

Riptide: Jump-Starting Back-Office Connections in
Cloud Systems


Marcel Flores∗ Amir R. Khakpour† Harkeerat Bedi†
∗Electrical Engineering and Computer Science Department, Northwestern University, Evanston, IL, USA


†Verizon Digital Media Services, Los Angeles, CA, USA
marcel-flores@u.northwestern.edu, {amir.khakpour, harkeerat.bedi}@verizon.com


Abstract—Large-scale cloud networks are constantly driven by
the need for improved performance in communication between
datacenters. Indeed, such back-office communication makes up
a large fraction of traffic in many cloud environments. This
communication often occurs frequently, carrying control mes-
sages, coordination and load balancing information, and customer
data. However, ensuring such inter-datacenter traffic is delivered
efficiently requires optimizing connections over large physical
distances, which is non-trivial. Worse still, many large cloud
networks are subject to complex configuration and adminis-
trative restrictions, limiting the types of solutions that can be
implemented. In this paper, we propose improving the efficiency
of datacenter to datacenter communication by learning the
congestion level of links in between. We then use this knowledge to
inform new connections made between the relevant datacenters,
allowing us to eliminate the overhead associated with traditional
slow-start processes in new connections. We further present
Riptide, a tool which implements this approach. We present the
design and implementation details of Riptide, showing that it
can be easily executed on modern Linux servers deployed in the
real world. We further demonstrate that it successfully reduces
total transfer times in a production global-scale content delivery
network (CDN), providing up to a 30% decrease in tail latency.
We further show that Riptide is simple to deploy and easy to
maintain within a complex existing network.


I. INTRODUCTION


When operating large-scale cloud networks, increasing
performance and reducing transfer times is one of the primary
goals. Indeed, in many systems, the primary performance cost
is incurred when performing regular communication between
datacenters. Despite this prevailing goal of minimizing com-
munication time, many modern networks are hampered by
complex deployments, application restrictions, and operational
limitations. Such complexities limit the ability to implement
many complex solutions and approaches, which would require
thorough overhauls [1].


Indeed many modern cloud systems are built on points
of presence (PoPs) that span the globe [2], [3], which make
solutions that depend on central control and coordination
untenable. Worse still, these deployments are subject to the
realities of real life operations. For example, different locations
may run different operating system versions and software,
making the deployment of new protocols and systems dif-
ficult. These locations may also be under different branches
of administrative control, significantly complicating upgrades,
maintenance, and other operational tasks.


Cloud systems further present a set of technical challenges
to decreasing the communication cost. Much of this PoP-to-


PoP traffic consists of short messages, as we explore further
in this study. Therefore the cost of opening new connections,
and in particular performing traditional TCP slow-start, is
significant for such flows. In modern operating system, the
default window of 10 segments [4] results in any flows larger
than 15KB requiring more than a single RTT to transfer.
Ideally, regular communications between the same datacenters
could avoid this overhead by reusing existing connections.
Reuse could significantly reduce the overhead associated with
opening new connections. However, maintaining open connec-
tions for long periods in a global scale system is a challenge
in both resource management and fault tolerance.


We argue that a solution based on learning past perfor-
mance is able to reduce such costs without falling prey to
the above complexities. Since many of the links between
datacenters are used regularly, they are a significant source of
information about the capacity of their corresponding paths.
Indeed the performance of each historical connection reflects
the likely capacity of future links. Newly arriving flows in
the network can take advantage of this information, scaling
new connections to reflect this learned performance capacity.
By doing so, they are able to avoid much of the start-up cost
traditionally associated with establishing new connections.


In this paper we present Riptide, a simple, yet effective
tool, which observes the current congestion window sizes of
existing connections and sets the initial congestion window
(initcwnd) size accordingly for recurring connections. Riptide
uses an evidence based approach that allows flows opening
to locations with likely known paths to begin at a learned
value, rather than reverting to a default state. In this way,
Riptide is able to strike a balance between aggression and
caution, entering the network at a level the path is known to
support. Riptide is further applicable to any TCP protocol that
employs slow start, granting it significant generality. To the
best of our knowledge, Riptide is the first system to exploit
open connection information for improving the performance
of short flows in a cloud environment.


While its simplicity and ease of implementation in user-
space mean that Riptide can deployed anywhere, it is par-
ticularly well suited for cloud network environments. Often
cloud systems comprise of multiple datacenters or points-
of-presence, which frequently communicate with each other
and generate non user-facing back-office traffic [5]. In such
environments, the usefulness of Riptide is maximized, as any
pair of data centers often have existing information on the
status of the network in the form of open connections.







We have implemented and deployed Riptide on a global-
scale Content Delivery Network (CDN). CDNs represent a
significant source of internet traffic, with data suggesting that
up to 70% of HTTP traffic passing through a Tier 1 ISP
originated at CDN [6]. Riptide has further been operating
in production for over a year. Using data collected from its
deployment, we demonstrate that Riptide is able to increase
the median window size between datacenters by 200%. Next,
we explore the Riptide parameter space, demonstrating that the
imposing limits on the maximum size of the initial congestion
window results in the best performance. We further show that
this increase results in improved flow completion times, as
additional flows are able to complete in fewer round trip
times. Finally, we show that Riptide successfully improves
the performance of slower flows, improving the 50th and 75th
percentiles by nearly 30%.


In this work, we make the following contributions: (i) We
demonstrate there is room to improve network performance
with a straightforward modification to the way new connec-
tions are created, which does not rely on complex coordination.
(ii) We show that such a system can easily be implemented on
a production network. (iii) We demonstrate the effectiveness
of Riptide in a cloud environment.


The remainder of the paper is organized as follows: In
Section II we present our motivation in focusing on initial
congestion windows, we examine the configurations that lead
to challenges in a cloud environment, and highlight some of
the technical challenges presented by Linux and modern TCP
stacks. Next, in Section III we present the design of Riptide
itself, and in Section IV we present an evaluation in a global
cloud network. We provide a discussion in Section V and
conclude in Section VII.


II. BACKGROUND AND MOTIVATION


In this section, we motivate the development of Riptide. In
particular, we consider the nature of modern cloud systems
and the components of these modern systems which stand
to be improved upon. We consider the particular challenges
presented by complex cloud systems with datacenters spanning
multiple, potentially distant, physical locations. We further
explore the potential gains, which can be found by increasing
the initial congestion window. Finally, we examine some of
the challenges presented by the current implementation of the
networking stack in Linux.


A. Challenges in Cloud Systems


We now explore some of the challenges introduced directly
by cloud systems and architectures. In particular, we consider
why obvious solutions, such as simply using persistent con-
nections, are not tenable in most cloud environments. For our
settings, we consider a situation in which there is a potentially
large number of PoPs, distributed over a large geographic area,
with a large number of nodes in each PoP.


First, as each node opens a connection to a different node
in each other PoP, the total amount of resources devoted to
such connections increases. If each node maintains each of
these connections indefinitely, this would approach an n2 mesh
between all nodes, consuming significant resources for many
potentially unused, or only lightly used, links.


Second, application behavior may restrict the applicability
of maintaining a meaningful number of persistent connections.
Indeed, applications may require parallel communications be-
tween two nodes, requiring additional links. Application errors
may further necessitate the periodic closing of connections,
for example in unmanageable error cases. The need to close
these connections would cause a node to entirely forget all
its learned information about the state of a link, and the node
would have to open a new connection, starting with the default
congestion window parameters. Simple procedures that close
all connections to a node (e.g., rebooting to apply updates)
lose not only local connection information, but eliminate all
information about the node on remote machines.


Third, cloud platforms often need to perform load bal-
ancing between PoPs [2]. Such load balancing may require
termination of existing persistent connections and the creation
of additional connections to accommodate increased capacity.
Such shifts would again nullify many of the obvious gains of
persistent connections.


Finally, large scale cloud systems are often delicately
configured with little room for additional complex systems to
be layered on top of existing infrastructure. In these situations,
solutions that require vast re-architecting are untenable and
can not be reasonably deployed. Furthermore, approaches with
high resource requirements may push nodes and datacenters
over-capacity and are therefore unusable. This restricts the
solution space to possibilities that use only low to moderate
resources and do not require large scale changes to the design
of networks or datacenters. Therefore, any solution must not
require costly instrumentation, complex maintenance, such as
regular kernel patches, or incur high maintenance costs.


Beyond the above challenges, application workloads that
require regular communication between datacenters or other
PoPs, form a significant portion of the modern cloud system
traffic [5]. Unlike traditional user-facing services that are
designed to handle a variety of networks and capacities, these
workloads are characterized by regular interactions over well
provisioned links. However, modern day network stacks, in
particular the Linux implementation of TCP and its corre-
sponding congestion control protocols, have been designed for
general case applications, attempting to enforce fairness and
general network principles globally [7].


B. The Cost of Slow Start


Here, we explore some of the costs associated with the
above cloud workload patterns. In particular, challenges arise
when new connections must be opened between these PoPs
and a relatively small amount of data must be transferred. In
such cases, the default TCP Cubic in Linux begins connections
with a congestion window of 10 segments. With common 1500
byte packets, this means approximately only 15KB of data may
be injected into the network in the first round trip time (RTT).
As cloud PoPs may be geographically distant from each other,
this small congestion window means that many transfers of
relatively small files are unable to complete in a single RTT,
adding potentially significant delay to their transfer. Figure 1
illustrates the described scenario. These increased flow times
will only be exacerbated as files become larger to meet the
needs of streaming video and new application demands, as







a greater number of files will require more than a single
RTT. Indeed, as we see from Figure 2, which shows the file
size distribution of a production CDN platform, a significant
fraction of files, 54%, are too large to fit in the default window
of 10 segments. The majority of such files can significantly
benefit from larger initial congestion window sizes.


Sender Receiver


SYN


SYN
/ACK


ACK


{ ...


{
Initial


Window


Second


RTT


Fig. 1: Example of a file larger than the initial congestion
window requiring an additional RTT to complete


0 200 400 600 800 1000
File Size (KB)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


Fig. 2: Distribution of file size in a production CDN network


To understand the impact on a system with the above file
distribution, we consider a model to show how using differ-
ent initial congestion window sizes affects their file transfer
performance. In particular, we consider the total number of
RTTs consumed, as it directly reflects the performance cost
to the system. For our model, we assume that the delay to
put packets on the wire is negligible, and packets can be sent
right away. We also assume that the receiver does not delay
sending ACKs, and the connections experience no loss. We
further ignore all potential flow control bottlenecks. All such
events would increase the resulting delay.


Figure 3 shows the CDF for the number of RTTs needed to
complete transfer of files with four different initial congestion
window sizes using the size distribution shown in Figure 2.
We see that an increase to an initial congestion window of 50
would allow significant gains, with over 31% more files able
to complete in the first RTT. Further increasing the window
to 100 would allow all but 15% of files to complete in the
first RTT. In addition, there is a size interval in which such
increases are able to effectively improve performance.


Figure 4 demonstrates the potential gain, percentage reduc-
tion in RTTs, by using higher initcwnds when compared to the
default initcwnd of 10 for increasing file sizes. In this figure,
we see that the primary improvements are seen between 15KB
and 1000KB, after which the benefits of reducing a single RTT
diminish. Very large files will necessarily require many round
trips, and therefore cannot hope to reasonably fit entirely in


1 2 3 4 5 6 7 8
Number of RTTs


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


10
25
50
100


Fig. 3: Number of RTTs needed for transferring files of various
sizes in a production CDN, assuming no loss or delay.


the initial window. However, as we see from Figure 2, these
large files do not dominate the distribution.


101 102 103 104


File Size (KB)


0.0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


G
a
in
 O


v
e
r 
In
tc
w
n
d
=
1
0


100
50
25


Fig. 4: Theoretical gain (reduction in RTTs) by using initcwnds
of 25, 50, and 100 for various file sizes


In Figure 5, we present an example of the distribution of
RTTs seen in such a globally deployed network. In particular,
we see that in the median case we observe RTTs of over
125ms. We therefore expect that a large number of connections
will traverse such routes.


0 50 100 150 200 250 300 350 400
RTT (MS)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


Fig. 5: RTT variation between globally deployed datacenters.
50% of links have an RTT > 125 ms


Figure 6 shows the resulting change in file transfer times
when we apply our transfer-time model to the observed RTTs
for four different initcwnds of 10, 25, 50, and 100. We see
that the small initial congestion windows incurs a significant
penalty. In the median case, the transfer time is over 280ms
longer than the initial congestion window of 100 case, while
at the 90th percentile, we see the total transfer time increase
by 290ms, about 100%.


While cloud system datacenters are likely connected
through reliable and well provisioned links, granting additional
flexibility, they are still subject to the usual challenges of







0 200 400 600 800 1000 1200 1400
Transfer Time (MS)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


10
25
50
100


Fig. 6: Total transfer time for a 100 KB file over different
initcwnds using our model and RTT distribution


Internet communication. These links must therefore be pre-
pared to deal with the eventualities of congestion and loss.
As such, direct aggressive schemes, such as simply increasing
the value of the congestion window to a higher value [4],
[8], increase the risk of inducing congestion when many new
connections are opened. Therefore, any scheme seeking to
improve performance must take into consideration that, at
certain times, a more conservative approach to selecting an
initial window is required.


III. RIPTIDE DESIGN


In this section, we present an overview of our design
goals of our tool, Riptide, and a detailed consideration of the
algorithm that Riptide employs. Next, we explore variations
on the approach Riptide uses to store historical data. Finally,
we present an analysis of the result of varying the granularity
at which Riptide functions.


A. Design Objectives


Riptide is framed around the following principles: (i) Sim-
plicity: The implementation of Riptide must be as a small
agent which is easy to deploy, control, and modify in the
context of a larger system. (ii) Distributability: The system
must not require a central controller and must be able to make
decisions promptly and independently. (iii) Adaptability: The
system must adjust to changing network conditions and avoid
adding additional strain to the network during busy periods.


In line with these objectives, the current implementation
of Riptide runs in user space and takes advantage of a small
number of standard Linux kernel interfacing utilities. As such,
it is quite simple to operate and maintain, and does not require
explicit kernel maintenance or devoted development resources.


B. Riptide Algorithm


Algorithm 1 presents how Riptide calculates the initial
congestion window sizes (Init CWND) using the a set of
tunable parameters listed in Table I.


When Riptide is launched, it begins by polling the conges-
tion window of all open connections via the ss utility in Linux
every iu seconds. It stores these values in its observed table.
Next, for each destination that Riptide observed a connection
to, it computes the average congestion window over the
observed values.


Algorithm 1: Riptide’s Init CWND Calculation
while Running do


observed table ← Current CWND for all
connections;
grouped windows ← Connections from observed
table grouped by destination;
for group in grouped windows do


average ← average of all current windows;
final ← moving average with history;
Init CWND to destination ← final;


wait for iu seconds


Parameter Use
α Weight to apply to newest data.
iu Update interval to poll current windows.
t Time to live value of a stored window.


cmax Maximum allowed window.
cmin Minimum allowed window.


TABLE I: Riptide input parmeters


Figure 7 shows a simple example where a congestion
window of size 80 is set based on the average of the existing
observed windows.


cwnd: 75


cwnd: 85


RIPTIDE


Kernel


?


cwnd: 75


cwnd: 85


RIPTIDE


Kernel


cwnd: 80


Observe


Existing


Fig. 7: The core principle of Riptide is to set new initcwnds
according to observed behavior.


Next, Riptide computes an exponentially weighted moving
average using the previous average value, assigning α weight
to the historical value, and 1 − α to the newly seen value.
Performing such historic weighting prevents the congestion
window from enacting dangerous increases, and likewise
prevents the window from plummeting in the case that all
connections to a destination close or reset. The result is then
bound by to be greater than the minimum cmin and less than
the maximum cmax. This final value is stored as a list of
final window values for each destination. Riptide then sets
a route (using the Linux ip tool, as shown in Figure 8) to
each host with the corresponding initial congestion window.
Therefore, new connections to that destination will begin with
the corresponding window, which was chosen by Riptide to
reflect current network conditions.


ip route add 10.0.0.127 dev eth0 proto \\
static initcwnd 80 via 10.0.0.1


Fig. 8: An example of the command used by Riptide


Final values are further stored with a time-to-live value
t that each time a new value is computed. If the time-to-
live expires, the entry is removed from the table, and the







corresponding route is removed, restoring the default initial
congestion window of 10. This can occur if there are no active
connections to a particular destination. In such a situation,
Riptide has no information on the state of the connection to
that destination, and therefore reverts to a more conservative
choice of the default window. In our implementation, we take
this value to be 90 seconds.


Since the entirety of Riptide is contained in a single
Python script, it can be tuned and maintained with minimal
cost. By further designing it as a stand-alone process, rather
than a kernel module or modification, we avoid the need to
alter it significantly in the face of updates. Given Riptide’s
direct and not-overly complex approach, such a straightforward
deployment is necessary.


We emphasize that by setting only the initial congestion
window, Riptide only alters the starting-point of connections.
Once a connection begins transmitting data normally, the be-
havior of the congestion window is handled by the congestion
control algorithm (for example, via TCP Cubic, which is the
default in most Linux distributions). Riptide’s chief alteration
is therefore in starting connections at a suitable value. This
approach allows the congestion control algorithm to safely
react to changes in network conditions as necessary, without
a need for Riptide itself to adjust. Importantly, however, if
the set of a connections to a destination do demonstrate
smaller windows, Riptide will respond accordingly, shrinking
the initial windows.


Combination Algorithm: In the currently implemented
scheme, Riptide employs two averages in order to combine
the current observations with the existing data about the state
of a link. The choice of using averages was made to best suit
our particular deployment, but are fundamentally generic. For
example, a more aggressive system might use the maximum
congestion window observed on a path, rather than just the
average, as the maximum represents the most the link is
capable of handling. On the other hand a more conservative
system might instead weight the value of an observed window
by the amount of traffic that has passed through the link,
information which is also available via ss.


The use of history is also flexible. First, this can be adjusted
by altering the value of the weight α. Applying less consider-
ation to historical statistics may particularly be worthwhile in
environments with rapidly changing workloads. Furthermore,
an exponentially weighted moving average need not be used at
all. The system could perform longer-view historical analysis,
in order to most effectively utilize consistent links, or ignore
history entirely, to more rapidly respond to changes in network
conditions.


Destinations as Routes: The granularity on which Riptide
operates is also flexible. Specifically, the destination described
above may be as specific as a particular host, as Linux will
allow the setting of a specific route (i.e. a /32 route), and
therefore a specific initial congestion window to only a specific
host. On the other hand, the grouping of destinations can be a
much broader selection: initial congestion windows can apply
to entire prefixes.


Consider the following example, where two PoPs, A and
B, are communicating, each draws their addresses from a par-
ticular /30 prefix owned by the operator. Further assume that


the interconnect within the data center is evenly distributed.
Therefore, connections between machines in each datacenter
are subject to similar constraints. That is, the network condi-
tions for a host from A communicating with any host in B
are approximately the same. Therefore, a host from A could
reduce the overhead incurred by Riptide by considering all
hosts in B as a single destination, and only require computing
a single initial congestion window value.


C. Linux/TCP System Components


The current state of the art in Linux system presents an
additional set of capabilities and challenges. In particular,
the current TCP implementations are geared towards gen-
eral purpose deployments, and attempts to maintain accepted
fairness standards on the Internet. While important, many of
these heuristics of good behavior do not apply in internal
cloud system communications, and present barriers to effective
network usage.


The first restriction lies with the TCP initial receive
windows (initrwnd) on receiving hosts, which determine the
number of packets a host can receive at once. While the
receive window usually grows rapidly, outpacing the senders
congestion window, it is necessary that the initial window be
large enough to accept any leading burst from the sender.
If a sender opens with large initial congestion window, the
default receive window may not be able to handle the first
incoming burst. To avoid this limitation, the initrwnd must
be increased to accommodate the maximum initial congestion
window, cmax. While such an increase necessarily increases
memory consumption, past increases in the TCP congestion
window in Linux have been accompanied by corresponding
increases in receive windows [7].


The next challenge arises from how initial congestion
windows are set in Linux. While there has been significant
discussion on allowing the initial window to be set as a per-
socket parameter [9], the decision has generally been made
to refrain from allowing such an option to maintain standard
behavior on the Internet. Therefore, it is impossible to set
the initial congestion window programmatically with standard
socket APIs. However, initial congestion windows may be set
on a per-route basis. While this is technically possible by using
the Linux Netlink interface, it is intended to be done through
the ip command-line utility1. However, even if such a kernel
mechanism could be implemented, deploying it widely could
prove challenging, as global kernel updates are not always
tenable for compatibility and software management reasons.


In general, setting routes comes with greater overhead then
setting only a congestion window. In the case of Riptide, we
do not aim to alter the configuration of the route beyond the
change to the initial congestion window, and therefore must
set a route, which otherwise reflects identical settings to the
default route. This however introduces potential for errors, as
misconfiguration may cause machines to become inaccessible
or misroute traffic.


On one hand, operating on a route basis presents Riptide
with some restriction, namely it is no longer able to control
specific connections. But at best is only able to determine the


1Since Linux kernel version 3.2.0-55.85







size of the initial window to an entire host. Therefore, all new
connections to the specified host will begin with the specified
value. On the other hand, this allows Riptide to adjust its
granularity, since the ip tool can set routes with any given
mask size, routes can be set for entire subnets, instead of a
single host, as discussed above.


IV. EVALUATION IN A CLOUD SYSTEM


Next, we consider the benefits of a deployment of Riptide
in a production CDN. In particular, we explore the ability of
Riptide to increase the average congestion window size and
decrease total flow completion time for appropriately sized
files, improving performance. In the following section, we pro-
vide an overview of a global scale cloud system that deploys
the Riptide system for communication between datacenters.
We demonstrate the increase in congestion window sizes over
the course of connection lifetimes as a result of Riptide. We
show that this increase further results in a decrease in the total
time consumed by network transfers. However, it is notable
that these increases do not come at the cost of greater loss or
instability in the network.


A. Infrastructure Overview


Riptide is deployed on a production CDN consisting of 34
well provisioned and globally distributed PoPs. Figure 9 shows
the approximate location of the PoPs running Riptide, and
Table II shows a continent level summary of these locations. As
PoPs are located across the globe, Riptide is faced with links
that encounter both low to high latency due to their physical
distance and network conditions. Moreover, the application
of this platform requires that any PoP may need to transfer
data to any other depending on clients’ traffic profile. Since
Riptide only changes the behavior on the sender side, we are
therefore able to consider the performance from each PoP to
many others of varying distances. In other words, no single
PoP only encounters others of a certain distance.


In order to measure the improvement in performance, we
consider measurements from regular diagnostic probes sent
across the system. In particular, every hour, each machine in
each PoP requests a small probe object from every other PoP. If
there is an existing and idle connection between the particular
node and the remote PoP, the connection is reused, otherwise
a new connection is made. We use three versions of probes of
sizes 10, 50 and 100KB, simultaneously.


This probing infrastructure therefore allows us to observe
1) the current state of existing connections and 2) the perfor-
mance for a freshly opened connection that has been adjusted
by Riptide. Notably, the 50 and 100KB probes are too large
to fit in the Linux default initial congestion window of 10.
Finally, we consider a sampling interval, iu of 1 second.


B. Performance


1) Congestion Windows: First, we seek to demonstrate that
employing Riptide results in an overall increase in the ob-
served congestion window sizes in the network, and that there
is a reasonable maximum window size that Riptide should
set. While the congestion window size is not a metric for
actual performance, it represents a prerequisite for improved
performance, and ensures that Riptide is operating as expected.


Fig. 9: Markers indicate PoPs with current Riptide deployment


Continent PoP Count
Europe 10


North America 11
South America 1


Asia 9
Oceania 3


TABLE II: CDN PoPs with Riptide deployed


In order to measure the congestion window size, we sample
the sizes of outgoing connections each minute using the ss
tool. We further consider only connections that were created
after Riptide was started, ensuring that all observed connec-
tions began with Riptide determining their initial window.
To understand the effect of the maximum initial congestion
window, cmax, we further considered Riptide under a wider
range of conditions. In particular, we consider 50, 100, 150,
200, and 250 as values of cmax. In addition, we performed our
measurements on a control group, where Riptide was not run-
ning, allowing us to understand the default congestion window
distribution and to appropriately quantify the improvements
caused by Riptide.


Figure 10 presents a CDF of the windows observed during
a 12 hour period when Riptide was operating with various
cmax values. We recall that Riptide only sets the initial con-
gestion window. The later values are determined by traditional
TCP dynamics. Despite this, we see a notable increase when
running Riptide. In the median case, we see that the difference
between the default and Riptide using the lowest cmax setting
of 50 results in an increase of 100%. Furthermore, for the
smallest 10% of connections, all cmax values achieved similar
congestion window sizes. Such matching performance makes
intuitive sense, as these connections likely encountered loss
or other congestion events, and were therefore unable to take
advantage of the larger window set via Riptide.


0 50 100 150 200 250
CWND Size


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


Default
50
100
150
200
250


Fig. 10: Varying congestion windows across all datacenters
for each cmax value. A knee appears at 100 suggesting
diminishing returns beyond this value.







When examining the difference in cmax behaviors, each
line features a mode at its corresponding value. These modes
are the result of connections that were opened but not used
again (or used for very small transfers), leaving them with
their initial windows. This behavior is not a fundamental
characteristic of Riptide, but is instead a result of the traffic to
which Riptide is exposed. Since Riptide chooses values based
on empirical information, it only begins setting windows at
the cmax when it observes them in the wild. Traffic patterns
that feature higher volumes of traffic may result in different
behavior. This need to achieve natural growth (i.e., Riptide
never “hops” ahead of observations) results in the strong linear
trend seen in lower 80% of connections for cmax value of
100 and above. We therefore use a cmax value of 100, as it
offers the majority of potential gains, while limiting the risk of
overloading the network in the event of many new connections.


Figure 11 demonstrates the effect of traffic patterns on
the congestion windows set by Riptide. Here, we consider
two individual PoPs. One subject only to probe traffic, while
another is among the busiest in the network. We see that the
PoP with organic traffic sees much higher windows, achieving
a congestion window of 100 for over 44% of connections. On
the other hand, the probe-only traffic is below a window of 100
in 99% of cases, and has a median window of 75 segments.
This clearly indicates the impact of the PoPs organic traffic
profile for determining the initial congestion windows.


0 50 100 150 200 250
CWND Size


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


Full Traffic
Probe Only


Fig. 11: Comparison between the observed congestion win-
dows for Riptide at two datacenters: one running only probe
traffic, and one operating on full traffic


2) Transfer Times: Next, we demonstrate that implement-
ing Riptide resulted in an improvement in the transfer times of
our measurement probes. In particular, we expect when run-
ning Riptide, the greater congestion window sizes will result
in an increase in the fraction of probes that are successfully
able to fit in the initial congestion window. Such an increase
should result in an improvement in their flow completion time.


Here, we consider the performance of our probing in-
frastructure. In particular, we consider the performance from
2 PoPs, one located in North America and the other in
Europe when sending data to a subset of other locations.
We consider 4 groups, (1) close destinations (less than 50ms
RTT), (2) medium destinations (< 100ms), (3) far destinations
(< 150ms) and (4) very far destinations (> 150ms), all relative
to the sending PoP. We consider the performance of our 10,
50, and 100KB probes over a 20 hour period. As with the
previous experiment, we only consider connections that were
opened after Riptide began.


Figures 12, 13, and 14 present sets of CDFs of the probe
transfer times from a single PoP, grouped by the RTT to the
destination for the 10, 50, and 100KB probes, respectively.
The first feature to note in Figure 12 is that Riptide had
no discernible effect on the 10KB probes. This behavior is
expected, since files of such small size already fit inside the
default initial congestion window, and therefore such flows do
not benefit from running riptide, regardless of RTT. We do
however observe that riptide caused no negative side-effects
for such flows. Their performance matched the default case.


In Figure 13, we begin to see the completion times from
the Riptide enabled flows begin to differentiate themselves,
with transfer times decreased for 30% of connections. And
finally, in Figure 14, we see that the 100KB probes were able to
achieve gains across 78% of the observed connections. Indeed,
this is because the larger window enabled the largest probes to
complete faster. In particular, we see a stair-stepping behavior
(especially in Figure 13 (b) and Figure 14 (b) and (c)). Such
patterns are the result of the flows completing an entire RTT
faster than the default case. As destinations move further away,
the gap between Riptide and non-Riptide probes increases,
with Riptide flows regularly completing an RTT sooner.


The performance with Riptide appears to be no-worse
than the default case. Conventional wisdom dictates that the
increase of window size results in an increase of loss due to
the higher load on the network. However, if this were the
usual case, we would see an increase in completion times
for a large fraction of flows. In the figure, we see that the
tail performance is very similar, with and without Riptide,
suggesting that Riptide does not lead to dangerous congestion
in the network. This is likely a result of Riptide’s adaptive
design: since it reacts to observed conditions, for example
losses, it is unlikely to exceed the overall capacity of the link.


C. Performance by Percentile


Next, we seek a deeper understanding of the impact Riptide
has on the network performance by considering the change
in completion time broken down by percentile and averaged
across destinations. Such analysis provide us with insight into
which flows Riptide impacts the most. We expect that for the
slowest probes their performance was due to adverse network
conditions, and therefore we don’t expect any particular change
when running Riptide. We again consider outgoing probes
from the two PoPs described in the previous section, as they
provide a sufficient volume and variety of traffic.


Figure 15 shows the changes in performance by percentile
from the (a) European and (b) North American PoPs in 5%
steps for the 50KB probes. In this case, we see that majority of
gains were achieved by the worse performing flows. The 5th
through 60th percentiles (50th for the North American PoP)
saw almost no change in performance, but higher percentiles
saw notable improvements, 30% and 21%, respectively. Such
differences are in line with expectations, as the best performing
50K probes likely completed in a minimum number of RTTs
previously, while worse performing percentiles took a greater
number of RTTs. Riptide was successfully able to reduce
the number of round trips, improving performance. We do
observe that the 95th percentile observed lesser gains in the
North American case, and suspect this is the result of flat
performance in the longest case.







0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0
C
D
F


RTT < 50ms


Riptide
Default


(a)


0.000.050.100.150.200.250.300.350.40
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 100ms


(b)


0.0 0.2 0.4 0.6 0.8 1.0 1.2
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 150ms


(c)


0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT > 150ms


(d)


Fig. 12: CDF of probe completion time for 10K probes, grouped by RTT: (a) is < 50 ms, (b) between 51 and 100 ms, (c)
between 101 and 150 ms, and (d) > 150 ms for the 10K probes


0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 50ms


Riptide
Default


(a)


0.000.050.100.150.200.250.300.350.40
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 100ms


(b)


0.0 0.2 0.4 0.6 0.8 1.0 1.2
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 150ms


(c)


0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT > 150ms


(d)


Fig. 13: CDF of probe completion time for 50K probes


0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 50ms


Riptide
Default


(a)


0.000.050.100.150.200.250.300.350.40
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 100ms


(b)


0.0 0.2 0.4 0.6 0.8 1.0 1.2
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT < 150ms


(c)


0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Transfer Time (S)


0.0


0.2


0.4


0.6


0.8


1.0


C
D
F


RTT > 150ms


(d)


Fig. 14: CDF of probe completion time for 100K probes


Figure 16 shows analogous data for the 100K probes.
Here, we see greater improvements across the percentiles. The
European PoP sees improvement at the 30th percentile and
above, while the North American PoP sees gains in all cases.
This broader increase is the result of more flows being able
to take advantage of the increased window size, improving
not only the performance in the tail, but also for the better
performers. We further note that the total gains were higher in
the North American location, with gains up to 25%.


D. Edge Cases


Finally, we explored both the minimum and maximum
performance for the 100KB probes. In the minimum case,
we see essentially no change, as expected. In the European


PoP case, 75% of destination PoPs showed no change, and
the remaining 25% saw changes within ±5%. Results were
similar for the North American case, with 50% of destinations
showing no change and the remainder being within ±5%.
In the best case, probes were already completing within
the minimum number of RTTs possible and increasing the
congestion window provides no gains.


Next, we consider the performance in the maximum case,
i.e., the worst-case performance. For the European PoP, 50%
of the destinations saw changes within 6%. The remaining
destinations were not consistent, with some seeing signif-
icant positive improvements, and others seeing comparable
decreases. The North American PoP was subject to higher
variance, but featured no discernible trend. We suspect this







0 20 40 60 80 100
Percentile


0.0


0.1


0.2


0.3


G
a
in


(a)


0 20 40 60 80 100
Percentile


0.0


0.1


0.2


0.3


G
a
in


(b)


Fig. 15: Fraction of gain by percentile for the (a) European
and (b) North American datacenter for 50KB probes


0 20 40 60 80 100
Percentile


0.0


0.1


0.2


0.3


G
a
in


(a)


0 20 40 60 80 100
Percentile


0.0


0.1


0.2


0.3


G
a
in


(b)


Fig. 16: Fraction of gain by percentile for the (a) European
and (b) North American datacenter for 100KB probes


behavior is due to the relative unpredictability of worst case
behavior in networks. Losses and other failures can cause
signficant decreases in performance, but did not seem to occur
more frequently with Riptide. As expected, Riptide is most
effective in improving performance in approximately 50th to
95th percentiles, and seems to have little effect on edge cases.


V. DISCUSSION


Effectiveness: As noted before, Riptide sets the initial
congestion window values based on what it learns from sim-
ilar connections. Hence, its gain and effectiveness is tightly
correlated with not only the traffic pattern and size of the
objects sent through the connections, but also the quality of
the links and their congestion level along the path to the


destination. If a connection tranfers large objects and links
are not congested, it is more likely that Riptide will set higher
window sizes for similar connections, and hence prove more
effective. Conversly, as we learned from Figure 11, if a server
is idle or the links that connects it to a given destination is
congested, Riptide effectiveness would be minimal.


Overhead: Since Riptide runs in an entirely distributed
fashion, it is able to avoid the significant complexity of
coordination traffic, and all its overhead is restricted to com-
putation on the single node. While such coordination may
offer further benefits, we believe the current simplicity offers
greater opportunity for real-world deployment. Furthermore,
these calculations are scheduled, i.e. every iu seconds, avoiding
the need for processing data as it arrives.


Additional Algorithms: Riptide is a mechanism by which
initial congestion windows can easily be controlled based
on observations of current network performance. While our
implementation and current design are straightforward, setting
congestion windows in-line with those observed, leaving actual
window computations to TCP, it could easily be extended
to incorporate additional information into its computations.
For instance, if a cloud system were able to provide it with
higher level information (e.g., the need to perform immediate
load balancing), it could be used to set more conservative
congestion windows to avoid sudden crowding. Alternatively,
more complex algorithms could be used in attempt to foresee
network level variations. For example, a significant decrease
in congestion window over a short time may indicate the need
to aggressively decrease the initial windows, beyond what is
happening to existing connections. While Riptide is designed
to generically incorporate additional algorithms, our study in
Section IV found that simple per-destination averages resulted
in faster completion times for many of the observed flows and
offered a balance between complexity and performance gains.


Kernel Implementation: Riptide could further be imple-
mented directly in the Linux kernel. Such an implementation
would likely reduce load, as an external program no longer
has to monitor all open connections, and potentially enable
higher granularity computations. It could further allow setting
of initial congestion windows on a per connection basis, rather
than per route, as can be done from user space. While such an
implementation may prove useful eventually, Riptide’s current
user space design allows significant flexibility, while avoiding
many of the costs associated with maintaining a potentially
significant kernel patch.


As discussed in Section III-C, portions of Riptide’s design
could be improved with additional interfaces for controlling the
congestion window. Such changes would represent a middle
ground, offering Riptide tighter control without necessarily
introducing the above maintenance overhead. We emphasize,
however, that such adjustments are not necessary for Riptide
to be effective.


VI. RELATED WORK


Reducing transfer time on Internet traffic has long been a
goal in network research. These optimizations have come in the
form of application specific adjustments, which hope to more
effectively use the total network [10], [11], [12], [13], [14].
Generally, these methods attempt to reduce the total number







of round trips. In general, such improvements are orthogonal
to Riptide, and many could be used alongside it.


Other systems have operated further down the stack,
seeking to improve performance at the transport layer. For
example, by reducing the penalty associated with connection
handshakes, [15], [16], or the time spent handling time outs
[17], [18]. Riptide is similar in goal to many of these works,
as it aims to eliminate the cost associated with regular opening
and closing of connections, but does so in a generic fashion
that allows it to operate without changes to the protocols them-
selves, but instead utilizes available TCP features, i.e. setting
the initial congestion window. Riptide could be used alongside
many of these systems, providing greater performance.


Others have proposed increasing the aggression of TCP
[4], [17], [19] Indeed, the default TCP congestion window has
already been increased to 10 segments. Others have proposed
eliminating portions of TCP, as the Internet’s stability does
not rely on them [20]. Riptide avoids the risks of increased
aggression by observing the current state of the network and
adjusting any changes it makes to reflect the network behav-
ior. Riptide is further intended to operate on datacenter-to-
datacenter connections and is therefore likely to be operating
on well provisioned links.


Another set of works has explored the complexity of data
center network behavior. Much of this work has focused on
data within a datacenter, which often includes its interactions
with the outside world [21], [22]. Other work has specifically
explored the interactions between datacenters, for example
the traffic patterns seen between datacenters [3], and the
character of back-office traffic visible from the web [5].
The complexity of large cloud networks and its impact on
latency has further been considered [23], [24]. Others have
examined the relationship between back-office traffic and user-
perceived latency [25], [26]. Riptide is motivated by many of
these insights and attempts to improve datacenter-to-datacenter
communication in order to improve total system performance.


VII. CONCLUSIONS


In this paper, we demonstrated the design and imple-
mentation of Riptide, a tool for determining optimal initial
TCP congestion windows based on the observed behavior of
existing flows. It is noteworthy that Riptide is designed to be
simple, easy to maintain, user space application that can be
deployed within complex existing infrastructure, with minor
considerations. We further demonstrated the effectiveness of
Riptide in a globally deployed CDN. We showed that by im-
plementing Riptide, we were able to achieve a 200% increase
in the size of the live congestion windows in production. We
also demonstrated that this change results in a decrease of
flow completion time for our probes. Although, we learned
that the effectiveness of Riptide depends on the production
traffic profile, in most cases Riptide considerably improved the
latency of object delivery, which is critical to the performance
of cloud systems.


ACKNOWLEDGMENT


Special thanks to Rob Peters, Derek Shiell, the HTTP-Dev
team, and others at Verizon Digital Media Services for all their
feedback and implementation assistance.


REFERENCES


[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” SIGCOMM CCR,
Dec. 2008.


[2] F. Chen, R. K. Sitaraman, and M. Torres, “End-user mapping: Next
generation request routing for content delivery,” in Proc. of Sigcomm,
2015.


[3] Y. Chen, S. Jain, V. Adhikari, Z.-L. Zhang, and K. Xu, “A first look at
inter-data center traffic characteristics via yahoo! datasets,” in Proc. of
IEEE INFOCOM, 2011.


[4] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An argument for increasing TCP’s initial
congestion window,” in SIGCOMM CCR, 2010.


[5] E. Pujol, P. Richter, B. Chandrasekaran, G. Smaragdakis, A. Feldmann,
B. M. Maggs, and K.-C. Ng, “Back-office web traffic on the internet,”
in Proc. of IMC, 2014.


[6] I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann, and
B. Maggs, “Enabling content-aware traffic engineering,” SIGCOMM
CCR., Sep. 2012.


[7] J. Corbet, “Increasing the TCP initial congestion window,” Feb. 2011.
[8] S. Kayan, “Initcwnd settings of major cdn providers,”


Aug. 2014. [Online]. Available: http://www.cdnplanet.com/blog/
initcwnd-settings-major-cdn-providers/


[9] “Socket option to set congestion window,” http://www.spinics.net/lists/
netdev/msg131097.html.


[10] M. Rabinovich and H. Wang, “Dhttp: an efficient and cache-friendly
transfer protocol for web traffic,” in Proc. of INFOCOM 2001, 2001.


[11] B. Krishnamurthy, R. Liston, and M. Rabinovich, “Dew: Dns-enhanced
web for faster content delivery,” in Proc. of WWW, 2003.


[12] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystify page load performance with wprof,” in Proc. of USENIX
NSDI, 2013.


[13] ——, “How speedy is spdy?” in Proc. of USENIX NSDI, 2014.
[14] “mod spdy,” https://code.google.com/p/mod-speedy.
[15] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “TCP


fast open,” in CoNEXT, 2011.
[16] W. Zhou, Q. Li, M. Caesar, and P. B. Godfrey, “Asap: A low-latency


transport layer,” in CoNEXT, 2011.
[17] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,


A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: The virtue of gentle aggression,” in SIGCOMM, 2013.


[18] M. Rajiullah, P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl, “An
evaluation of tail loss recovery mechanisms for TCP,” in SIGCOMM
CCR, 2015.


[19] T. Leighton, “Improving performance on the internet,” Commun. ACM,
vol. 52, no. 2, Feb. 2009.


[20] A. Mondal and A. Kuzmanovic, “Removing exponential backoff from
TCP,” SIGCOMM CCR, vol. 38, no. 5, Sep. 2008.


[21] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc of ACM
IMC, 2009.


[22] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. of ACM IMC, 2010.


[23] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring and evaluating
large-scale cdns,” in Proc. of ACM IMC, 2008.


[24] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govin-
dan, “Mapping the expansion of google’s serving infrastructure,” in
Proc. of ACM IMC, 2013.


[25] Y. Chen, S. Jain, V. K. Adhikari, and Z.-L. Zhang, “Characterizing
roles of front-end servers in end-to-end performance of dynamic content
distribution,” in Proc. of ACM IMC, 2011.


[26] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A provider-side
view of web search response time,” in Proc. of SIGCOMM, 2013.






