perfor-
mance improvement. A misbehaving receiver might
wish to further improve its performance (without
caring much about problems such as congestion col-
lapse), and increase this parameter even more. By
doing so, the receiver can maliciously jump-start
the RCP flow (this is exactly what we did, among
other things, in Fig. 3 by setting W = 10) and
improve its throughput. However, this parameter
is expected to be crucial in improving the short
file-size response times which are typical for web
browsing.

3.2. Modeling misbehaviors

Manipulations of parameters a, b, and RTO
enable misbehaving receivers to steal bandwidth
over longer time scales, whereas modifying the
parameter W reduces latency for small files, hence
over shorter time-scales. Here, we develop analytical
models to predict the amount of stolen bandwidth
and reduced latency over long- and short-time-
scales, respectively.

3.2.1. Long time scales

We begin with the well-known TCP throughput
formula (Eq. (30) in [15]) that expresses average
TCP rate B as a function of the round-trip time
RTT, steady-state loss event rate p, TCP retransmis-
sion timeout value RTO, and number of packets
acknowledged by each ack b (typically b = 1 [23])

B � 1

RTT
ffiffiffiffiffi
2bp
3

q
þRTO min 1; 3

ffiffiffiffiffi
3bp
8

q� �
pð1þ 32p2Þ

:

ð1Þ
Using the stochastic TCP model and methodology
of [15], we generalize the above result to a scenario

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

with arbitrary values of a and b.4 Denoting d as 1/b,
we have approximated B by

1

RTT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2bpðd�1Þ
aðdþ1Þ

q
þRTO min 1; 3

ffi
bpð1þdÞðd�1Þ

2ad2

q� �
pð1þ 32p2Þ

:

ð2Þ

We provide the key steps of the derivation in
Appendix. Note the two corner cases: for a = 1
and b = 0.5, Eqs. (1) and (2) are equivalent; when
b = 1 (when d = 1), then B! inf, i.e., if the conges-
tion window is never decreased upon a packet loss,
the throughput will theoretically converge to infin-
ity. We explore intermediate cases as follows.

Fig. 4 shows numerical results for TCP (and
hence RCP) throughput as a function of the packet
loss rate. PFTK denotes the formula from [15] (Eq.
(1), with b = 1 and RTO = 1 s), while SQRT is the
‘‘square-root’’ formula from [26] (the same as Eq.
(1), only without the RTO part). Next, we plot the
throughput that a malicious receiver can achieve,
according to Eq. (2), by manipulating a, b, and
RTO (exact values are shown in the figure).

First, observe that by re-tuning a to four, one can
double the throughput (y-axis is in logarithmic
scale), while re-tuning b to 0.8 (d = 1.25) one can
steal somewhat less bandwidth. More generally,
according to Eq. (2), setting a to a value larger than
one, enables a flow to achieve approximately

ffiffiffi
a
p

higher throughput as compared to a well-behaved
TCP flow and for the same packet loss rate. Second,
observe that both curves (a = 4 and b = 0.8) have a

tly, Receiver-centric congestion control with a misbehav-
21

8 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

shape similar to the PFTK curve. This indicates that
the amount of stolen bandwidth (the difference
between the misbehaving and the PFTK curve) is
approximately independent of the packet loss ratio.
On the other hand, notice that this is not the case
for the RTO parameter (e.g., RTO = 100 ms),
where the amount of stolen bandwidth increases
as the packet loss ratio increases. This is because
timeouts occur more frequently in higher packet
loss ratio environments, and thus, disobeying the
exponential backoff rules enables significant
throughput gains in such environments. Further-
more, by re-tuning all parameters together (a = 4,
b = 0.8, RTO = 0.1), the model predicts significant
stealing effects, where the misbehaving flow utilizes
approximately 10 (for p = 0.02) to 20 (for p = 0.1)
times more bandwidth than behaving flows. Finally,
observe that the SQRT formula significantly overes-
timates the TCP-friendly rate for higher packet loss
ratios (where the exponential backoffs play a key
role), hence this formula is not suitable for detection
purposes (to be explained in detail below).

3.2.2. Short time scales

Here, we develop an expression for the response
time for file download under modifications of the
initial congestion window parameter W. We model
only the exponential increase phase, which is the
only phase that the majority of short-lived flows
ever enter [27].5 We show in Section 5.2 that the
expression accurately captures the response times
of short files in a web browsing experiment.

The exponential increase phase for receiver-dri-
ven TCP is the same as in the sender-driven sce-
nario, with the difference that the receiver has the
leading role. It sends the first two req packets to
the sender (the default initial window size is two seg-
ments), which replies with the first two data packet.
Next, the receiver doubles the congestion window
and sends four req packets to the sender. Denote
Tr as the response time of a regular (behaving)
RCP flow, N as the file (flow) size in packets, and
RTT as the round-trip time. In such a scenario,
the response time for a flow of size N is

T r ¼ maxðRTT; dlog2NeRTTÞ: ð3Þ
Next, denote Tm as the response time of a malicious
flow that sets the initial window size W to a value
larger than two. Further, denote s as the packet size

5 See Refs. [28–30] for more sophisticated models for the
latency of well-behaving TCP flows.

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

in bits and C as the available bandwidth in bits/s.
Then, when the file size satisfies N 6W, we have
that

T m ¼ maxðRTT;Ns=CÞ: ð4Þ

In other words, if the initial window size is set to a
number larger than the file size, the file will be
downloaded in a ‘‘single burst’’, and thus the actual
response time equals the burst size, lower-bounded
by RTT. Otherwise, if N > W, we have that

T m ¼ maxðRTT;Ws=CÞ þ dlog2N � log2W eRTT:

ð5Þ

The first part of Eq. (5) is similar to Eq. (4). It says
that the first W packets are downloaded in a single
burst, whereas the rest are transferred in a ‘‘jump-
started’’ exponential increase phase. A simple calcu-
lation shows that a misbehaving user can indeed
significantly improve the file response time by
manipulating the initial window size parameter.
For example, our simple model indicates that for
C = 10 Mb/s, a 70 kByte file can be transferred
within a single RTT when the initial window size
W is set to 70 or more packets: seven times faster
than what a behaving flow achieves.

4. An end-point solution

In this section, we evaluate the potential of an
end-point scheme to detect receiver misbehaviors.
The key advantage of an end-point (vs. network-
based) approach is the ability of the sender to esti-
mate the round-trip time and loss rate on the path
to the receiver, and hence enforce a much ‘‘tighter’’
TCP-friendly throughput profile. However, a funda-
mental problem arises from the fact that in the
absence of trust between the sender and receiver, it
is problematic for the sender to infer whether the
receiver is misbehaving as defined in Section 3 or
legitimately trying to optimize its performance.

4.1. Sender-side verification

In order to detect receiver misbehavior, the sen-
der requires increased functionality beyond its role
as a slave to the receiver’s request packets (see
Fig. 2). Our objective is to add the minimum func-
tionality to the sender that will enable it to robustly
detect receiver misbehavior over long-time scales
(we treat the short-time-scale misbehavior detection
problem in Section 5.2), yet without any help from a

tly, Receiver-centric congestion control with a misbehav-
21

Fig. 5. Secure RCP sender.

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 9

ARTICLE IN PRESS

potentially misbehaving receiver. While this new
functionality inevitably increases the sender-side
implementation complexity, we will demonstrate
that it represents a general solution to the band-
width-stealing receiver-induced misbehaviors.

Fig. 5 depicts the key components of such a solu-
tion. Eq. (1) indicates that knowledge of RTT and
packet loss ratio is enough to compute the TCP-fair
throughput, and consequently to detect out-of-pro-
file flows. Obviously, our solution is able to measure
RTT and the packet loss ratio, and hence enforce a
more precise traffic profile than any network-based
solution. Indeed, we will demonstrate in Section 6
the fundamental limitation of network-router-based
schemes to accurately estimate the connection
parameters (e.g., RTT), and to enforce a precise
TCP-friendly rate.

Because the sender must estimate RTT and
packet loss ratio without any cooperation from
the untrusted receiver, the sender transmits ping

packets that the receiver has no incentive to delay,
as a larger RTT implies a lower bandwidth profile.6

One problem with the ping approach is that ICMP
(e.g., ping) messages may be given different treat-
ment at routers. Moreover, because not all hosts
will respond to ping messages (e.g., due to a sys-
tem-wide policy), the sender can effectively measure
RTT in the following way. By sending short TCP
packets (e.g., ACK) to the receiver using its IP
address, yet by setting a random port number, the
sender will provoke the receiver to reply by a TCP
RST packet, thus overcoming potentially restrictive
system or firewall policies deployed at the receiver’s
network. This method has been efficiently used to
measure RTT to hosts behind firewalls [31]. A prob-

6 To prevent the receiver to simply send a response in
anticipation of a request (thus thereby simulating a smaller
RTT), the sender should randomize the period between the ping

messages.

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

lem with the ‘‘TCP ping’’ approach is that it might
look like a port-scan attack, and hence can trigger
security alarms. Anyhow, we believe that any client
interested in applying a receiver-based congestion
control must be required to provide a port number
that would enable servers to independently control
clients’ behavior (e.g., measure RTT).

In our design, a sender probes the corresponding
receiver approximately once per RTT. The over-
head imposed by such an approach is the following.
Consider a scenario in which the throughput
between the two endpoints is limited by the receiver
advertised window, which is typically the case in
today’s Internet [32].7 Next, consider the receiver
advertised window of 64 kBytes. In such a case,
the overhead imposed by a single ping per RTT is
40 Bytes/64 kBytes = 0.0625%. In absolute terms,
consider 100 clients hosted by a server and average
RTT of 100 ms. The throughput overhead due to
out-of-band pinging becomes 40 kB/s.

Likewise, the sender must estimate the packet
loss ratio and detect whether the receiver is actually
re-requesting data packets that are dropped. Note
that a node performing a DoS attack need not
re-request dropped packets, whereas receivers that
are stealing bandwidth will be forced to re-request
packets for a reliable service. In any case, one pos-
sible solution to the above problem is for the sender
to purposely drop a packet to test if the receiver will
re-request it as the absence of a repeated request for
the dropped packet would indicate a potential DoS
attack. Note that this is a backward-compatible
technique that could be used instead of the pro-
posed nonce technique [14]. Nevertheless, here we
focus on bandwidth-stealing scenarios where the
receivers are forced to re-request dropped packets
for a reliable service.

Once the RCP sender estimates RTT and the
packet loss ratio, it can compute the TCP-friendly
rate. However, because these parameters can vary
significantly during a flow’s lifetime, we apply the
methods developed for TCP-Friendly Rate Control
(TFRC) [6] to estimate the TCP-friendly rate in real
time. Namely, while existing use of TFRC focuses
on setting the transmission rate based on RTT
and loss measurements, we utilize TFRC to verify

TCP friendliness using the actual RTT (measured

7 According to measurements from [32], approximately 20% of
TCP flows have the advertised window parameter set to 8 kBytes,
35% to 16 kBytes, and the rest of 45% to 64 kBytes.

tly, Receiver-centric congestion control with a misbehav-
21

0.8

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Loss Rate (p)

TCP Sack
RCP Sack

Fig. 6. TFRC agent mounted on the sender side of a well-
behaved (a) TCP Sack and (b) RCP Sack.

10 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

via the ping agent) and loss measurements incurred
by the RCP flow itself.

Finally, by comparing the measured throughput
(based on the number of packets sent) and the
throughput computed by the TFRC agent, the
control agent is able to detect, and eventually
punish, a misbehaving receiver. We do not imple-
ment the control module in this work, as our pri-
mary goal is to explore the ability of the above
scheme to accurately detect receiver misbehaviors.
Alternatives to punish include rate-limiting and
preferentially dropping packets. However, given
that the scheme can indeed accurately detect misbe-
having receivers (to be shown below), the sender
may simply disconnect the misbehaving client, and
in that way discourage potentially malicious receiv-
ers from the temptation to steal bandwidth.

4.2. Detecting misbehaviors

Here, we first evaluate the accuracy of the TFRC
agent in measuring ‘‘TCP friendliness’’. Next, we re-
tune the RCP parameters at the receiver to mimic
malicious behavior, and then evaluate the sender’s
ability to detect such misbehaviors.

4.2.1. TFRC agent

To robustly detect misbehaving receivers, it is
essential to first evaluate the TFRC agent’s accuracy
in measuring TCP friendliness. Computed TFRC
throughput may deviate from actual TCP through-
put due to measurement errors (low RTT sampling
resolution, ping packets sent once per second, etc.),
system dynamics, and inaccuracies in the underlying
TCP equation. Thus, to manage the detection
scheme’s false positives (incorrect declaration of a
non-malicious flow as malicious), such inaccuracies
must be incorporated into the detection process.

We conduct ns2 simulations and consider a link
shared by a number of TCP Sack flows (varied from
1 to 600). The link implements RED queue manage-
ment and has capacity 10 Mb/s; we set the buffer
length, min_thresh, and max_thresh to 2.5, 0.25
and 1.25 times the bandwidth-delay product, respec-
tively. The round trip time is 50 ms. Unless otherwise
indicated, these parameters are used throughout the
paper. We perform a number of simulations, and
present average results together with 95% confidence
intervals. The ns code and simulation scripts are
available at http://www.ece.rice.edu/networks.

To establish a baseline of TFRC’s behavior, we
first mount the TFRC agent on the sender side of

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

a sender-based TCP Sack [20] flow and present the
results in Fig. 6. The figure depicts the ratio of mea-
sured (TCP Sack) vs. computed (by the TFRC
agent) throughputs as a function of the packet loss
ratio. When the measured vs. computed throughput
ratio is one, this indicates that the TFRC agent
exactly matches the TCP Sack throughput. Observe
that this is indeed the case for low packet loss ratios
(for the curve labeled as ‘‘TCP Sack’’). As the
packet loss ratio increases, the curve moderately
increases, indicating a slight conservatism of the
TFRC agent as the throughput computed by the
TFRC agent is slightly lower than the measured
TCP Sack throughput. The problem of TFRC con-
servatism has been studied in depth in Ref. [33].
However, this problem is much less pronounced
here than indicated in [33] as the TFRC agent in
our experiment measures the actual packet loss ratio
incurred by the TCP Sack flow. This ratio is much
lower than the loss ratio induced by a TFRC flow

which backs-off less conservatively than TCP Sack
(see Ref. [33] for further details). In summary, the
throughput computed by the TFRC agent deviates
from the TCP Sack throughput, yet the deviation
is moderate, even for high packet loss ratios. More-
over, it has been demonstrated in [45] that TFRC is
capable of successfully avoiding persistent overload
even in highly dynamic scenarios.

Finally, we repeat the above experiment, but now
mount the TFRC agent on the RCP sender as in
Fig. 5. Observe that the ratio of the measured
(RCP Sack) vs. computed throughput is somewhat
higher than in the above sender-based TCP Sack sce-
nario. Indeed, RCP Sack has an improved loss
recovery mechanism (see Ref. [12] for details) and
consequently improves throughput. The key prob-
lem is the sender side’s difficulty in determining
whether the receiver is trying to optimize its perfor-
mance, or is simply stealing bandwidth. We treat this
problem in detail in Section 4.3. Here, we obtained

tly, Receiver-centric congestion control with a misbehav-
21

http://www.ece.rice.edu/networks

1

10

100

1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Loss Rate (p)

Regular RCP Sack
RTO=500ms
RTO=100ms

Fig. 8. Misbehaving receiver re-tunes the retransmission timeout
parameter RTO.

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 11

ARTICLE IN PRESS

the reference measurement-based profile for a
behaving RCP flow, which we will next use to dem-
onstrate the capability of an end-point scheme to
detect even moderate receiver misbehaviors.

4.2.2. Detecting misbehaving receivers

Here, we implement a misbehaving RCP node
that re-tunes its congestion control parameters a,
b, and RTO at the receiver. Our goal is to evaluate
the sender’s ability to detect these misbehaviors and
to evaluate the accuracy of our modeling result from
Eq. (2).

We first re-tune the additive-increase parameter a
and repeat the experiment above. Fig. 7 depicts the
measured vs. computed throughput ratio for misbe-
having receivers (having a of 4, 9, 16 and 25),
together with the same ratio for the behaving RCP
flow having a = 1. Recall that the left-most point
on the curve corresponds to low loss and experi-
ments in which the RCP flow competes with a single
TCP Sack flow, whereas the right-most point on the
curve corresponds to high loss and a single RCP
flow competing with 600 TCP Sack flows. Observe
first that the measured vs. computed throughput
ratios for misbehaving flows clearly differ from the
behaving flows’ profile, indicating a strong potential
for misbehavior detection (to be demonstrated
below). Second, observe that the throughput ratio
for misbehaving flows is approximately propor-
tional to

ffiffiffi
a
p

as predicted by the model except for
extremely low aggregation regimes (e.g., p = 0.03
in which a single RCP flow competes with a single
TCP Sack flow). In such low aggregation cases,
while the misbehaving flow indeed takes signifi-
cantly more bandwidth than the competing TCP
Sack flow (not shown), it is unable to fully utilize
the bandwidth due to frequent backoffs. Our results
(not shown) indicate that similar effects occur when
parameter b is re-tuned.

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Loss Rate (p)

Regular RCP Sack
alpha=4
alpha=9

alpha=16
alpha=25

Fig. 7. Misbehaving receiver re-tunes the additive-increase
parameter a.

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

Next, we explore misbehavers that re-tune the
retransmission timeout parameter by simulta-
neously re-tuning both minRTO and maxRTO
parameters and present the results in Fig. 8. Notice
that when RTO is set to 500 ms, the receiver gradu-
ally steals more and more bandwidth as the packet
loss ratio increases (as predicted by the model),
since the number of time-outs increases with the
packet loss ratio. However, 500 ms backoffs are suf-
ficient to keep the system stable. On the other hand,
observe that by re-tuning the RTO parameter to
100 ms (which in this scenario is smaller than the
RTT), we push the system deeply into a loss regime
(p � 0.35). In such a scenario, the amount of stolen
bandwidth is so extreme that it may be character-
ized as a denial-of-service attack. Indeed, by re-tun-
ing only a few parameters, it is possible to transform
RCP (and TCP) into a powerful DoS tool (see
Fig. 3).

4.2.3. Detection threshold

Here we evaluate the sender’s ability to detect
receiver misbehaviors and study the false-alarm
probability and correct misbehavior-detection prob-
ability. Denote meas_thr as the throughput mea-
sured by the RCP sender, and comp_thr as the
throughput computed by the TFRC agent (as
shown in Fig. 5). Next, denote k as the threshold
parameter, and define P(k) as

P ðkÞ ¼ Prob
meas thr
comp thr

> k
� �

: ð6Þ

For example, P(1) denotes the probability that the
measured vs. computed throughput ratio is larger
than one, whereas P(2) is the probability that the
measured throughput is more than twice the com-
puted one. If the receiver is behaving, then P(k) is
the false-alarm probability (i.e., we falsely conclude
that the receiver is misbehaving with probability

tly, Receiver-centric congestion control with a misbehav-
21

0

1

2

3

4

5

6

7

0 0.05 0.1 0.15 0.2 0.25

M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Loss Rate (p)

Regular RCP Sack
Regular RCP-ELN

Fig. 10. RCP-ELN significantly improves throughput.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

P
ro

ba
bi

lit
y

Threshold (k)

False Alarm Prob. (RCP Sack)
Corr. Misb.-Det. Prob. (alpha=4)

Corr. Misb.-Det. Prob. (beta=0.7)
Corr. Misb.-Det. Prob. (maxRTO=0.5)

Fig. 9. Detecting out-of-profile flows.

12 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

P(k)). On the other hand, if the receiver is misbehav-
ing, then P(k) is the correct misbehavior-detection

probability (i.e., we correctly conclude that the
receiver is misbehaving with probability P(k)).

Fig. 9 plots the false alarm probability (for the
behaving RCP flow), together with the correct mis-
behavior-detection probabilities for three moder-
ately misbehaving receivers (exact parameters are
shown in the figure). We set the packet loss ratio
to 0.15 representing a scenario in which the
throughput ratio deviates (approximately) the most
as indicated in Fig. 6. Consequently, the false-alarm
probability for the behaving RCP flow is largest,
indicating that this scenario is the most challenging
from the detection point of view.

The key observations from Fig. 9 are as follows.
First, note the tradeoff in setting the threshold
parameter k. If it is too small (e.g., k = 1), we are
able to detect the misbehaving receivers with high
probability, but the false alarm probability is also
one. On the other hand, if it is set too high
(e.g., k = 3), the false alarm probability becomes
zero, but the correct misbehavior-detection proba-
bility also becomes zero. However, observe that
the fact that the false-alarm probability decreases
faster (for smaller k), makes it possible to set the
threshold (e.g., k = 1.8 in this scenario), such that
the false positives are acceptably small, yet we
are able to detect all of the above cheaters with
high probability. Thus, this worst-case scenario
confirms the high precision of the end-point scheme
in detecting a wide range of receiver misbehaviors.
However, we will next show that setting the para-
meter k incurs an additional challenge when
confronted with versions of TCP employing perfor-
mance enhancements.

4.3. Advanced congestion control mechanisms

There is a significant body of work proposed to
improve the TCP performance in wireless environ-

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

ments, where high channel losses may dispropor-
tionately degrade TCP Sack performance. Here,
we briefly explain two well-known protocols, TCP-
ELN and TCP Westwood. TCP-ELN has been
proposed to distinguish wireless random losses from
congestion losses. It relies on an external trigger to
classify the losses, and fast retransmits lost segments
due to wireless errors without decreasing down the
congestion window. It has been shown in [12] that
when this mechanism is applied in the receiver-dri-

ven protocol scenario, the throughput improve-
ments are quite significant (we repeat this
experiment and confirm the result below). This is
mostly due to the fact that RCP-ELN benefits from
having accurate loss classifications about all missing
segments in the receive buffer.

Another protocol that improves the throughput
over wireless links is TCP Westwood. It does so by
using a less conservative decrease parameter b that
depends on the online estimate of the available band-
width. In this way, TCP Westwood avoids the ‘‘blind
halving’’ of congestion window in response to a wire-
less error. It is expected that the same mechanism
could provide further throughput improvements
in receiver-driven protocols. Below, we focus on
RCP-ELN and do not further consider sender- or
receiver-based TCP Westwood.

We first simulate an RCP-ELN flow in a lossy
wireless-like environment. Fig. 10 depicts the mea-
sured vs. computed throughput ratio as a function
of loss. Observe that the RCP-ELN throughput
ratio increases significantly as compared to the
RCP Sack profile, indicating that RCP-ELN indeed
significantly improves throughput, e.g., achieving a
sixfold increase for a loss ratio of 0.17. However,
the key problem is that from the sender perspective,
the RCP-ELN flow is difficult to distinguish from a
misbehaving flow.

Fig. 11 depicts the false-alarm probability for the
behaving RCP-ELN flow for a packet loss ratio of

tly, Receiver-centric congestion control with a misbehav-
21

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Threshold (k)

False Alarm Prob. (RCP-ELN)
Corr. Misb.-Det. Prob. (alpha=25, beta=0.9)

Corr. Misb.-Det. Prob. (alpha=25)
Corr. Misb.-Det. Prob. (beta=0.9)

Fig. 11. From the sender’s perspective, RCP-ELN looks like a
misbehaving flow (a = 25 and b = 0.9).

1

1.5

2

2.5

3

0 20 40 60 80 100M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Time (sec)

alpha=1
alpha=9

Fig. 12. Throughput ratio vs. time for (a) a well-behaving flow
and (b) a misbehaving flow (a = 9) (for five different random
seeds).

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 13

ARTICLE IN PRESS

0.15. To emphasize the detection problem, we also
plot the correct misbehavior detection probabilities
(without any advanced congestion control mecha-
nisms), with maliciously re-tuned parameters (i)
a = 25, (ii) b = 0.9, and (iii) a = 25 and b = 0.9.
Observe that using a small threshold (e.g., k = 1)
ensures a high detection probability for any of the
above misbehaviors, but we also falsely detect the
RCP-ELN as malicious. However, simply increas-
ing the threshold k does not eliminate the problem.
For example, for k = 4, the false alarm probability
for ELN-RCP is still one, while the probability to
detect misbehaviors (i) and (ii) has already dropped
to zero. Finally, by using a very large k (e.g., k = 7
in this scenario), we have an acceptably small false
alarm probability for RCP-ELN, but are at the
same time unable to detect any of the (quite severe)
receiver misbehaviors.

Thus, these experiments illustrate a fundamental
tradeoff between system performance and security
(the ability to detect bandwidth stealers), as both
cannot be maximized simultaneously. Ironically,
while advanced congestion control mechanisms at
the receiver significantly improve throughput, the
resulting false-alarm probability further increases,
further emphasizing the tradeoff. We believe that
setting the parameter k to a larger value strikes
the best balance for the file- or streaming-servers
in the Internet. A large value protects servers from
severe denial-of-service attacks, while enabling
innovation in protocol design by preserving the per-
formance benefits of receiver-centric transport pro-
tocols. The downside is the fact that we are unable
to detect some bandwidth stealers. In contrast,
strictly enforcing today’s TCP-Sack throughput
profile via a lower k would indeed make it possible
to catch even modest bandwidth stealers. However,
a small k would remove most of the RCP benefits,
and indeed remove the incentive for designing and
deploying enhanced TCP stacks.

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

5. Short time scale misbehavior

The secure RCP sender is designed to detect recei-
ver manipulations of congestion control parameters
(e.g., a, b, RTO) that would enable the receiver to
steal bandwidth over longer time periods. Hence,
these misbehaviors can be detected on longer time-
scales. In this section we explore the minimum time
scale for which the sender can accurately identify
receiver misbehavior. Moreover we study a receiver
misbehavior targeted towards short-lived flows in
which receivers begin with a large initial congestion
window.

5.1. Minimum detection timescales

To explore the minimum detection time-scale, we
first perform 10 experiments, and show the results in
Fig. 12. In all experiments, a single RCP flow com-
petes with 20 TCP Sack cross-traffic flows. Fig. 12
depicts the measured vs. computed throughput ratio
(measured at the RCP sender) as a function of time,
where the reference time zero identifies the start time
of the RCP flow. In 5 of the 10 experiments, the
RCP receiver behaves well (we only change the ran-
dom seed for each simulation run), while in the
remaining experiments we create a malicious recei-
ver with a = 9.

Observe that the ratios for both of the stacks
(behaving and malicious) converge relatively
quickly: toward one for the behaving flows, and
approximately to

ffiffiffi
a
p

for the misbehaving flows.
However, note that the curves for the two stacks
can be quite similar, and may overlap, over short
time scales. The overlaps are due to the fact that a
behaving RCP flow (just like a TCP flow) can be
quite bursty over shorter time-scales (e.g., due to
the exponential increase phase), and thus may

tly, Receiver-centric congestion control with a misbehav-
21

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

P
ro

ba
bi

lit
y

Time (sec)

Correct Misbehavior-Detection Probability
False Alarm Probability

Fig. 13. Probability to detect a misbehaving flow increases as the
time evolves.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000

R
at

io
 o

f R
es

po
ns

e
T

im
es

File Size (packets)

W1=10 vs. W2=2, simulation
W1=10 vs. W2=2, model

W1=W2=2

Fig. 14. Misbehaving receiver re-tunes the initial window size
parameter W (link utilization 10%).

14 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

deviate from the TCP-friendly rate computed by the
TFRC agent.

Next, we perform an extensive set of simulations
to statistically quantify the above observations.
Fig. 13 depicts the correct misbehavior detection
probability (for the misbehaving flow with a = 9),
together with the false alarm probability (for the
behaving flows) as a function of time and for
k = 2. Observe first that the correct misbehavior-
detection probability converges to one as time
evolves, indicating that it becomes more and more
certain that the receiver is misbehaving. On the
other hand, observe that the false-alarm probability
for the same scenario is quite low (only several per-
cent up to 10 s) and approaches zero beyond 10 s.
Thus, beyond this time scale, it is possible to detect
the receiver misbehavior with high confidence, and
the sender can freely punish the receiver given that
the probability to falsely detect a behaving flow
drops to near zero beyond 10 s.

However, very short-lived flows transmitting up
to tens or hundreds of packets are common in
today’s Internet due to web traffic. The file transmis-
sion times typically last for only several ms to several
hundreds of ms, and the above scheme (targeted to
detect bandwidth stealers in file- or streaming-server
scenarios) is not designed to detect very short time-
scale misbehaviors. Below, we first explore addi-
tional short time-scale receiver misbehaviors tar-
geted for web-browsing and short files, and then
analyze appropriate protection mechanisms.

8 We set C = 10 Mb/s in Eqs. (4) and (5), which due to the low
average utilization of 10%, is close to the flow’s available
bandwidth.

5.2. Initial congestion window

Here, we consider web RCP flows that increase
their initial congestion window in order to obtain
decreased response time. We show that it is possible
for a malicious receiver to not only significantly
improve its own response time, but to also severely

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

degrade the response times for the background
traffic.

We adopt the model developed in [34] in which
clients initiate sessions from randomly chosen web
sites (the server pool) with several web pages down-
loaded from each site. Each page consists of several
objects, which are downloaded by either TCP or
RCP, depending on the client (all the servers in
the pool support both options). There is a single
misbehaving client in the client pool, which uses a
mis-configured RCP (details are given below), while
the other clients from the pool behave and use
unmodified TCP Sack.

Fig. 14 depicts the average file response time for
the RCP flow (normalized by the response times for
the same flow when the RCP client is well behaving)
as a function of file size. Because of the normaliza-
tion, the curve labeled as ‘‘W1 = W2 = 2’’ is a
straight line with a value of one. On the other hand,
notice that the misbehaving RCP client is able to
significantly improve its response times by increas-
ing the initial window size parameter W to 10.
Observe next that the malicious receiver achieves
the maximum improvement exactly for the files that
are 10-packets long, and this is because such files are
downloaded in a single burst (files with size less than
10 packets are also downloaded in a single burst,
but the improvement is most prominent for the lon-
gest files in this single-burst-category). On the other
hand, files longer than 10 packets also improve their
response times, simply due to the fact that their con-
gestion windows are jump-started with W = 10.
Next, observe that the modeling result from Section
3.2.2 accurately tracks the simulation results.8 The
non-monotonic and alternating quasi-periodic

tly, Receiver-centric congestion control with a misbehav-
21

0

2

4

6

8

10

12

14

16

18

1 10 100 1000

R
at

io
 o

f R
es

po
ns

e
T

im
es

File Size (packets)

W1=100 vs. W2=2
W1=100 (RTO=0.1) vs. W2=2

W1=W2=2

Fig. 15. A greedy receiver (W = 100) may degrade its own
response times; but ‘‘turning off’’ the backoff timers (W = 100,
RTO = 0.1) ‘‘improves’’ the response times (link utilization 90%).

0.6

0.8

1

e
tim

e
(s

ec
)

Rcv. misbehaving - Snd. unprotected
Rcv. misbehaving - Snd. rate-limited

Rcv. well-behaving - Snd. unprotected

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 15

ARTICLE IN PRESS

shape of the modeling curve is due to the use of the
ceiling function (d Æe) in Eqs. (3) and (5).

While it may appear attractive for a malicious cli-
ent to maximally increase the initial window size
parameter W in order to steal more and more band-
width, this is not necessarily a good option, espe-
cially in more congested environments. This is
illustrated in Fig. 15, where we increase the link
utilization to 90%, and the malicious clients sets
the initial window size parameter W to 100 packets.
Here, this greedy user significantly degrades not
only the background traffic,9 but also degrades its
own response times (shown in the figure) by an order
of magnitude. This degradation is due to the fact
that when the malicious user sends large bursts of
requests, it forces the web server to reply with
large bursts of data packets, many of which are
themselves lost in the congestion. These packet
losses force even the RCP user to enter the exponen-
tial backoff phase and degrades its response time.
To overcome the above problem, the malicious
user needs to ‘‘turn off’’ the exponential backoff
timers. We do this by re-tuning the RTO parame-
ter to 100 ms. In this way, the malicious user is
able both to ‘‘push-out’’ and significantly degrade
the background traffic, and at the same time
improve its own response times, as also shown in
the figure.

5.3. Solutions

Here, we explore two possible solutions to the
above short-time-scale misbehaviors. One is to rate-
limit flows, which while effective in thwarting cheat-

9 We do not show the impact of misbehaving clients on the
background traffic in the figure because the effects are similar to
those shown in Fig. 3; likewise, mechanisms invoking vulnera-
bilities in this scenario are essentially the same as the ones
discussed in Section 3.

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

ers, is a non-work conserving solution in which it is
problematic to determine the appropriate rate. The
second solution is to have a ‘‘smart’’ RCP client at
the sender side that would enforce a ‘‘TCP-friendly’’
exponential window increase. It would estimate the
RTT to the client, and release the data packets
accordingly. While also effective in thwarting cheat-
ers, this approach unfortunately mitigates some of
the benefits of RCP.

To study the performance of the above solutions,
we compute and plot in Fig. 16 the file-response
times in three different scenarios for the RCP flow
with the available bandwidth of 10 Mb/s and RTT
of 50 ms: (i) when a malicious user sets the initial
window W to 100 packets and the sender does not
rate limit (labeled as ‘‘Rcv. misbehaving – Snd.
unprotected’’); (ii) the receiver sets W = 100, but
the sender rate limits to 200 Kb/s (labeled as
‘‘Rcv. misbehaving – Snd. rate-limited’’) and (iii)
the receiver is well behaving and is not rate-limited
(labeled as ‘‘Rcv. well-behaving – Snd. unpro-
tected’’). Fig. 16 illustrates problems in setting the
rate-limit value. Setting it to 200 Kb/s degrades
the file response times significantly, as shown in
Fig. 16.

But the key insight from the above experiment is
that using a large initial window sizes can signifi-
cantly (up to 10 times in the above scenario – and
much more in larger-bandwidth networks) improve
file response times. Such methodologies have been
studied in depth in [35–38], but in the context of sen-
der-based TCP, where the web-server increases the
initial window size in an attempt to improve system
performance. However, in the receiver-driven RCP
scenario, it is hard to distinguish whether the recei-
ver is jump-starting the TCP flow or is simply mali-
cious. Thus, applying rate limiting or the ‘‘smart’’
RCP client methodology may indeed protect the
system against receiver misbehavior, but at the same
time prevents attempts as in [35–38] to improve
performance. This illustrates the tradeoff between

0

0.2

0.4

1 10 100 1000

R
es

po
ns

File Size (packets)

Fig. 16. Protecting against short-time-scale misbehaviors.

tly, Receiver-centric congestion control with a misbehav-
21

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

RTT (ms)

misbehaving flow
fair share

Fig. 17. RED-PD is unable to detect a malicious flow.

16 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

system security and performance in that strict
enforcement of protocol rules would not only
reduce performance, but would also inhibit protocol
innovation.

However, unlike in the RCP-ELN scenario (in
which we concluded that using larger values for
the detection threshold parameter k can protect
against DoS attacks, but not from relatively moder-
ate bandwidth stealing), here, we conclude that
either rate-limiting or a ‘‘smart’’ RCP client has to
be strictly applied, because a receiver with an exces-
sively large W in combination with manipulated
exponential backoff timers can significantly degrade
the legitimate background traffic (Fig. 15). Yet,
applying any of the short-time-scale protection
methodologies inevitably reduces the incentive for
receivers to use RCP for short-lived flows, as
sender-based TCP enhanced with jump-starting
methodologies is able to achieve the best response-
time curve from Fig. 16 without any security
considerations.

6. Network- vs. end-point-based solutions: analysis

and overview

Here, we review several state-of-the-art core-rou-
ter-, edge-router-, and end-point-based solutions
designed to detect and thwart malicious flows.

6.1. Network-based solutions

Out of many router-assisted schemes designed to
detect malicious flows in the network, we consider
several representative schemes. First, we analyze
RED-PD (RED with Preferential Dropping) in
detail, and then briefly discuss variants of Fair
Queuing (FQ). In addition, we explain how push-

back, a router-based protection scheme designed
to protect the network against Distributed DoS
(DDoS) attacks, can be exploited by misbehaving
receivers to launch DoS attacks against public Inter-
net servers.

6.1.1. Detection: a simulation analysis
In [17], Mahajan et al. develop RED-PD, a

scheme that uses the packet drop history at a router
to detect high-bandwidth flows in times of conges-
tion, and preferentially drop packets from these
flows. In order to detect high-bandwidth flows,
RED-PD sets a target bandwidth above which a flow
is identified as malicious. The target bandwidth is
defined as the bandwidth obtained by a reference

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

TCP flow with the target RTT (default is 40 ms),
and the current drop rate measured at the output
router queue. The targeted bandwidth is computed
using the square-root TCP-friendly formula. In
other words, in the absence of per-flow RTT mea-
surements, RED-PD sets the target RTT to 40 ms
as a bound for distinguishing in- vs. out-of-profile
flows.

While RED-PD can protect the system against
certain misbehaviors, the lack of exact knowledge
of the flow’s RTT fundamentally limits its ability
to detect severe end-point misbehaviors as demon-
strated in Fig. 17. We perform ns experiments with
nine flows sharing a RED-PD router. We vary the
round-trip times of the flows from 20 to 350 ms
(as shown on the x-axis), and plot the bandwidth
of a single flow on the y-axis. When all flows are
well-behaved, the bandwidth share is fair (the
straight line in the figure). However, when one of
the flows (whose normalized throughput is shown
on y-axis) re-tunes a to 25, it can potentially steal
up to five times more bandwidth than its fair share
according to Eq. (2). Observe that RED-PD suc-
cessfully limits the malicious flow to its fair-share,
but only when the RTT is less than or equal to
40 ms (recall that this is the RTT of the reference

flow). However, as the flows’ RTT increases, the
malicious flow is able to steal more and more band-
width, up to five times more than its fair share (the
maximum for this scenario) when the RTT is
350 ms.

RED-PD’s limitations in detecting misbehaving
flows are more general than indicated in the above
example. First, it is important to notice that a
misbehaving flow can steal bandwidth not only in
homogeneous-RTT scenarios as in the above exper-
iments, but also in heterogeneous-RTT environ-
ments, since the amount of stolen bandwidth
depends on the RTT of a misbehaving flow. Second,
while in this paper we focus on receiver-driven

tly, Receiver-centric congestion control with a misbehav-
21

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 17

ARTICLE IN PRESS

transport protocols, observe that the above RED-
PD limitations apply equally to sender-based TCP
stacks. Another problem arises from the fact that
RED-PD uses a simple (and less accurate) square-
root formula, which significantly overestimates the
TCP-friendly rate for higher packet loss ratios
because it does not account for retransmissions
[15]. Hence, malicious TCP or RCP flows have the
opportunity to steal dramatically more bandwidth
as the packet loss ratio increases, e.g., 100 times
more when p = 0.3, as indicated in Fig. 4.

While it may appear attractive to apply some ver-
sion of fair queuing (including the preferential-drop-
ping schemes developed to enforce fairness among
adaptive and non-adaptive flows, e.g., Flow Ran-
dom Early Detection (FRED) [39], CHOKe [40],
or Stochastic Fair Blue (SFB) [41]) to solve the
above problem, observe that such schemes are also
unable to detect end-point misbehaviors and to
enforce the proportional fairness targeted by TCP.
Moreover, in a heterogeneous RTT environment,
such schemes will significantly deviate from the pro-
portional bandwidth share, and even magnify the
bandwidth-stealing effects. Below, we provide a sim-
ple, yet illustrative example. While not representa-
tive of an actual or realistic scenario, our main
goal is to illustrate the difference between propor-
tional (RTT-dependent) and max-min fairness as
enforced by FQ.

Consider a link shared by three congestion-con-
trolled flows, such that the proportional fair share
is (0.9, 0.05, 0.05), due to flow 1 having a shorter
path length (smaller RTT) than flows 2 and 3. Next,
assume that flow 2 is malicious. It re-tunes its
parameters and utilizes more bandwidth by stealing
from flow number one, such that the bandwidth
share is now (0.7, 0.25, 0.05). However, if FQ is
used, all flows get their ‘‘fair-share’’, and the band-
width share is now (0.33, 0.33, 0.33). Thus, FQ pro-
vides even more bandwidth to flow 2 than it could
have stolen without it.

6.1.2. Protection

In [18], Mahajan et al. develop both a local mech-
anism for detecting and controlling an aggregate at
a single router, and a cooperative pushback mecha-
nism in which a router can ask upstream routers to
control an aggregate (e.g., preferentially drop its
packets). Here, we focus on the pushback mecha-
nism. While this cooperative effort among network
routers indeed seems to be a reasonable approach
in preventing high-rate DoS attacks, it can actually

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

become a tool misused by DoS attackers in a sce-
nario with receiver-driven TCP stacks. The key
problem is that pushback assumes that the endpoints
that are sending packets at high rates are malicious,
which is not necessarily true in the receiver-based
congestion control case. For example, consider the
request-flood scenario of Fig. 3, in which a mali-
cious receiver provokes the sender (e.g., a public
web server) to flood the network. In such a scenario,
the pushback-enabled routers would coordinate an
action against the web-server traffic aggregate in
the upstream direction, from the congestion point
toward the non-malicious web server, thereby
degrading its service.

6.2. Edge-router-based solutions

In [16], Mirkovic et al. develop D-WARD, an
edge-router based protection scheme for detecting
DoS activity. For each traffic type, they establish
a baseline traffic model. For a TCP session, they
measure both outgoing (data) and incoming (ack)
traffic and define the maximum allowable ratio of
the two. When the ratio of the number of data vs.
ack packets goes over a certain threshold, they con-
clude that the flow is out of profile and rate-limit it.
While the above scheme may indeed protect against
TCP-based denial-of-service attacks (where the sen-
der floods the network with data packets indepen-
dent of the feedback from the receiver), like in the
above pushback example, this model clearly does
not apply to the receiver-driven TCP scenario.
Recall that in the receiver-based scenario, the num-
ber of requests and data packets is the same in both
directions, even in the most severe denial-of-service
scenarios. Moreover, the fact that the number of
packets in the forward (data) and reverse (req)
directions is the same is actually the core idea of
the request-flood attack: the receiver floods the sen-
der with requests, and the sender replies by trans-
mitting the same number of data packets, yet with
significantly larger size thereby congesting the
network.

In [42], Paxson presents tcpanaly, a tool whose
initial goal was to work in one pass over a packet
trace by recognizing generic TCP actions. The goal
of executing only one pass stemmed from the objec-
tive that tcpanaly might later evolve into a tool
that could monitor an Internet link in real-time
and detect misbehaving TCP sessions on the link.
Unfortunately, the author was forced to abandon
both of the goals. Among many obstacles, the key

tly, Receiver-centric congestion control with a misbehav-
21

18 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

one is that one-pass analysis proved difficult due to
vantage point issues (see Ref. [42] for details), in
which it was often hard to tell whether a TCP flow’s
actions were due to the most recently received
packet, or one received in the distant past.

6.3. End-point-based solutions

In [13], Savage et al. demonstrate that there exist
simple attacks in sender-based TCP scenarios that
allow a misbehaving receiver to drive a standard
TCP sender arbitrarily fast, without losing end-to-
end reliability. Fortunately, the authors show that
it is possible to modify the design of TCP to elimi-
nate this behavior, without requiring that the recei-
ver be trusted in any manner. Unfortunately, these
modifications are specific for the set of attacks
explored in [13], and specific to sender-based TCP.
Hence, they do not solve the problem in the recei-
ver-based congestion control scenario.

The above paper also proposed the use of nonce

fields in the TCP packet format. For each segment,
the sender fills the nonce field with a unique random
number. When a receiver generates an ACK in
response to a data segment, it echoes the nonce
value, and thus prove that it has received a packet.
While the requirement for the less-trusted communi-
cation party to prove that it has received a packet is
certainly beneficial, note that it does not address the
bandwidth stealing problem analyzed here (in Sec-
tion 3.1.2): the receiver may regularly echo-back
all nonces to the sender, yet voluntarily manipulate
the congestion control parameters (all available at
the receiver) and request as many packets as it
wants.

Finally, in [43], Patel et al. designed an end-point
scheme whose goal is to verify TCP friendliness
in the context of untrusted mobile code. The key
difference between our scheme, initially presented
in [44], and the one from [43] is that our scheme
aims to thwart possible receiver misbehaviors, and
hence does not require any cooperation from a
potentially malicious receiver. Moreover, in con-
trast to the scheme from [43], which compares the
TCP sending rate to the TCP-friendly equation rate
[15], our scheme applies the TFRC protocol to
estimate the TCP-friendly rate in real time. This is
particularly important in the presence of highly
dynamic background traffic; while being an equa-
tion-based scheme, TFRC manages to adapt to
relatively short time-scale available-bandwidth fluc-
tuations [45].

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

7. Conclusions

Receiver-driven transport protocols delegate key
control functions to receivers. While this radically
new protocol design achieves significant perfor-
mance and functionality gains in a variety of wire-
less and wireline scenarios, we showed that a high
concentration of control functions available at the
receiver leads to an extreme vulnerability. Namely,
receivers would have both the means and incentive
to tamper with the congestion control algorithm
for their own benefits. We analyzed a set of easy-
to-implement receiver misbehaviors and analytically
quantified the substantial benefits that a malicious
client can achieve in terms of stolen bandwidth over
long time-scales (e.g., in file- or streaming-server
scenarios) and response time improvements for
short-files in HTTP scenarios.

We evaluated a set of state-of-the-art network-
based solutions, and proposed and analyzed a set
of end-point solutions. Our findings are as follows:
(1) Network-based solutions are fundamentally lim-
ited in their ability to detect and punish even severe
endpoint misbehaviors. (2) End-point solution can
accurately detect long-time-scale receiver misbehav-
iors and strictly enforce the TCP-friendly rate, but
such enforcement entirely removes the performance
benefits of receiver-driven protocols. (3) In the file-
and streaming-server scenarios, it is possible to
strike an acceptable balance between protocol per-
formance on one hand, and vulnerability to misbe-
havers on the other, due to the fact that moderate
bandwidth stealers do not represent a critical threat
to the system security. (4) On the contrary, short
time-scale receiver misbehaviors can extremely
degrade the response times of well-behaving clients
in the HTTP-server scenarios; hence, such servers
have to strictly apply sender-based short-time-scale
protection mechanisms; unfortunately, such mecha-
nisms can often limit the receiver-driven TCP per-
formance to a level which is below the level
achievable by sender-based TCP.

Appendix A. Computing the throughput of an RCP
(TCP) flow with misconfigured parameters

We use exactly the same assumptions, methodol-
ogy, and notation as in [15]. Due to space con-
straints, we only present the key steps of the
derivation. Consequently, a reader interested in
following the derivation below needs to use Ref.
[15] in parallel.

tly, Receiver-centric congestion control with a misbehav-
21

A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx 19

ARTICLE IN PRESS

A.1. Loss indications are exclusively ‘‘triple-

duplicate’’ ACKs

Assume that a user increases window size by a
packets, and that it decreases it by a factor of b.
Denote d as 1/b. Then, Eq. (7) from [15] becomes

W i ¼
W i�1

d
þ X i

b=a
; i ¼ 1; 2; . . . ; ð7Þ

where Xi is the number of increase rounds in the ith
tripple-duplicate period (TDPi). Equation indicates
that during TDPi, the window size increases be-
tween Wi�1/d and Wi, and the increase is linear with
slope a/b. Consequently, the number of packets
transmitted in TDPi is expressed by

Y i ¼
X i

2

W i�1

d
þ W i � a

� �
þ bi; ð8Þ

where bi is the number of packets sent in the last
round. Next, assuming that Xi and Wi are mutually
independent sequences of i.i.d. random variables, it
follows from the above two equations and Eq. (5)
from [15] that

E½W � ¼ a
b

d
d � 1

E½x�; ð9Þ

and

1� p
p
þ E½W � ¼ E½X �

2

E½W �
d
þ E½W � � a

� �
þ E½W �

2
:

ð10Þ
From Eqs. (9) and (10), we have

E½W � ¼ da
1þ d

bðd � 1Þ þ d
2bðd � 1Þ

þ

ffi
bðd � 1Þ þ d

2bðd � 1Þ

� �2 da
1þ d

� �2

þ 2
ad2

bð1þ dÞðd � 1Þ
1� p

p

s
:

ð11Þ
Observe that,

E½W � ¼

ffi
d2

ð1þ dÞðd � 1Þ
2a
bp

s
þ oð1= ffiffiffi

p
p Þ: ð12Þ

i.e., E[W] converges to the first term of Eq. (12) for
small values of p. From Eqs. (9), (14) as well as Eq.
(6) from [15], we derive the expressions for the ex-
pected number of rounds (E[X]) in the TD period,
as well as the expected duration E[A] of the same
period.

A simplified expression for E[X] is

E½X � ¼

ffi
2bðd � 1Þ
ð1þ dÞpa

s
þ oð1= ffiffiffi

p
p Þ; ð13Þ

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

and

E½A� ¼ RTT
bðd þ 1Þ þ d

2ð1þ dÞ

�

þ

ffi
bðd þ 1Þ þ d

2ð1þ dÞ

� �2

þ 1� p
p

2b
1þ d

d � 1

a

s
þ 1

1
A:
ð14Þ

Finally, based on Eq. (18) from [15], as well as E[X]
and E[A] derived here, it could be shown that the
RCP (TCP) throughput B(p) is

BðpÞ ¼ 1

RTT

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2bpðd�1Þ
aðdþ1Þ

q þ oð1= ffiffiffi
p
p Þ: ð15Þ

A.2. Loss indications are ‘‘triple-duplicate’’ ACKs

and timeouts

Using Eqs. (25) and (28) from [15], as well as Eqs.
(12) and (13) from above, it could be shown that Eq.
(2) follows.

References

[1] S. Floyd, Highspeed TCP for large congestion windows,
Internet RFC 3649, December 2003.

[2] C. Jin, D. Wei, S. Low, FAST TCP: motivation, architec-
ture, algorithms, performance, in: Proceedings of IEEE
INFOCOM ’04, Hong Kong, China, 2004.

[3] H. Balakrishnan, R. Katz, Explicit loss notification and
wireless Web performance, in: Proceedings of IEEE GLO-
BECOM ’98, Sydney, Australia, 1998.

[4] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, R. Wang,
TCP Westwood: bandwidth estimation for enhanced trans-
port over wireless links, in: Proceedings of ACM MOBI-
COM ’01, Rome, Italy, 2001.

[5] D. Clark, M. Lambert, L. Zhang, NETBLT: a high
throughput transport protocol, in: Proceedings of ACM
SIGCOMM ’87, Stowe, VM, 1987.

[6] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-based
congestion control for unicast applications, in: Proceedings
of ACM SIGCOMM ’00, Stockholm, Sweden, 2000.

[7] P. Mehra, A. Zakhor, C.D. Vleeschouwer, Receiver-driven
bandwidth sharing for TCP, in: Proceedings of IEEE
INFOCOM ’03, San Francisco, CA, 2003.

[8] P. Sinha, N. Venkitaraman, R. Sivakumar, V. Bharghavan,
WTCP: a reliable transport protocol for wireless wide-area
networks, in: Proceedings of ACM MOBICOM ’99, Seattle,
WA, 1999.

[9] N. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T.
Anderson, B. Bershad, Receiver based management of low
bandwidth access links, in: Proceedings of IEEE INFOCOM
’00, Tel Aviv, Israel, 2000.

[10] V. Tsaoussidis, C. Zhang, TCP-real: receiver-oriented con-
gestion control, The Journal of Computer Networks 40 (4)
(2002) 477–497.

tly, Receiver-centric congestion control with a misbehav-
21

20 A. Kuzmanovic, E.W. Knightly / Computer Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS

[11] R. Gupta, M. Chen, S. McCanne, J. Walrand, A receiver-
driven transport protocol for the Web, in: Proceedings of
INFORMS ’00, San Antonio, TX, 2000.

[12] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, R. Sivakumar, A receiver-
centric transport protocol for mobile hosts with heteroge-
neous wireless interfaces, in: Proceedings of ACM MOBI-
COM ’03, San Diego, CA, 2003.

[13] S. Savage, N. Cardwell, D. Wetherall, T. Anderson, TCP
congestion control with a misbehaving receiver, ACM
Comput. Commun. Rev. 29 (5) (1999) 71–78.

[14] D. Ely, N. Spring, D. Wetherall, S. Savage, T. Anderson,
Robust congestion signaling, in: Proceedings of IEEE ICNP
’01, Riverside, CA, 2001.

[15] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP
Reno performance: a simple model and its empirical valida-
tion, IEEE/ACM Trans. Network. 8 (2) (2000) 133–145.

[16] J. Mirkovic, G. Prier, P. Reiher, Attacking DDoS at the
source, in: Proceedings of IEEE ICNP ’02, Paris, France,
2002.

[17] R. Mahajan, S. Floyd, D. Wetherall, Controlling high-
bandwidth flows at the congested router, in: Proceedings of
IEEE ICNP ’01, Riverside, CA, 2001.

[18] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
S. Shenker, Controlling high bandwidth aggregates in the
network, ACM Comput. Commun. Rev. 32 (3) (2002) 62–73.

[19] H. Balakrishnan, V. Padmanabhan, S. Seshana, R. Katz, A
comparison of mechanisms for improving TCP performance
over wireless links, IEEE/ACM Trans. Network. 5 (6) (1997)
756–769.

[20] S. Floyd, J. Madhavi, M. Mathis, M. Podolsky, An
extension to the selective acknowledgement (SACK) option
for TCP, Internet RFC 288, July 2000.

[21] V. Paxson, M. Allman, Computing TCP’s retransmission
timer, Internet RFC 2988, November 2000.

[22] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s initial
window, Internet RFC 2414, September 1998.

[23] M. Handley, J. Padhye, S. Floyd, J. Widmer, TCP friendly
rate control, IETF Internet draft, July 2001.

[24] S. Floyd, M. Handley, J. Padhye, A comparison of equation-
based and AIMD congestion control, Technical Report.

[25] Y. Yang, S. Lam, General AIMD congestion control,
Technical Report TR-00-09, Department of Computer
Science, UT Austin, May 2000.

[26] M. Mathis, J. Semke, J. Madhavi, T. Ott, The macroscopic
behavior of the TCP congestion avoidance, ACM Comput.
Commun. Rev. 27 (3) (1997) 67–82.

[27] L. Guo, I. Matta, The war between mice and elephants, in:
Proceedings of IEEE ICNP ’01, Riverside, CA, 2001.

[28] N. Cardwell, S. Savage, T. Anderson, Modeling TCP
latency, in: Proceedings of IEEE INFOCOM ’00, Tel Aviv,
Israel, 2000.

[29] J. Heidemann, K. Obraczka, J. Touch, Modeling the
performance of HTTP over several transport protocols,
IEEE/ACM Trans. Network. 5 (5) (1997) 616–630.

[30] C. Patridge, T. Shepard, TCP/IP performance over satellite
links, IEEE Network 11 (5) (1997) 44–49.

[31] K. Gummadi, H. Madhyastha, S. Gribble, H. Levy, D.
Wetherall, Improving the reliability of Internet paths with
one-hop source routing, in: Proceedings of OSDI ’04, San
Francisco, CA, 2004.

[32] A. Medina, J. Padhye, S. Floyd, Measuring the evaluation of
transport protocols in the Internet, Technical Report, 2004.

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

[33] M. Vojnovic, J.-Y.L. Boudec, On the long-run behavior of
equation-based rate control, in: Proceedings of ACM SIG-
COMM ’02, Pittsburgh, PA, 2002.

[34] A. Feldmann, A. Gilbert, P. Huang, W. Willinger, Dynamics
of IP traffic: a study of the role of variability and the impact
of control, in: Proceedings of ACM SIGCOMM ’99,
Vancouver, British Columbia, 1999.

[35] J. Hoe, Improving the start-up behavior of a congestion
control scheme for TCP, in: Proceedings of ACM SIG-
COMM ’96, Stanford University, CA, 1996.

[36] V. Padmanabhan, R. Katz, TCP fast start: a technique for
speeding up Web transfers, in: Proceedings of IEEE GLO-
BECOM ’98, Sydney, Australia, 1998.

[37] R. Wang, G. Pau, K. Yamada, M. Sanadidi, M. Gerla, TCP
start up performance in large bandwidth delay networks, in:
Proceedings of IEEE INFOCOM ’04, Hong Kong, China,
2004.

[38] Y. Zhang, L. Qiu, S. Keshav, Speeding up short data
transfers: theory, architectural support, and simulations,
in: Proceedings of NOSSDAV ’00, Chapel Hill, NC,
2000.

[39] D. Lin, R. Morris, Dynamics of random early detection, in:
Proceedings of ACM SIGCOMM ’97, Cannes, France,
1997.

[40] R. Pain, B. Prabhakar, K. Psounis, CHOKe, a stateless
active queue management scheme for approximating fair
bandwidth allocation, in: Proceedings of IEEE INFOCOM
’00, Tel Aviv, Israel, 2000.

[41] W. Feng, D. Kandlur, D. Saha, K. Shin, Stochastic fair
BLUE: a queue management algorithm for enforcing fair-
ness, in: Proceedings of IEEE INFOCOM ’01, Anchorage,
Alaska, 2001.

[42] V. Paxson, Automated packet trace analysis of TCP imple-
mentations, in: Proceedings of ACM SIGCOMM ’97,
Cannes, France, 1997.

[43] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, T. Stack,
Upgrading transport protocols with untrusted mobile code,
in: Proceedings of ACM SOSP ’03, Bolton Landing, NY,
2003.

[44] A. Kuzmanovic, E. Knightly, A performance vs. trust
perspective in the design of end-point congestion control
protocols, in: Proceedings of IEEE ICNP ’04, Berlin,
Germany, 2004.

[45] D. Bansal, H. Balakrishnan, S. Floyd, S. Shenker, Dynamic
behavior of slowly-responsive congestion control algorithms,
in: Proceedings of ACM SIGCOMM ’01, San Diego, CA,
2001.

Aleksandar Kuzmanovic is an assistant
professor in the Department of Electrical
Engineering and Computer Science at
Northwestern University. He received
his B.S. and M.S. degrees from the
University of Belgrade, Serbia, in 1996
and 1999 respectively. He received his
Ph.D. degree from the Rice University in
2004. His research interests are in the
area of computer networking with
emphasis on design, security, analysis,

theory, and prototype implementation of protocols and algo-
rithms for the wired and wireless Internet.

tly, Receiver-centric congestion control with a misbehav-
21

mputer Networks xxx (2007) xxx–xxx 21

ARTICLE IN PRESS

Edward W. Knightly is a professor of
Electrical and Computer Engineering at
Rice University. He received his B.S.
degree from Auburn University in 1991
and the M.S. and Ph.D. degrees from the
University of California at Berkeley in
1992 and 1996, respectively. He is an
associate editor of IEEE/ACM Trans-
actions on Networking. He served as
technical co-chair of IEEE IWQoS 1998
and IEEE INFOCOM 2005 and served

on the program committee for numerous networking conferences

A. Kuzmanovic, E.W. Knightly / Co

Please cite this article in press as: A. Kuzmanovic, E.W. Knigh
ing ..., Comput. Netw. (2007), doi:10.1016/j.comnet.2006.11.0

including ICNP, INFOCOM, IWQoS, MobiCom, and SIG-
METRICS. He received the National Science Foundation
CAREER Award in 1997 and the Sloan Fellowship in 2001. His
research interests are in the areas of mobile and wireless networks
and high-performance and denial-of-service resilient protocol
design.

tly, Receiver-centric congestion control with a misbehav-
21

		Receiver-centric congestion control with a misbehaving receiver: Vulnerabilities and end-point solutions

		Introduction

		Background

		Delegating control functions to receivers

		Fully receiver-driven transport protocols

		Performance gains

		Functionality gains

		RCP protocol

		Vulnerabilities

		Receiver misbehaviors

		Denial of service attacks

		Resource stealing

		Modeling misbehaviors

		Long time scales

		Short time scales

		An end-point solution

		Sender-side verification

		Detecting misbehaviors

		TFRC agent

		Detecting misbehaving receivers

		Detection threshold

		Advanced congestion control mechanisms

		Short time scale misbehavior

		Minimum detection timescales

		Initial congestion window

		Solutions

		Network- vs. end-point-based solutions: analysis and overview

		Network-based solutions

		Detection: a simulation analysis

		Protection

		Edge-router-based solutions

		End-point-based solutions

		Conclusions

		Computing the throughput of an RCP (TCP) flow with misconfigured parameters

		Loss indications are exclusively ldquo triple-duplicate rdquo ACKs

		Loss indications are ldquo triple-duplicate rdquo ACKs and timeouts

		References

