
IEEE Network • March/April 20112 0890-8044/11/$25.00 © 2011 IEEE

eer-to-peer (P2P) traffic has grown to be one of the
dominant sources of Internet traffic. Given the
unprecedented amount of P2P traffic flowing through
the Internet, misconfiguration, due to software bugs

or attackers with malicious motives, is a serious problem of
both the Internet and P2P systems.

Usually it is believed that so-called Internet background
radiation [1] — unsolicited traffic sent to all IP addresses
including unused ones — is mainly scanning traffic or denial-
of-service (DoS) backscatter traffic. As part of the contribu-
tions of this article, however, after we analyze about 2 Tbytes
of data from three institutions spanning four years on five dif-
ferent /8 networks, we discover that address-misconfigured
P2P traffic is one of the major sources (an average of 38.9
percent in terms of the number of connections) of Internet
background radiation. Address-misconfigured P2P traffic is
caused by a large number of peers sending P2P file download-
ing requests to a target that has never been part of the P2P
network. In addition, we observe that from 2004 to 2007,
address-misconfigured P2P traffic increased more than 100
percent each year (as shown in Fig. 1). To the best of our
knowledge, we are the first to discover and study address-mis-
configured P2P traffic with large-scale datasets.

For end users, such unwanted traffic affects their P2P sys-
tem performance and can involve innocent users in distributed
DoS (DDoS) attacks unconsciously [2].

From the Internet service providers’ (ISPs’) perspective,
such misconfigured traffic wastes Internet resources. As a first
order estimation, extrapolating the address-misconfigured P2P
traffic observed in our datasets to the whole Internet, we find
it consumes modest bandwidth, 7.9 Gb/s globally. Moreover,
this traffic is mostly intercontinental. Therefore, given a 10

Gb/s intercontinental link (e.g., between Los Angeles and
Tokyo) costs $1.4 million per year to lease, ISPs might want to
remove such traffic for a more “green” Internet.

Our first contribution, discovering and measuring address-
misconfigured P2P traffic, further motivates us to build tools
for detection and diagnosis of such unwanted traffic. Here
detection refers to attributing the misconfiguration to a partic-
ular variant or version of the P2P software that contains bugs,
or a particular peer group (e.g., peers from anti-P2P compa-
nies who are hired by the movie and music industries to pro-
tect their copyrights). Detection is of crucial importance,
because without it, nobody will take responsibility for fixing
the problem, given the large number of P2P software variants.
The root causes can be either internal (bugs or software mis-
behavior) or external (e.g., injection attacks). Diagnosis means
inferences of the root causes, say, by locating the software
code that contains the bug or identifying the anti-P2P peers
that trigger the misconfiguration.

We design two general principles:
• P2P software testing by tracking its information flow in a

controlled environment
• P2P traffic measurement including both passive monitoring

and active backtracking to identify misconfiguration events
in the wild
Applying the principles above, we design and implement

P2PScope. Our analysis shows that all address misconfigura-
tions are caused by resource mapping contamination, that is,
the peers returned through indexing are invalid, thus causing
a large amount of incorrect file downloading requests. Differ-
ent systems have different reasons for contamination. We
have performed root cause analysis for the two largest P2P
systems, eMule and BitTorrent.

PP

Zhichun Li, NEC Laboratories America, Inc.
Anup Goyal, Yahoo! Search

Yan Chen and Aleksandar Kuzmanovic, Northwestern University

Abstract
Through measurement study, we discover an interesting phenomenon, P2P address
misconfiguration, in which a large number of peers send P2P file downloading
requests to a “random” target on the Internet. Through measuring three large
datasets spanning four years and across five different /8 networks, we find
address-misconfigured P2P traffic on average contributes 38.9 percent of Internet
background radiation, increasing by more than 100 percent every year. To detect
and diagnose such unwanted traffic, we design the P2PScope, a measurement
tool. After analyzing about 2 Tbytes of data and tracking millions of peers, we
found that in all the P2P systems, address misconfiguration is caused by resource
mapping contamination: the sources returned for a given file ID through P2P index-
ing are not valid. Different P2P systems have different reasons for such contamina-
tion. For eMule, we find that the root cause is mainly a network byte-order
problem in the eMule Source Exchange protocol. For BitTorrent misconfiguration,
one reason is that anti-P2P companies actively inject bogus peers into the P2P sys-
tem. Another reason is that the KTorrent implementation has a byte-order problem.

Measurement and Diagnosis of Address
Misconfigured P2P Traffic

LI LAYOUT 4/27/11 2:24 PM Page 2

IEEE Network • March/April 2011 3

For eMule, one major root cause is a network byte-order
problem in the source exchange protocol. We confirm that
aMule (an eMule variant) has the byte-order bug. For BitTor-
rent, address misconfiguration is mostly disseminated by the
Peer Exchange (PEX) protocol implemented by uTorrent-
compatible clients. We find two reasons:
• Some anti-P2P companies actively inject bogus peers

through the PEX protocol using modified Azureus.
• KTorrent has a byte ordering problem. We have confirmed

the bug with the developers.

Passive Measurement Analysis
When monitoring the Internet background radiation, we dis-
cover an interesting traffic pattern that has not been described
in the literature before. We call it P2P address misconfigura-
tion. In this section, we study its basic behavior through pas-
sive measurement. In the next section, we further design the
P2PScope system to diagnose its root causes.

Data Collections
In our study, we mainly use three datasets collected at differ-
ent Honeynet/Honeyfarm sensors. Honeynets are unused
address blocks on which we deploy honeypot responders in
order to elicit information about incoming probes. Those hon-
eypots are protocol simulators, which respond to incoming
probes with faked responses as if the responses are from real
machines. Honeyfarm goes one step further, channeling the
incoming traffic to virtual machines as if real machines are
running at the addresses (Table 1).

The LBL Honeynet Dataset — The LBL Honeynet sensor is at
the Lawrence Berkeley National Laboratory with five continu-
ous /24 IP blocks in one /16 network. We have data from 2004
through 2007. The honeynet simulates the common protocols
and acts as an echo server (sending back the same requests to
the clients) for other port numbers. In 2008, traffic collection
was stopped because the Motion Picture Association of Amer-
ica (MPAA) repeatedly complained that the Honeynet IPs
were hosting their latest movies (actually false positives).

The NU Honeynet Dataset — The NU Honeynet sensor at
Northwestern University has 10 discontinuous /24 IP blocks
within three different /8 IP prefixes. It used the same configu-
ration as the LBL Honeynet until 23 August, 2007. After that,
we developed the P2P-enabled Honeynet for the P2PScope
system, which simulates P2P protocols on all port numbers.

The GQ Honeyfarm Dataset — We have 26 days of traffic
from the GQ honeyfarm at the International Computer Sci-
ence Institute, which was originally designed to capture worms
and botnets. The GQ honeyfarm has four /16 networks in one
/8 network. Since the GQ honeyfarm runs a different response

scheme, we use the GQ trace only for prevalence analysis.

Address Misconfiguration Event Identification
To identify address-misconfigured P2P traffic, we first filter
out the scanning traffic caused by botnets or worms based on
whether they have malicious payloads that match known
worm/botnet signatures or they scan a large number of IP
addresses (≥ 10). We have also checked the removed traffic
against P2P protocol signatures, and have not found any
matches. For remaining traffic, we detect P2P connections
based on whether their payloads match P2P protocol signa-
tures.

After that, we aggregate the address-misconfigured P2P
traffic to events. We find all the peers target a few hotspots in
Honeynets. Ninety-seven percent of peers only contact one
Honeynet IP per day (all contact less than four per day).
Therefore, we group the P2P connections into address-mis-
configuration events based on their target destination. We
mainly analyze the events with more than 100 unique sources
seen in a six hour interval. For smaller events, it is hard to
profile their patterns. The event time boundaries are the time
intervals that the number of unique sources reduces to less
than one-third of the peak.

The above method only conservatively estimates the lower
bound of the number of P2P connections and number of
events seen in the Honeynets. We address this by adding a
“Likely” category in Table 2 for the event in which we cannot
identify which protocol is being used, but its traffic pattern is
similar to that of an address-misconfiguration event. These
“likely” events follow the same pattern—a large number of
sources contact a few hotspots. We believe that they are actu-
ally address-misconfiguration events, because there are no
similar patterns known for Internet background radiation. The
likely cases account for only 9.6 percent of the total events,
showing that we are able to identify most cases accurately.

P2P System Diversity
Table 2 shows the percentage of P2P connections that match
P2P signatures and the number of address-misconfiguration
events found. Each row of the table is for one P2P protocol.
The “other P2P” category is for connections that matched
P2P protocols other than the six protocols listed in Table 2.

We find that address-misconfiguration events mainly come
from six different P2P systems. BitTorrent and eMule are the
most popular P2P systems, and thus also generate the most
traffic and events. We also find a number of address miscon-
figurations from other P2P software, such as Gnutella, Soriba-
da, Xunlei, and VAgaa.

These P2P systems include centralized, decentralized dis-
tributed hash table (DHT)-based, and decentralized unstruc-
tured P2P systems. This diversity suggests that the prevalence
of address misconfiguration is not confined to any single type
of P2P system.

Figure 1. The total number of connections that match the P2P
payload signatures from 2004 to 2007 (LBL).

2004

2

N
um

be
r

of
 c

on
ne

ct
io

ns
 (

m
ill

io
ns

)

4

6

7

10

12

14

0
2005 2006 2007

Table 1. Data description.

LBL NU GQ

Sensor size 5 /24 10 /24 4 /16

Trace size 901 Gbytes 916 Gbytes 49 Gbytes

Starting time 2004/03/07 2006/09/01 2006/01/03

End time 2008/01/21 2007/12/31 2006/01/28

LI LAYOUT 4/27/11 2:24 PM Page 3

Characteristics of Address Misconfiguration Events

We also discover that such events are quite heterogeneous.
The scale of events (in terms of duration and the number of
unique sources involved) varies substantially. Some events are
as short as one to three hours; some are as long as one month.
The average number of peers in eMule events is 1404 for LBL
and 1028 for NU. BitTorrent events are on a smaller scale:
the average number of peers in BitTorrent events is 894 for
LBL and 291 for NU.

Prevalence in Time and Space
We use the four-year LBL data to analyze the temporal trend
of address-misconfiguration. Since the scale of the events dif-
fers substantially, instead of using the number of events, we
use the total number of connections that match the P2P signa-
tures in a year as the metric for studying temporal trend. This
metric gives us the lower bound of the number of P2P con-
nections. Figure 1 shows the increasing trend of address-mis-
configured P2P traffic. Additionally, we analyze the annual
trend of the total volume of Internet background radiation in
the LBL sensor. The total traffic is stable while the address-
misconfigured P2P traffic increases quickly.

We also observe that address misconfiguration is prevalent
across the IP space. As we mentioned earlier, the LBL and
NU Honeynets are in four different /8. In all the four /8 pre-
fixes, we find misconfiguration traffic. We also observe similar
behavior in the GQ Honeyfarm traces. Therefore, we believe
the behavior is not confined to a single subspace of the IP
space.

Global Address-Misconfigured P2P Traffic Estimation
We try to estimate the percentage of address-misconfigured
P2P traffic in Internet background radiation traffic. It is very
challenging, given the limited data we have. We use the data
(June–December 2007) from the LBL and NU Honeynets for
this analysis. We treat the percentage estimated in each /8
prefix of the Honeynet sensors as an independent sample. We
then use the average percentage from all the samples as a
more representative result. As a first order estimation, we find
the average percentage of address-misconfigured P2P traffic
in the Internet background radiation is 38.9 percent.

System Design
General Design Principles
In general, two reasons can potentially cause P2P misconfigu-
rations: software bugs, and external attack or misconfiguration
injection. Two approaches are useful for detecting misconfigu-
ration (attributing the problem to a particular software ver-

sion or peer group):
• Measurement, including both passive monitor-

ing and active backtracking
• Tracking the information flow for the suspi-

cious P2P software in a controlled environment
The first approach helps quickly identify which
software version, communication mechanism, or
peer groups is/are potentially the sources of the
misconfiguration. This approach also helps iden-
tify the possible attacks or misconfiguration
injected, such as those from anti-P2P companies.
The second approach can further validate mis-
configuration caused by software bugs.

After detection, we want to further diagnose
the root causes of the misconfiguration. This
diagnosis step is harder than detection, and usu-
ally requires manual inspection. Information flow

tracking is still very useful in this stage. Another useful
approach is to form the hypotheses regarding the root causes
and then to conduct experiments for validation.

Per the principles above, P2PScope has two major subsys-
tems, detection and diagnosis, as shown in Fig. 2.

Detection Subsystem
The detection system has three modules:
• Passive monitoring module
• Backtracking module
• Information flow tracking module

The passive monitoring module detects the address-miscon-
figured P2P traffic from Honeynets. Further, the backtracking
module collects more information about the misconfigured
peers and the files related to address misconfiguration. When
these two measurement modules detect some suspicious P2P
software version through protocol analysis, the software will
be passed to the information flow tracking module. In the
information flow tracking module, we install that version of
P2P software and check its peer propagation. Finally, all col-
lected information will be output to root cause diagnosis sub-
system.

Passive Monitoring Module — We find that Honeynets are
useful for monitoring the address-misconfigured P2P traffic
on unused IP blocks. The Honeynets respond to the incoming
connections and generate “faked” responses. We use Honeyd-
based [3] lightweight Honeynets. Honeyd uses port numbers
to identify protocols, but P2P traffic is on random port num-
bers. To overcome this limitation, we apply a payload signature
based approach. We first identify the P2P protocol based on
payload signatures and then call appropriate P2P responders
for further processing. Currently, we have developed BitTor-
rent and eMule protocol responders.

Backtracking Module — To understand how peers get miscon-
figured, the backtracking module tracks the peers in real time.
In P2P systems, a peer needs to download from a list of peers
that have the given resource. Three methods can facilitate the
resource to peer mapping: central index servers (tracker in
BitTorrent terminology), distributed hash indexing, and peer
exchange (query more peers from known peers). For eMule
and BitTorrent, we implement all three approaches. In the
backtracking module, for a given resource we periodically
query the index servers or DHT for the peer lists. Then, for
any peer, we use peer exchange protocols to query more
peers. The whole process stops when the total number of
peers remains stable.

Information Flow Tracking Module — Whenever a certain P2P

IEEE Network • March/April 20114

n Table 2. Address-misconfigured P2P traffic distribution and event distribu-
tion (LBL and NU Honeynet datasets).

event (≥ uniq
srcs) 100

P2P connections
by payloads

comments

LBL NU LBL NU

eMule

BitTorrent
Gnutella
Soribada
Xunlei
VAgaa
Other P2P

143

74
4
6
12
1
0

416

211
3
0
0
1
0

5.96%

75.1%
2.48%
15.8%
0.34%
0.14%
0.17%

76.52%

19.79%
3.65%
.0001%
0%
0.013%
0.018%

Popular, especially in
Europe
Popular
Popular, unstructured
Popular in Korea
Popular in China
Popular in China

Likely 73 20 N/A N/A

LI LAYOUT 4/27/11 2:25 PM Page 4

IEEE Network • March/April 2011 5

client version is suspicious, we install it in our controlled envi-
ronment. In the controlled environment, by interpreting the
protocols (index server, DHT, and peer exchange protocol)
used for peer propagation, we monitor the peers in and out
through protocol analysis. If the software gives out a peer that
never comes in, we know the software will cause address mis-
configuration.

Diagnosis Subsystem
Tracking down the root causes of address misconfiguration is
a challenging problem. We have developed the following tools
for understanding the root causes:
• Track the information flow within the suspicious P2P soft-

ware.
• Trace the Honeynet IP addresses propagated in the P2P

systems.
• Check the routability of the peers returned.
• Check whether the peers are on the anti-P2P IP lists and

analyze their behavior.
• Check the reverse byte order of peer IPs, because it is one

of the most frequent mistakes in networked system imple-
mentations.
To understand why the bogus peers can be produced by the

suspicious P2P software, we trace how the bogus peers are
produced. Another useful toolkit is the routability checking.
In [4], Cooke et al. report 66.8 percent of all possible IPv4
addresses are unroutable. If we assume that the bogus peers
are produced randomly, we would find a reasonably large per-
cent of unroutable bogus peers. If the percentage is small, it
implies that bogus peers are not produced randomly. The per-
centage of unroutable peers can serve as a low bound of the
bogus peers. Furthermore, since we suspect the anti-P2P com-
panies, which try to take down the P2P networks, might be
related to address misconfiguration, we also check whether
the peers belong to the anti-P2P IP list.

With the above tools, we mainly try to answer the following
questions:
• Which peers spread misconfiguration?
• What is the root cause?
• How is misconfiguration disseminated?
• What is the percentage of bogus peers in misconfigured P2P

networks?

Detection and Diagnosis Results
We have deployed P2PScope in the NU Honeynet since
August 2007.

We first study the general characteristics that are related to
the root causes of all P2P systems. Then we focus on two case
studies for eMule and BitTorrent, the most popular P2P soft-
ware generating most of the address-misconfigured P2P traf-
fic.

Data Plane Traffic Radiation
Usually, there are a number of different protocol messages
involved in a P2P file sharing network. Address misconfigura-
tion in all the six P2P systems that we explored has a common
feature: the traffic is caused by file downloading requests, i.e.,
data plane traffic which is directly related to data transfer.
Different P2P systems use different ways for exchanging con-
trol plane information (e.g., index server, Peer Exchange Pro-
tocol, and DHT), but all have the same problem of giving
bogus IPs to peers. These bogus IPs propagate quickly in P2P
systems and cause large amounts of address-misconfigured
P2P traffic.

eMule Misconfiguration Diagnosis
Which Peers Spread Misconfiguration? — Hypothetically, the
misconfigured peers that target the Honeynets might include
anti-P2P peers. However, among 1,771,296 misconfigured
peers we observed, 99.90 percent of peers are normal peers
(non-anti-P2P peers).

What Is the Root Cause? — When analyzing the network-level
behavior of the eMule misconfiguration, we notice that the IP
addresses formed by reversing the byte order of the targets
were mostly alive. With the real-time P2PScope system, we
have done two experiments to verify the byte-order problem.
Furthermore, we have confirmed the bug in source code.

In the first experiment, we tested 13 targeted destinations
in real time, and observed that 61 percent of reverse IPs were
indeed running eMule with the same port number of the tar-
gets. In the second experiment, we checked whether the
reverse IPs of unroutable peers observed in the peer list of a
given file ran eMule. We aggregated the result of 100 files
found in real time. 10.3 percent of backtracked peer IPs are
unroutable. Among them, we observe 69.6 percent whose
reverse IPs run eMule. This, again, is more strong evidence in
favor of the byte order hypothesis.

We further located the bug in the source code of aMule, a
popular eMule alternative. eMule has a complex client ID to
IP mapping system called HybridID. In this mapping system,
to represent IP in index servers or DHTs different byte orders
are used. The source (peer) exchange protocol needs to con-
sider both cases. However, in aMule with versions before
2.1.0, this problem was ignored, causing the byte-order bug.

How Is the Misconfiguration Disseminated? — eMule offers
three ways to obtain peers for a file: index servers, eMule
source exchange protocol, and eMule Kademlia DHT. We
would like to know which one disseminates the misconfigura-
tion. Since we have not observed any misconfigured DHT
traffic in the approximately 2-Tbyte trace we have, we believe
the DHT does not have the byte-order problem. To attribute
the problem to index servers or the source exchange protocol,
we queried 100 files and got a total of 37,079 unique peers.
We find that 10.7 percent of the peers from the source
exchange have Honeynet IPs in their neighbor list, but the
index servers never return Honeynet IPs. We have also done a
routability check, and found that 12.8 percent of the peers
returned by the source exchange protocol are unroutable;
none of the peers returned by the index servers is unroutable.
Also, 15.7 percent of peers from source exchange have reverse
IPs that run eMule; none of the peers returned by index
servers has such behavior. Therefore, it is not an index server
but the source exchange protocol that is used for disseminat-
ing the misconfiguration.

What Is the Percentage of Bogus Peers in the Misconfigured
P2P Networks? — We try to estimate the percentage of peers

Figure 2. Architecture of the P2PScope system.

Honeynet traffic

Backtracking module

Index servers
DHT

Peer exchange

Information flow
tracking module

Detection
subsystem

Root cause
diagnosis
subsystem

Passive monitoring module

LI LAYOUT 4/27/11 2:25 PM Page 5

IEEE Network • March/April 20116

(from the source exchange protocol) that have the byte-order
problem. This is challenging because there are certain cases,
as we show below, in which we cannot determine whether
they have a byte-order problem. Instead, we estimate the
lower and upper bounds.

If a peer is not running eMule but its reverse IP is, we
believe it definitely has a byte-order problem. Such peers are
12.7 percent of the total peers (37,079 peers for 100 files).

If a peer is unroutable but its reverse IP is routable, we
believe it is likely to have a byte-order problem. Because for
those peers we cannot verify whether their reverse IPs run
eMule directly, we only count them in the upper bound, which
is 25 percent of the total peers.

BitTorrent Misconfiguration Diagnosis
Which Peers Spread Misconfiguration? — When analyzing the
events discussed earlier, we found two groups of BitTorrent
events. In one group, the majority of peers (> 90 percent) are
anti-P2P peers. We call them anti-P2P events. In the other
group, the majority of peers are normal peers. We call them
normal events. There are no other events between these.
Anti-P2P events surprise us, since they show that the peers
from the anti-P2P companies somehow get themselves solely
misconfigured.

As shown in Table 3, we compare the properties of these
two types of events and discover that their characteristics are
indeed different. Peers from anti-P2P peer events all use
Azureus. We conjecture that anti-P2P companies modify
Azureus and add their functionalities because Azureus is a
popular open source BitTorrent client with a nice plug-in
architecture. On the other hand, peers from normal peer
events run on a diverse set of clients. In addition, the peers in
anti-P2P peer events are highly coordinated. They start con-
tacting the Honeynet IPs at almost the same time. They also
depart at the same time. By contrast, the peers in normal peer
events arrive and depart randomly and gradually. The mes-
sages sent in anti-P2P peer events are almost the same; they
have a similar message length and even a similar bitmap that
annotates the content availability distribution. To some extent,
the group of anti-P2P peers is like a clone army with identical
soldiers. Moreover, the peers in anti-P2P peer events are from

a small number of networks, which belong to
server hosting companies. The metric source cor-
relation measures the degree to which the sources
of different events are overlapped. Ninety-seven
percent of pairs of anti-P2P peer events share
more than 25 percent of sources. However, the
normal peer events are little coordinated.

What Is the Root Cause? — We have not cap-
tured any real-time anti-P2P peer events. Thus,
we cannot diagnose their root causes. In this sec-
tion and later, we mainly focus on normal peer
events. Normal peer events can still be caused by
anti-P2P peers, as discussed next.

Root Cause I: Anti-P2P Companies Deliberately
Inject Bogus Peers in P2P Systems — Our
P2PScope system tracks the misconfigured peers
in real time. We detect some interesting anti-P2P
hosts coming from the same server farm,
72.172.90/24, owned by an anti-P2P company
called Artist-direct. Through further analysis on
the server farm, we discover that each of these IPs
runs hundreds of BitTorrent clients simultaneous-
ly. All of the clients run a version of Azureus
2500. Moreover, in the normal case, the peers

only respond to a peer exchange message when they download
(or own) the file so that they can return the other peers from
which they download. However, these anti-P2P clients respond
to any arbitrary file; that is, they declare they have any file the
remote peer wants and exchange the bogus peers with it. Actu-
ally, they also respond to any random file ID even when no file
is associated with that value. Artist-direct might have modified
the Azureus client to implement this.

We have checked the neighbor lists returned by these anti-
P2P IPs. Most returned peers are bogus peers. Among the
peers, 56.7 percent are unroutable, 1.8 percent are from the
same serverfarm, and we could not connect to any of the
remaining 41.5 percent of the peers. We suspect anti-P2P
companies want to slow down the downloading process by
supplying bogus peers randomly.

The anti-P2P related normal peers are the normal peers that
query the files in which anti-P2P peers are interested. Most of
these peers (> 90 percent) are within two IP hops of anti-
P2P peers. The anti-P2P related normal peers are 19.7 per-
cent of the total misconfigured peers and are responsible for
20.7 percent of the probes sent to the Honeynet. Therefore,
the anti-P2P companies are responsible for 1/5 of the traffic
observed. Since it is impossible to identify all the anti-P2P
peers, this estimate is quite conservative.

Root Cause II: The Byte-Order Problem of KTorrent Clients —
We further actively track peers related to the files requested
by the misconfigured peers. We find that a large portion of
unroutable peers are supplied by the KTorrent peers, which
are suspicious. We also study uTorrent and Azureus, since
they are the most popular clients. We set up a controlled envi-
ronment to test these three clients. We evaluate the top seven
torrent files seen in Honeynets.

We classify the peers seen by clients into two types:
• Incoming peers: peers that come to the client
• Outgoing peers: peers that are sent out by the client
Outgoing — incoming peers are the peers that go out from the
client but never come in. These are the bogus peers created
by the client itself. Among all outgoing KTorrent peers, 56
percent of them are bogus. Thus, it shows that KTorrent is
one of the sources of misconfigurations. µTorrent and Azureus

n Table 3. Comparison between normal peer events and anti-P2P peer events.

Normal peer events Anti-P2P peer events

Number of events 136-NU, 36-LBL 75-NU, 39-LBL

Client software — NU 90% uTorrent
10% others 100% Azureus

Client software — LBL
57% Bit Spirit,
31% BitComet
12% others

100% Azureus

Message length Variable lengths Similar lengths

Files queried Diverse Latest music/movies

Avg. no. of connections/IP 25 400

Source correlation Little coordinated Highly coordinated

Arrival and departure Gradually All together

Average event duration 106.1 hours 4.5 hours

IP distribution Diverse Small number of /24

LI LAYOUT 4/27/11 2:25 PM Page 6

IEEE Network • March/April 2011 7

do not have any outgoing — incoming peers.
After that, we study the source code of KTorrent and pin-

point the exact bug. The problem is also a byte-order prob-
lem. In Fig. 3, we show the code snippet related to this bug.
The uTorrent PEX protocol requires the IP addresses in peer
exchange messages to be in network byte order. When KTor-
rent sends out the peer exchange messages, in its encode func-
tion it reverses the byte order twice, so finally IP addresses
become host byte order again. addr.ipAddress().IPv4Addr() is
a KDE library method that returns IP addresses in network
byte order. However, in the WriteUint32 function implemented
by KTorrent, it reverses the byte order again, and thus causes
the problem. To our knowledge, we have not found anyone
else reporting this bug.

How Is the Misconfiguration Disseminated? —Similar to the
eMule study, we find that BitTorrent DHT and Index servers
(trackers) are unlikely to spread or to generate misconfigura-
tions. Unlike eMule, BitTorrent has several incompatible peer
exchange protocols proposed by popular BitTorrent clients,
such as µTorrent, Azureus, and BitComet. The µTorrent PEX
protocol is the most popular, and we find it is the source for
misconfiguration dissemination.

To understand which µTorrent PEX compatible clients
propagate the misconfigurations, we study the behavior of dif-
ferent clients. We mainly study, when a client obtains peers
from uTorrent PEX protocol, how it checks the availability of
the peers before it further propagates the peers. We classify
the behavior into three categories:
• No checking

• Requiring peers to respond to SYN-ACK (only active port
regardless of whether it is running BitTorrent)

• Requiring peers to respond to BT-HANDSHAKE messages
KTorrent propagates anything that comes to it without even
checking for an open port. µTorrent propagates anything that
has an open port. Azureus only propagates peers that are
active BitTorrent clients. Therefore, KTorrent will fully prop-
agate the bogus peers. µTorrent will propagate the bogus
peers if they happen to have the port open. Azureus usually
will not propagate any bogus peers. To reduce bogus peers,
we believe all the clients should have strict checking like
Azureus. In this way, the address-misconfigured P2P traffic
can be greatly reduced.

Related Work
Misconfiguration Studies
Misconfiguration is widely spread across different network
systems on the Internet. Labovitz et al. studied wide-area
backbone failures and concluded that misconfiguration could
be responsible for 12 percent of the incidents [5]. There has
also been much recent work that considers the various insta-

bilities and misconfiguration in Border Gateway Proto-
col (BGP) [6]. However, we find little literature on the
study of P2P misconfiguration.

P2P Measurement
Most existing measurement studies of P2P networks are
based on the measurement of normal P2P traffic [7]. On
the other hand, we measure the abnormal P2P traffic
observed in Honeynets. This is also observed by Yeg-
neswaran et al. in [1]. Their work focuses on the compar-
ison of network-level characteristics of P2P address
misconfiguration with botnets and worms, and places an
emphasis on accurately classifying botnet sweeps and
worm outbreaks. We mainly study the prevalence and
trend of address-misconfigured P2P traffic, and its root

causes. Liang et al. show that P2P systems like Fasttrack and
Overnet are vulnerable to index poisoning attacks [8]. In con-
trast, we investigate the root causes for both intentional and
unintentional index misconfiguration.

Distributed System Debugging
Distributed systems are extremely hard to debug. People have
proposed various ways to debug distributed systems, including
replay-based predicate checking [9], online monitoring [10],
log forensic analysis [11], network trace based inference [12],
and model checking [13]. Although some of the approaches
might be useful for the root cause diagnosis of P2P address
misconfiguration, the following properties make leveraging
any of the above existing techniques hard. First, the P2P sys-
tems we diagnose are heterogeneous. Multiple different
implementations exist for a given P2P protocol such as Bit-
Torrent. Therefore, it is hard to apply model checking tech-
niques. Second, the peers are out of our control. We cannot
modify the peers to add the logging functionality required by
replay-based predicate checking, online monitoring, and log
forensic analysis. It is also very difficult to log network traces
from remote peers. Third, the P2P systems we monitor are
very large, consisting of millions of peers. All the existing
techniques cannot handle this scale yet.

Conclusions
In this article, we first discover a new traffic pattern, P2P
address misconfiguration. Its traffic is about 38.9 percent of
Internet background radiation and is growing quickly. Such
traffic is harmful for both end users and ISPs. As the second
contribution, we design P2PScope to understand the root
causes. We find that data plane traffic radiation is the com-
mon characteristic of the six P2P systems. For eMule, the
problem is mainly caused by a byte-order problem. For Bit-
Torrent, we find two reasons:
• Anti-P2P companies deliberately injecting invalid peers
• KTorrent byte-order bug

Acknowledgments
Our thanks to Vern Paxson and the Lawrence Berkeley
National Laboratory for support of the LBL Honeynet opera-
tions. This work was supported in part by NSF Awards
0627715, DoD Young Investigator Award FA9550-07-1-0074,
and DoE Career award DE-FG02-05ER25692/A001. Opin-
ions, findings, and conclusions or recommendations are those
of the authors, and do not necessarily reflect the views of the
funding sources.

Figure 3. Code snippet of KTorrent byte order bug.

void UTPex::encode(…) // UTPEX.CPP
{ ...

// Use KDE API to get an IP in Network Byte Order.
// WriteUint32 swap the byte order again!!!
WriteUint32(buf,size,addr.ipAddress().IPv4Addr());
… }

void WriteUint32(Uint8* buf,Uint32 off,Uint32 val) //FUNCTIONS.CPP
{

// swap the byte order
buf[off + 0] = (Uint8) ((val & 0xFF000000) >> 24);
buf[off + 1] = (Uint8) ((val & 0x00FF0000) >> 16);
buf[off + 2] = (Uint8) ((val & 0x0000FF00) >> 8);
buf[off + 3] = (Uint8) (val & 0x000000FF);

}

LI LAYOUT 4/27/11 2:25 PM Page 7

IEEE Network • March/April 20118

References
[1] V. Yegneswaran et al., “Using Honeynets for Internet Situational Awareness,”

Proc. ACM Hotnets IV, 2005.
[2] Ruben Torres et al., “Inferring Undesirable Behavior from P2P Traffic Analy-

sis,” Proc. ACM SIGMETRICS, 2009.
[3] N. Provos, “A Virtual Honeypot Framework,” Proc. USENIX Security, 2004.
[4] E. Cooke et al., “The Dark Oracle: Perspective-Aware Unused and Unreach-

able Address Discovery,” Proc. USENIX NSDI, 2006.
[5] C. Labovitz et al., “Experimental Study of Internet Stability and Backbone

Failures,” Proc. FTCS: Int’l. Symp. Fault-Tolerant Computing, 1999.
[6] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP Misconfig-

uration,” Proc. ACM SIGCOMM, 2002.
[7] K. Gummadi et al., “Measurement, Modeling, and Analysis of a Peer-to-Peer

File-Sharing Workload,” Proc. ACM SOSP, 2003.
[8] J. Liang et al., “The Index Poisoning Attack in P2P File-Sharing Systems,”

Proc. IEEE INFOCOM, 2006.
[9] D. Geels et al., “Friday: Global Comprehension for Distributed Replay,” Proc.

NSDI, 2007.
[10] X. Liu et al., “D3s: Debugging Deployed Distributed Systems,” Proc. NSDI,

2008.
[11] M. K. Aguilera et al., “Performance Debugging for Distributed Systems of

Black Boxes,” Proc. ACM SOSP, 2003.
[12] P. Bahl et al., “Towards Highly Reliable Enterprise Network Services Via

Inference of Multi-Level Dependencies,” Proc. ACM SIGCOMM, 2007.
[13] C. Killian et al., “Finding Liveness Bugs in System Code,” Proc. NSDI,

2007.

Biographies
ZHICHUN LI (zhichun@nec-labs.com) is a research staff member with NEC Labora-
tories America, Inc. He received his Ph.D. in computer science from Northwest-
ern University in December 2009. His research focuses on network security,
system security, network measurement and monitoring, and distributed system
diagnosis.

ANUP GOYAL is an engineer with Yahoo Search since October 2008. He
received his M.S. degree in 2008 from the Computer Science and Engineering
Department at Northwestern University and his B.Tech degree from the Indian
Institute of Technology, Kharagur.

YAN CHEN is an associate professor in the Department of Electrical Engineering
and Computer Science at Northwestern University, Evanston, Illinois. He got his
Ph.D. in computer science from the University of California at Berkeley in 2003.
His research interests include network measurement, monitoring, and security,
and P2P systems. He won the DOE Early CAREER award in 2005, and Microsoft
Trustworthy Computing Awards in 2004 and 2005.

ALEKSANDAR KUZMANOVIC is an associate professor in the Department of Electri-
cal Engineering and Computer Science at Northwestern University. He received
his B.S. and M.S. degrees from the University of Belgrade, Serbia, in 1996 and
1999, respectively. He received the Ph.D. degree from Rice University in 2004.
His research interests are in the area of computer networking with emphasis on
design, measurements, analysis, denial-of-service resiliency, and prototype imple-
mentation of protocols and algorithms for the Internet. He received the National
Science Foundation CAREER Award in 2008.

LI LAYOUT 4/27/11 2:25 PM Page 8

