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Twitter Spam

® T[witter presents fresh challenges:
® Forced brevity,
® casily obscured content,

® and non-symmetric social links.
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Example

Joel Nickel @joelnickel Mar 10

- Jon Stewart Trashes CNN Again & Again on ‘Larry King Live';
youtu.be/K_qJiRel8hU

Details

stratfordun7 W Follow
stratfordun?
@joelnickel nugangxin.info/DzKmrI
4 Reply T3 Retweet W Favorite ®ee More

2:02 PM - Mar 10, 2013
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Existing lechniques

® Generally consider:
® Message format
® Message content

® Social Graph Location

Require time!
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Our Approach

® Users often use many interlinking sites
® OSNs, blogs, forums
® Often use similar names

® Spam accounts are often throw-aways
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Our Approach

Ve can measure this distributed online presence
with a web search!
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Our Approach

® Can be done with existing indices.
® Mimicking the effect would be very difficult.

® Very fast, account need not have generated
any content.

® (Could detect fraudulent accounts at
creation time.
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So how does it all work!?
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Web
Search

Twitter
Stream

Analysis

Decisions
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Methods

® Perform a web search for the username
and display name.

® Eliminate noise in the results:
® Remove Twitter and Twitter Services,
® Remove frequent results.

® White-list a set of known-helpful sites.
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Methods

® |f there are results left, declare the account
legitimate.
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How well does it work!?
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Dataset

® Collect over 20 GB of data from the “trickle.’

® Filter out non-English.

® Save profile information for every unique
account seen which performed an @ mention

e |][0,000 total accounts.

® Perform web searches for each account.
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Verification Labeling

® Check account status 2 weeks after:
® Suspended indicates spam

® 21.25% of observed accounts were
suspended.
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Verification Labeling

® Perform a manual check of 200 randomly
sampled un-suspended accounts:

® |8% are clearly fraudulent

® Will inflate our false positive rate
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Performance

® Ve are able to achieve:
® True positive rate: 74.23%

® False positive rate: 10.67%




False Positives

® Manually inspect 200 false positives
® 61% clearly fraudulent
® /.5% appeared compromised

® May have:
® TPR 79.2% FPR 4.5%




Noise Reduction
Parameters

® How long should our blacklist of frequent
results be!
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How long does it take!?

® How many search result sets must we see
to build an effective list?
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Training Speed
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Conclusion

Makes call on the nature of an account
using a measure of their web presence.

Stands to work well as a first step in a
comprehensive system.

Achieve a TPR of 74.67%

System is straightforward and works
quickly.
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Conclusion

® Data and tools are available at:

® http://users.eecs.northwestern.edu/
~mef294/projects/twitter.html
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Questions!
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