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Abstract—Enabling communication between routers and end-
points has long been sought after as an approach to congestion
control in the Internet. However, the narrow-waist of TCP/IP
has complicated the deployment of such communication. In this
paper, we present Kick-Ass1, a congestion control mechanism that
enables explicit rate congestion control protocols to be deployed
within the TCP/IP stack. The key idea is to utilize packet lengths
as a vehicle to communicate fine-grained explicit rate and other
information from routers to endpoints and vice versa. Given that
our approach (i) requires no explicit coordination among Kick-
Ass routers, (ii) no explicit coordination among Kick-Ass routers
and endpoints, and (iii) is effective on paths that include legacy
routers, it provides a practical road towards a faster Internet,
today.

Using large-scale simulations, testbed experiments, and wide-
area Internet evaluations, we demonstrate that (i) a basic
explicit-rate protocol using the Kick-Ass mechanism improves
flow completion times by up to an order of magnitude and
outperforms endpoint-based approaches, including CUBIC and
PCC. (ii) Kick-Ass is incrementally deployable on the Internet.
(iii) Deploying Kick-Ass at end-hosts and edge routers can
enable the above performance benefits, without waiting for
universal adoption. (iv) Our packet-fragmentation mechanism is
well behaved on the Internet.

I. INTRODUCTION

A fundamental question in congestion control is when
should an endpoint transmit each packet of data. An ideal
scheme would transmit a packet whenever capacity to carry
a packet is available [1]. Still, estimating and utilizing the
available capacity from an endpoint is an extremely difficult
task for numerous reasons: the existence of many concurrent
distributed senders, variable network and queuing delays,
dynamic flow arrivals and departures, and multiple congested
points, to name a few.

Necessarily, getting help from the network in resolving this
difficult task, i.e., from routers that directly observe the net-
work traffic and its dynamics, has historically been recognized
as a viable idea. In today’s Internet, such mechanisms include
Active Queue Management (AQM) schemes such as RED
that help smooth the traffic and reduce traffic oscillations [2].
Another example is Explicit Congestion Notification (ECN)
that uses a single bit in the IP header to signal network
congestion to the endpoints without dropping packets [3].
While certainly useful, such mechanisms stand at the low-end

1Kick-Ass is an open-source project; Linux and NS-3 code are available at
the author website: http://networks.cs.northwestern.edu/projects/kickass/

of possible performance benefits that would be achievable if
routers were able to send more fine-grained than single-bit
notifications to the endpoints [4].

It has been demonstrated that even a single additional bit
would bring significant performance improvements [5]. Hav-
ing additional bytes of data per packet would enable explicit
rate protocols such as XCP [4] or RCP [6], which can achieve
additional dramatic benefits. These include the decoupling of
utilization and fairness [4], substantial throughput increases
particularly in large bandwidth-delay product and data center
networks [6], [4], virtual removal of queuing-delay latencies
[6], [4], etc. Unfortunately, to the best of our knowledge, such
protocols have never been deployed on the Internet due to
their inherent incompatibility with the TCP/IP stack. Tradi-
tional routers simply have no mechanism for communicating
complex information directly with endpoints.

In this paper, we present a congestion control mecha-
nism that enables advanced router-assisted congestion con-
trol schemes, including explicit-rate methods, to be deployed
within the TCP/IP protocol stack. Our key contributions are
the following: (i) we enable a simple and practical pathway
towards a realistic wide-scale deployment of explicit-rate con-
gestion control protocols on the Internet, (ii) we demonstrate,
via simulations, test-bed and Internet experiments, that a ba-
sic explicit-rate protocol can achieve substantial performance
gains, i.e., flow completion times decrease by up to an order
of magnitude, network utilization approaches the full capacity,
while queuing delays become negligible. (iii) This is possible
to achieve in today’s Internet even in partial deployment
scenarios, i.e., flow completion times decrease by up to 4 times
in our Internet experiments, yet without any side-effects for
those who do not support the approach. (iv) Beyond congestion
control, our contribution lies in demonstrating that embedding
information into existing protocols can be a powerful approach
for overriding rigidity of the Internet (beyond IP).

The key idea behind Kick-Ass is to utilize IP packet frag-
mentation as a vehicle to communicate fine-grained explicit
flow rate information from routers to endpoints. In particular,
the explicit rate information is implicitly embedded in the
size of the first fragment of a packet fragmented by a router.
The smaller the fragment size, the smaller the explicit rate
communicated to the endpoints. Due to the monotonic nature
of the minimum rate along a path, it is guaranteed that the right
explicit rate information is communicated to the endpoints



without any explicit coordination among routers. The lack
of explicit coordination required among Kick-Ass-enabled
devices further dramatically eases incremental deployment.

We design Kick-Ass to cope with the significant hetero-
geneity of networks on the Internet, which range from low-rate
wireless networks to high-rate data-center networks. We derive
an appropriate encoding scheme which encompasses 5 orders
of rate magnitude. In addition, contrary to native explicit-rate
protocols, our key goal in the endpoint design is to enable
Kick-Ass endpoints to effectively interact with the legacy TCP
traffic without affecting their performance.

We initially evaluate Kick-Ass in the NS-3 simulator [7].
We stress our protocol in a number of challenging scenar-
ios and demonstrate its ability to substantially improve the
performance in all evaluated scenarios. In particular, in full-
deployment scenarios, Kick-Ass is able to achieve the perfor-
mance of native explicit-rate protocols, while performing only
an RTT slower than native methods which use explicit headers
to communicate rate information. In partial deployment sce-
narios, we show that Kick-Ass can quickly adapt to network
dynamics, i.e., it can detect Kick-Ass-enabled bottlenecks and
vice versa and adjust the rates over short time scales.

To demonstrate Kick-Ass’ practicality and evaluate its ef-
ficiency, we implement a Linux-based Kick-Ass router and
endpoints using existing network hardware. Our test-bed ex-
periments show Kick-Ass outperforms PCC [8] and CUBIC
flow completion times by 2× in low load environments. We
further demonstrate that it can provide 0 ms median queuing
delay in high load environments, and outperforms CUBIC
and PCC. Next, we deploy Kick-Ass endpoints on the wide-
area Internet. Our Internet evaluations show that the simplest
possible partial Kick-Ass deployment, with endpoints and a
single Kick-Ass edge router, brings significant benefits.

Finally, we conduct a measurement study to understand
the state of the IP fragmentation in today’s Internet. The
study, which involved 405 clients from 62 countries, found
no signs of discrimination against fragmented packets by
network routers. We found that various middle-boxes are
responsible for dropping about 8% of connections that involve
fragmented packets. To cope with such cases, we ensure
that Kick-Ass routers respect the Do-Not-Fragment field in
IP headers, thereby enabling communication towards such
destinations. We also show that Kick-Ass is deployable within
IPv6. Finally, we show that the network and computational
overhead associated with fragmentation and reassembly can
be dramatically reduced, further demonstrating the viability
of Kick-Ass as a generally deployable system.

II. DESIGN

Kick-Ass enables the explicit communication between
routers and end-hosts by using the implicit signal of packet
lengths. We first focus on the way the rate information is com-
municated from routers to endpoints. Kick-Ass consists of two
main components: (i) the router, which determines the allowed
rate for senders on each of its links and communicates them,
and (ii) the endpoints, which receive these communications

and adjust their sending rates accordingly. It is important to
keep in mind that Kick-Ass is a mechanism, enabling the im-
plementation of router-based congestion control algorithms by
allowing the router to communicate sending rates to endpoints.
The particular algorithm used to determine the rate is generic.

Figure 1 depicts this communication process. The process
begins with a sender sending packets as it would in a normal
TCP connection. During the SYN/ACK phase, the sender
and receiver agree to use Kick-Ass by way of TCP options.
The sender then begins sending data into the network. When
packets arrive at the first Kick-Ass router, Router A in the fig-
ure, the router performs its explicit-rate calculation algorithm,
determining the appropriate rate. As the packets depart, they
are fragmented, setting the length of the leading fragment to
a value which encodes the rate. A larger leading fragment
indicates a higher rate, while a smaller leading fragment
indicates a lower rate. We discuss the specific mechanism for
encoding rates to packet lengths in more detail in Section II-A

At downstream Kick-Ass routers, Router B in the figure,
the router calculates its rate and the corresponding leading
fragment size. If the size of a received packet is less than the
computed size, indicating an upstream router has selected a
lower rate, the router simply routes the packet normally. If
the size of the received packet is larger, or the packet does
not yet indicate a rate, it is fragmented to the correct length.
Only the leading fragment is ever set to size: fragments of
offset greater than 0 are routed normally, regardless of size.
Embedding information in non-leading fragments is feasible,
but beyond the scope of this work. By the time a packet has
traversed the entire path, the leading fragment will indicate
the rate allowed by the path bottleneck.

When a leading fragment arrives at the receiver, the receiver
uses the length to compute the sending rate and packages the
computed rate in the body (data payload) of the next ACK it
sends. Upon receipt of such an ACK, the sender adjusts its
sending rate accordingly, for example by changing the size of
its congestion window or via explicit packet pacing. This ap-
proach thereby allows a router communication scheme similar
to those seen in RCP [6] and XCP [4] without the addition
of a new header. Since the information is entirely encoded
in traditionally compliant TCP/IP packets, downstream legacy
routers which do not support Kick-Ass are able to receive and
route packets as normal, without a need for any additional
handling or awareness of Kick-Ass. The lack of additional
TCP options on data packets or shim layers also decreases
the likelihood that various middle-box services will interfere
with the communication [9]. In the event that the sender never
receives any information from the router, for example there are
no Kick-Ass enabled routers on the path, it simply continues
to behave as it would in traditional TCP.

The use of the length of only the first fragment provides
us with several advantages. First, the router need only receive
the first fragment in order to indicate a rate. Since fragmented
packets are routed independently, they are not guaranteed to
pass through the same routers. Waiting for trailing fragments
could introduce significant delay. Since a router only needs to
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Fig. 1: Kick-Ass in action: Router A communicates a flow rate via packet fragmentation

change the indication of a packet in the case of a decrease
in rate, and therefore a decrease in leading fragment length,
it is able to further fragment without having any of the later
pieces. Third, the receiver is able to determine the rate with
the arrival of the first fragment, as the first fragment always
contains the TCP header. This allows it to update the rate for
the appropriate flow immediately.

Since Kick-Ass routers ultimately behave in a manner which
is in accordance with the IP specifications, the fragmenting
transformations are safe to perform on traffic which is not
operating Kick-Ass on the endpoints. This compatibility with
legacy routers and flows means that Kick-Ass is ready-made
for partial deployments.

A. Kick-Ass Rate Encoding

We now explain how the router uses the leading fragment
length to indicate the rate. The design of the IPv4 header
specifies the starting point of the packet payload in the
reconstructed packet in 8 byte words, restricting the set of
fragment lengths to multiples of 8 bytes. Furthermore, data
bearing packets are generally 1, 500 bytes long, including the
IP header [10]. Kick-Ass is therefore able to fragment to
187 possible lengths. Packets smaller than 1, 500 bytes are
ignored and routed normally. If a flow is of sufficient length,
a router is likely to see a number of full sized packets per RTT,
minimizing the effect of too-small packets. If no suitably sized
packets arrive, the system will behave as traditional TCP.

To make the most of this set of indicators, we use a
function which maps from sending rates to packet lengths, i.e.
a function F that tells us what length L our leading fragment
should be to indicate a rate R. The nature of congestion control
is that we would like this function to provide greater precision
at lower rates, at the expense of precision at very high rates.
We therefore select a logarithmic function.

On the lower end, we would like the system to have a min-
imum sending rate of 1 packet per round trip time (RTT). We
therefore choose as a lower rate 120 Kbps, providing a single
packet per RTT for a sender with a 100 ms RTT sending 1500
byte packets. If a router requires even lower rates, endpoints
switch to legacy TCP mode, which provides such capabilities.
In particular, when a flow’s rate is less than the minimal
encodable value, the KA router stops fragmenting packets,
which pushes the endpoint into TCP mode, as described in
Section II-C2. On the upper end, we allow the function to
encode rates of up to 10 Gbps. Since we are operating on RTT
time scales, we take our rate R to be in bytes per millisecond.
Solving for a logarithmic function that would map a length of

24 bytes to our lower limit and 1480 bytes to our upper limit
(excluding the IP header), we find our function F to be:

L = F (R) = 128 ∗ ln
(

R

12.4392

)
bytes.

The computation can be reversed by simply taking the inverse
function of the packet length.

A minimum payload of 24 bytes allows us to ensure the
leading fragment always contains a TCP header, a common
requirement for many middle-boxes. The first 1000 bytes of
the packet encode rates only up to 245 Mbps, while the
remainder covers up to 10 Gbps, providing greater granularity
at lower rates. While we have selected this particular range,
it is reasonable to expect that any final determination of
a standard for Kick-Ass could trivially adjust this function,
allowing a greater, or more specific, range of possible sizes.

B. Kick-Ass RTT Encoding

In addition to communicating rate from routers to end-
points, router-assisted congestion control algorithms require
communicating RTT information from endpoints to routers,
e.g., [6]. To do so, Kick-Ass again uses packet length. Every
100 ms, the endpoint sends a packet of an indicator size with
the Do-Not-Fragment bit set. When the router receives such
a packet, it looks up the corresponding RTT and sends the
packet without fragmenting it. In order to minimize regular
packets being taken for indicator packets, our indicator sizes
are 600 to 611 bytes, where 600 indicates a 1 ms RTT, 601 the
next 2ms (2-3 ms), 602 the next 4ms (4-7ms), exponentially
up to 611 indicating an average RTT greater than 2048 ms.
The router then takes the RTT to be the midpoint of the
indicated range. This allows endpoints to communicate a range
of RTTs, focusing accuracy on lower RTTs, where precision
is more important. We evaluate the safety of this approach in
Section IV-C below.

C. Kick-Ass Endpoint Design

1) Kick-Ass flows at a Kick-Ass Router: We first consider
a full-deployment scenario. In terms of Figure 1, we consider
that both routers A and B are Kick-Ass enabled. We further
consider that all flows respond correctly to signals from
Kick-Ass enabled routers. This represents a model for early
deployments: Kick-Ass could be deployed in a datacenter,
allowing flows to traverse only Kick-Ass routers. Moreover,
an edge network may enable Kick-Ass on endpoints and
install Kick-Ass routers. While the flows must traverse the



legacy Internet, the routers themselves features only Kick-
Ass traffic. We explore the performance of such a scenario
in Section III-C.

2) Mixed flows at a Kick-Ass Router: Here, we consider
a Kick-Ass router which is serving both Kick-Ass enabled
endpoints and traditional TCP endpoints. In terms of Figure 1,
this means there is TCP cross traffic at Kick-Ass enabled
Router A. Regardless of the rate computation scheme used
at the router, TCP flows will ignore signals from the router,
sending at increasing rates, causing queueing, and eventually
drops. For many methodologies, this would result in TCP
starving out the more intelligent mechanisms which respond
to pre-drop congestion signals. However, the change in queue
state means a router is able to determine when a portion of
the flows it is processing ignore its signals and indicate to its
endpoints that they must be more aggressive. This is indicated
by the queues exceeding a threshold of 50%. In the event that
the queues pass this threshold, the router ceases indicating a
sending rate and stops fragmenting packets. At the endpoints,
failure to receive a rate signal from the router for more than
a RTT indicates that they should revert to TCP mode. In TCP
mode, senders behave as traditional TCP senders.

By reverting to TCP mode, they are then able to compete
for their fair-share of the capacity using traditional methods.
When the congestion period ends at the router (indicated by
a dip below the described thresholds), the router again begins
indicating rates. On receipt of such rates, the endpoints imme-
diately return to Kick-Ass mode. We see that the performance
of Kick-Ass is bounded below by TCP: as soon as the router
encounters a situation in which it knows it cannot properly
handle, it reverts to the compatible traditional methods. This
mechanism also allows Kick-Ass endpoints to handle the case
in which a route may change and no longer include a Kick-Ass
router: the nodes simply revert to TCP. We evaluate Kick-Ass
in such scenarios in Section III-D1.

3) Congestion at a Non-Kick-Ass Router: In this case,
there is congestion at a router which is not indicating a rate.
From Figure 1, this corresponds to the situation in which
Router B is a legacy Non-Kick-Ass router and is suffering
from congestion. In particular, there is congestion in the
network, but it is not reflected in the rates indicated by the
routers, i.e. router A in Figure 1. In this case, the sender
will eventually encounter a traditional congestion signal, e.g.
a dropped packet, triple duplicate ACK, or ECN bit. Upon
the receipt of such a signal, the sender reverts to TCP mode,
performing standard TCP back off procedures. While in TCP
mode, the sender continues to record information it receives
from Kick-Ass routers. Once the senders rate recovers to the
rate indicated by the Kick-Ass routers, it returns to Kick-Ass
mode, following the indicated rate.

Again, by reverting to TCP in the case of congestion that
does not manifest itself in the rate, Kick-Ass is able to bound
its performance by that of TCP. This allows Kick-Ass flows to
compete fairly with existing TCP flows without starving them
of resources at downstream legacy routers. We demonstrate
the effectiveness of this technique in Section III-D2.

Summary: If a sender suffers a loss event or stops receiving
Kick-Ass signals, it switches to TCP. When the TCP rate
grows above the last-received Kick-Ass rate, the endpoint
switches back to Kick-Ass mode.

III. DESIGN EVALUATION

A. Router Rate Calculation

The chief contribution of Kick-Ass is the enabling of
communication between the router and endpoint. It is therefore
generic: the router itself can use whatever scheme it wishes
in order to determine the rate it would like to indicate to
the sender. Likewise the endpoints are flexible, and can use
whatever protocol they wish for handling TCP failover mode.

For the purposes of our implementation and evaluations,
we implement a version of RCP, the Rate Control Protocol
[6]. RCP is an explicit-rate congestion control protocol, in
which routers attempt to divide bandwidth evenly among flows
by emulating processor-sharing, selecting a single rate for all
flows. Specifically, the router measures the input traffic on
a time interval t. If the input traffic is below the capacity,
all flows are increased evenly. If the input traffic is above
the capacity, all flows are decreased evenly. The router also
measures the queue size after t time, and sets aside a fraction
of the capacity in order to empty the queues.

For TCP failover mode, we use TCP NewReno. We again
emphasize that our choice of an algorithm based on RCP
and TCP NewReno was not out of necessity: the Kick-Ass
mechanism is flexible, allowing a choice of algorithm at the
router. The endpoint behavior is likewise flexible.

B. Simulation Setup

We implemented versions of Kick-Ass and RCP in NS-3 [7]
to provide a reference. We further compare the performance
against TCP NewReno, as it provides a fair comparison with
our TCP failover. We generate a workload modeled with a
fixed number of on-off senders. Senders begin in off mode,
waiting for a time drawn from an exponential distribution.
When the time expires, the sender begins a flow of a size
drawn from a Pareto distribution and runs until completion.
After the flow is finished, it switches to the off state and
repeats. All data packets from a sender are 1500 bytes long.
Parameters for both the off-time and flow lengths depend on
the experiment and are described in each case.

Unless indicated otherwise, the simulations are done on a
dumbbell topology in which multiple senders pass through a
single bottleneck and communicate with multiple receivers.
When testing full-deployment scenarios, the router is of the
appropriate type: TCP flows only pass through TCP routers,
RCP flows through RCP routers, and so on. The queues are
modeled as drop-tail queues.

C. Full-Deployment Scenarios

1) Kick-Ass Dynamics: Here, we evaluate scenarios in
which all endpoints and all routers on the path support
Kick-Ass. Initially, we explore RCP and Kick-Ass protocol
dynamics in a simple scenario with long-lived flows. We set
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Fig. 2: An additional flow is added every 10s. Both KA and RCP
easily adapt and maintain utilization and a fair share of bandwidth.

the link rate to 150 Mbps, queue size to 1000 packets, and
the RTT to 100 ms. The simulation starts with 10 concurrent
flows. Then, every 10 seconds we add one additional flow.

Figure 2 shows RCP and Kick-Ass performance over time
in this scenario. In particular, Figure 2a depicts throughput of
a single flow, Figure 2b plots the 150 Mbps bottleneck link
utilization, and Figure 2c illustrates the queue dynamics. We
first focus on the RCP performance.

Figure 2a shows that a single RCP flow quickly converges
towards its fair share rate, which is 15 Mbps initially, i.e.,
150 Mbps/10. As soon as the new flow arrives at 10 seconds,
the flow rate quickly stabilizes at the new rate of 13.63 Mbps
(150Mbps/11). When new flows arrive at times 20 s, 30 s,
etc, RCP manages to adjust to the fair rate within 1 RTT.
Figure 2b demonstrates that other flows in the system show
the same behavior, such that the system utilization approaches
the full link capacity. Figure 2c shows that RCP is capable
of achieving this without driving the queue the way TCP is
known to do. In particular, RCP creates moderate queue spikes
at moments when new flows join. Note, however, that such
queuing is promptly reduced, within a single RTT.

Figure 2c shows the Kick-Ass queuing behavior. First,
expectedly, the plot shows that Kick-Ass inherits the spikes
at multiples of 10 s existent in the native RCP protocol.
Second, unlike RCP, Kick-Ass occasionally generates very
small queuing delay spikes. These are seen between 10 and
20 s, as well as between 30 and 60 s. We found that these
effects happen due to the constant number of flows and smaller
resolution at which Kick-Ass can communicate explicit rates
to the endpoints, i.e., 187 levels in Kick-Ass relative to the
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Fig. 3: The mean flow completion time of flows under light load in
the isolated case.

integer rate precision in RCP. We find that this effect does not
get worse with more flows, and it diminishes in more dynamic
flow arrival and departure scenarios. Indeed, with large-scale
populations the available per-flow bandwidth decreases, hence
the resolution of Kick-Ass rates increases.

2) Lightly-Congested Scenario: Next, we evaluate RCP and
Kick-Ass in a lightly congested scenario. We set the link
rate to 150 Mbps, queue size to 1000 packets, and the RTT
to 100 ms. Contrary to the above experiment, we have 32
clients who concurrently send data into the network. Flow
sizes are distributed between 1 and 2000 packets. The mean
flow size is set to 100 packets, with pareto shape of 1.8 and an
exponentially distributed random gap between each flow with
a mean of 0.5 seconds. This leaves ample available bandwidth
for the endpoints. Prior research has shown that TCP flows
indeed spent most of their lifetime in the start-up phase [11].
Others argued that transport protocols need to be optimized
for such common scenarios [6], [12].

Figure 3 shows the mean flow completion time for flows
between 1 and 2000 packets long. Both RCP and Kick-Ass are
able to significantly outperform TCP, completing flows nearly
an order of magnitude sooner. Despite an exponentially in-
creasing start-up behavior, TCP lags dramatically behind RCP
and Kick-Ass, which manage to effectively utilize explicit-
rate feedback from the router. We do note that Kick-Ass
completes flows an RTT slower than RCP. This is a result
of communicating the rate in the first data packet rather
than in the SYN packet, as RCP does. Despite this, Kick-
Ass still significantly outperforms TCP. This suggests that
in low-congestion scenarios, Kick-Ass provides users with a
significant improvement to flow completion times, avoiding
the startup costs of TCP.

Other Topologies Finally, we evaluate Kick-Ass in lightly
and heavily congested scenarios for a variety of topologies
We explore (i) a non-uniform RTT scenario where RTT is
varied in the range from 10 ms to 250 ms, (ii) a scenario with
five bottlenecks, and (iii) a data-center-like scenario with a
10 Gbps link. In all evaluated scenarios, we confirm that Kick-
Ass effectively emulates RCP’s performance. We omit details
of these experiments here in an attempt to explore partial-
deployment scenarios in more depth.
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D. Partial-Deployment Scenarios

Given that it is impossible to deploy Kick-Ass at all end-
points and routers simultaneously, the question is how Kick-
Ass and TCP flows affect each other when they are multiplexed
at Kick-Ass or legacy routers. Here, we explore such partial-
deployment scenarios in which half of the flows are Kick-
Ass-enabled, while the other half are not. First, we explore
congestion at a Kick-Ass bottleneck link, then at a non-Kick-
Ass bottleneck. In both cases, we evaluate both light and heavy
congestion scenarios. Unless otherwise indicated, we set the
link rate to 150 Mbps, queue size to 1000 packets, and the
round-trip time to 100 ms.

1) Congestion at a Kick-Ass Bottleneck:
Light-Congestion Scenario Figure 4 shows the result of a

lightly congested scenario. When TCP flows are alone in the
system, the Kick-Ass router computes the fair-share rates and
sends this information to the endpoints. However, because the
endpoints are not Kick-Ass enabled, they do not understand
explicit-rate information embedded in IP fragments. Hence,
they apply the generic TCP algorithm and achieve the perfor-
mance shown in the figure (see curve TCP no KA).

Figure 4 shows the performance when Kick-Ass and TCP
flows are multiplexed together. The first insight is that TCP’s
performance is virtually unchanged, despite the presence of
Kick-Ass flows in the system. Indeed, there is almost no dif-
ference between the TCP no KA and TCP shared results.
This demonstrates that Kick-Ass flows have no side-effects for
the competing TCP flows in this scenario. Despite the fact that
Kick-Ass flows promptly set their rate to the one advertised by
the router, such a high rate neither generates excessive queuing
nor packet losses. Hence, TCP flows retain their performance.
At the same time, Kick-Ass flows (see curve KA shared)
substantially improve their performance relative to TCP flows,
approximately by an order of magnitude.

Heavy-Congestion Dynamic Scenario Here, we evaluate
a scenario with long-lived Kick-Ass flows dynamically multi-
plexed with TCP cross traffic. In particular, there are 64 Kick-
Ass flows in the system. In addition, at 20, 60, 100 sec, etc
we generate an additional 64 TCP flows that send data for
20 sec periods. As a result, we create Kick-Ass only epochs
(e.g., 0-20 sec, 40-60 sec, etc) and multiplexed Kick-Ass and
TCP epochs (e.g., 20-40 sec, 60-80 sec, etc). The key goal of
this experiment is to evaluate Kick-Ass router and endpoint
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Fig. 6: Congestion at a non-KA router.

mechanisms’ ability to effectively switch between Kick-Ass
and TCP modes of operation.

Figure 5 shows the throughput of a single flow (Figure 5a)
and the link utilization (Figure 5b) over time. Initially, when
64 Kick-Ass flows are present in the system, the Kick-Ass flow
rate stabilizes at the fair rate, i.e., approximately 2.34 Mbps,
which corresponds to 150 Mbps/64. Likewise, the utilization
approaches the full link capacity, and the queuing delay
(figure omitted) becomes negligible. Next, at time 20 sec, an
additional 64 TCP flows enter the system. Because they are
not Kick-Ass enabled, they do not adjust the rate according to
signals sent from the router. Necessarily, they thus push the
bottleneck queue, causing queuing and packet losses. By de-
sign (see Section II-C2), the Kick-Ass router detects excessive
queuing caused by non-Kick-Ass flows, and stops sending fair-
share rates to endpoints, i.e., it abandons fragmentation. As a
result, in absence of Kick-Ass signals from the network, Kick-
Ass endpoints enter TCP mode. Thus, the Kick-Ass router
avoids starving Kick-Ass flows, and helps them retain their
TCP fair share during such epochs. As soon as the heavy-
congested TCP-induced epoch passes, the Kick-Ass router
reestablishes normal operation. This is demonstrated at time
40 sec. The router quickly detects the absence of the TCP cross
traffic and starts sending fair-share rates via fragmentation.
Figure 5 shows such periodic behavior where shaded regions
indicate when the Kick-Ass router enters TCP mode.

2) Congestion at a Non-Kick-Ass Bottleneck: Next, we
consider the case where congestion happens at a non-Kick-Ass
router, yet Kick-Ass signals are sent from a non-bottlenecked
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Fig. 7: Congestion at a Non-KA router. TCP flows are introduced at
20, 60, 100, 140, and 180 seconds and last for 20s.

Kick-Ass-enabled router. This is illustrated in Figure 6. The
first router is Kick-Ass-enabled, yet congestion happens at the
second router, due to the TCP cross traffic. The purpose of this
experiment is to evaluate the ability of Kick-Ass endpoints to
disregard Kick-Ass signals when congestion happens at non-
Kick-Ass bottlenecks.

Light-Congestion Scenario We repeat the above light-
congestion scenario. The only difference is that Kick-Ass
flows traverse both routers, while TCP flows traverse only the
second legacy router. We again find that the flows complete
undisturbed, allowing short flow completion times, replicating
the performance of the previous case.

Heavy-Congestion Dynamic Scenario Here, we repeat the
above dynamic congestion scenario. The only difference is that
64 Kick-Ass flows traverse both routers shown in Figure 6,
while TCP flows traverse only the second non-Kick-Ass router
in the periods 20-40 sec, 60-80 sec, etc.

Figure 7 shows the results, i.e., Figure 7a depicts the rate of
a single Kick-Ass flow, while Figure 7b depicts the utilization
at the second link. In absence of TCP cross traffic at the
second router, Kick-Ass flows effectively utilize the available
bandwidth and achieve fairness, thanks to the explicit-rate
signals from the first Kick-Ass-enabled router. At time 20 sec,
when TCP flows start pushing the queue at the second router,
Kick-Ass flows detect this change and switch to the TCP
mode, using mechanisms explained in Section II-C3 above.
Since the first Kick-Ass-enabled router is not the bottleneck,
it continues sending explicit-rate signals throughout the entire
experiment. However, congestion at the second router, i.e., at
20 sec, forces Kick-Ass endpoints to abandon such signals and
switch to the TCP mode. We verify that Kick-Ass flows and
native TCP flows fairly share the available bandwidth in such
a case. This is not a surprise given that Kick-Ass endpoints
behave exactly as TCP flows in this mode. As soon as the
congestion at the second router eases, i.e., at 40 sec, Kick-
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Fig. 8: The mean flow completion time for Kick-Ass, CUBIC,
CUBIC on FQ-CoDel with ECN, and PCC during light congestion.

Ass endpoints promptly move back to the Kick-Ass mode,
establishing close-to ideal performance.

IV. PERFORMANCE

We examine the performance of Kick-Ass in the real-world.
First, we consider an evaluation in a test-bed which allows us
full control of the network. We then explore the performance
of Kick-Ass on the wide-area Internet. Finally we measure the
behavior of fragmented packets on the Internet.

A. Testbed Experiments

Implementation The testbed consists of a set of senders, a
router with two interfaces, and a receiver. All are connected
via a 3com gigabit switch. The senders and receiver are
configured to send all traffic through the router. We use the
Linux Netem tool to add 100 ms of delay to the round trip
time between the senders and the receiver. We implement
the Kick-Ass router on a 3.3Ghz Intel i5 machine running
Arch Linux with kernel 3.12.3. Our router is implemented as
a Linux queuing discipline. For arriving packets, the queue
behaves as a drop-tail queue. As packets are de-queued, they
are fragmented to the appropriate length, which is stored in
the queuing discipline. We use a modified version of the Linux
IP stack to perform the fragmentation to ensure correctness.
The endpoints consist of 4 Intel 3.3Ghz Intel i5 machines
running Arch Linux.We use a modified version of MultiTCP
[13] to pace outgoing packets. Both the pacing delay and the
congestion window are updated with the arrival of new rate
information from the receiver in ACKs.

Evaluated Schemes For comparison, we consider (i) CU-
BIC, a widely-adopted TCP variant, which is the default
in modern versions of Linux [14], (ii) PCC, a recently-
proposed scheme from academia [8], and (iii) CUBIC on FQ-
CoDel, which uses packet delay to determine when to indicate
congestion, instead of traditional queue length, combined with
fair queuing methods [15], [16]. FQ-CoDel further makes use
of ECN signals, instead of dropping packets.

Light Load First, we explore the performance of Kick-Ass
in the light-congestion scenario. We restrict the outgoing link
on the router to 100 Mbps, and model traffic as in simulation,
only with 8 total senders.

Figure 8 shows the performance of the evaluated schemes
under light load. We see that compared to CUBIC, Kick-Ass
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is able to complete flows on average 2× faster, as Kick-Ass
is able to readily obtain feedback from the router and fill the
bandwidth accordingly. PCC, on the other hand, suffers longer
flow completion times. The figure also shows that FQ-CoDel
does not manage to improve performance in these scenarios as
it is incapable of sending explicit rate feedback to endpoints.

We repeat the mixed TCP and Kick-Ass flow cases from
Section III-D1 in the setting of our test-bed, again finding that
Kick-Ass does not interfere with the completion times of TCP
flows. We omit the results here due to space considerations.

Heavy Load Here, we compare the performance of Kick-
Ass to other endpoint-based algorithms in cases of heavy load.
In this setting, we further reduce the outgoing router link to
10Mbps and increase the average flow size to 1 MB and inter-
flow times to a mean of 8 seconds.

Figure 9 shows a CDF of the instantaneous queuing delay of
Kick-Ass compared to PCC, CUBIC (with a drop-tail queue),
and CUBIC on FQ-Codel with ECN. We see that Kick-Ass
is able to maintain extremely small queues for the duration,
experiencing only small queueing delay, in line with what was
seen in simulation, and avoiding the above 1 second queuing
delays seen by CUBIC and PCC.

Figure 10 shows a CDF of the average throughput of flows.
It demonstrates that Kick-Ass was able to take advantage of
available throughput in the network, outperforming CUBIC.
This is the case, independently of whether Drop-Tail or FQ-
CoDel with ECN is used at the router. Moreover, Kick-Ass
further significantly outperforms PCC.

B. Wide-Area Internet Performance

Here, we deploy Kick-Ass receivers at 10 remote locations
on the Internet. A subset are deployed within the same city

as the senders, while others are deployed at more distant
locations, creating both intra- and inter-continental network
paths. Our goal is to see if it is possible for Kick-Ass to
achieve performance benefits on real wide-area Internet paths.
For each destination, we generate Kick-Ass flows towards
a receiver for 2 minutes; then we run TCP flows towards
the same receiver for the next 2 minutes. By repeating this
interleaving procedure over relatively short time scales, we
aim to avoid any longer time-scale bias (e.g., heavy network
congestion while experimenting with one protocol. In all cases,
we generate flows of the size between 1 and 2000 packets and
measure flow completion times. On the sender side, we limit
the Kick-Ass router’s link capacity to 10 Mbps and 100 Mbps.

Kick-Ass outperforms TCP between 1.2 and 4×, depending
on the nature of the given paths and the access link band-
width. For a 10Mbps Kick-Ass link, Kick-Ass consistently
outperforms TCP in all scenarios. The Kick-Ass performance
benefits are below one order of magnitude achievable in higher
bandwidth scenarios (e.g., 100 Mbps). Even in such cases,
Kick-Ass does not aggressively queue as TCP does (e.g., as
observed in the case of 4G LTE wireless networks [17]),
and hence achieves much more stable delay performance. For
a 100 Mbps access link, Kick-Ass consistently outperforms
TCP, yet the variance of the benefits is necessarily larger.
When the available bandwidth on the path is larger, Kick-
Ass flow completion times are expectedly much shorter, and
hence the difference between Kick-Ass and TCP flows is more
pronounced. When destinations are deeper in the Internet, it is
more often the case that the bottleneck is not the edge Kick-
Ass router’s link, but rather a non-Kick-Ass link further away
from the sender. In such cases Kick-Ass moves to TCP mode.

To validate this, we measure the percent of time that longer-
lived flows stay in the Kick-Ass mode, i.e., does not switch
to the failover TCP mode. We evaluate a path where the
destination is on the same continent as the sender, and the
geographic distance between the two is approximately 2,000
miles. When the access link is set to 10 Mbps, it is obvious
that the Kick-Ass link is the bottleneck because the flow stays
entirely in the Kick-Ass mode. When the Kick-Ass access link
is raised to 100 Mbps, the fraction of time spent in the failover
TCP mode increases to 50% in the median case.

C. Packet Fragmentation Measurements

Here, we evaluate the state of the art regarding IP packet
fragmentation on the Internet. Previous work from nearly 3
decades ago has suggested that fragmenting packets may be
harmful [18], but many of the issues related to efficiency are
not relevant to Kick-Ass, while other issues are no longer a
concern with modern computing power. Other studies have
explored how IP fragmentation behaves in the real Internet
[19], [20]. While some of this work has had a different focus,
they have encountered situations which seem to suggest that
various network configurations and middle-boxes on a path
may interfere with fragmented packets.

We perform an experiment to quantify the fraction of frag-
mented packets that encounter problems in the Internet. We



develop a simple web server which replies to client requests
with packets of various sizes. It first sends increasing packet
sizes, from 44 to 1480 bytes, sending each size 100 times,
waiting for an acknowledgement after each packet is sent.
After reaching the maximum size, the server begins sending
1480 byte packets which have been fragmented. We consider
increasing sizes of the leading fragment, starting with 44 bytes
(with the second fragment then being 1436, the remainder, and
so on). We send each fragment size 100 times. Packets which
are acknowledged by the client are considered successful,
while those which time-out are assumed dropped.

To obtain a variety of clients from a large variety of
locations, we conducted a large-scale experiment with Dasu
[21]. Over the course of the experiment, 405 clients connected
from 62 countries and completed the experiment, providing
us with a broad view of the Internet edge. The server was
operated on a machine on the local campus network.

We found that about 8.3% of clients failed to accept
fragmented packets, often ending the connection as soon as
it began sending fragmented packets. Given the diversity of
our clients, and the fact that many are likely behind middle-
boxes, firewalls, and home routers, this figure is not surprising.
To cope with the possibility that traffic passing through a
Kick-Ass router may be destined for such locations, Kick-
Ass enabled routers respect Do-Not-Fragment flags in IP
headers, routing such packets in the traditional manner. If a
pair of endpoints are Kick-Ass enabled, they will refrain from
setting the Do-Not-Fragment flag, allowing Kick-Ass routers
to perform the necessary operations.

Drop Rates Given that a fragmented IP packet becomes
two separate packets in the network, one expects that the
probability that the packet will be dropped will approximately
double, as only one of the fragments need drop for the
entire packet to be lost. We find that the drop rate never
exceeded twice the value of the full packet rate. These findings
suggest that IP fragmentation provides a viable means of
communication on the wider Internet.

RTT Encoding Kick-Ass utilizes packets in the range 600
to 611 bytes to communicate RTT from endpoints to routers,
as explained in Section II-B above. In a trace loading the
top 500 webpages, as well as a wireless capture in a busy
cafe, we observed that less than .11% of TCP packets landed
in this range. The use of a moving average and the extreme
infrequency of natural packets of these sizes mean that this
range of packets is safe for use as indicators.

Overhead The use of fragmentation as a communication
mechanism is not without overhead. Each fragmentation in-
troduces a new IP header, resulting in an additional 20 bytes
of data. This reduces the total achievable utilization by 1.3%
(i.e., 20/1500) in scenarios when all packets are fragmented.
However, on the Internet, most bottlenecks occur on the
network edge. Therefore, packets are likely to have a low rate
set on the edge, allowing each packet to only be fragmented
a single time, limiting the effect of these headers.

Fragmenting also introduces processing overhead, at routers
and endpoints. However, this can be reduced via the mech-

anisms that limit the total number of packets that must be
fragmented. As end-hosts and routers continue to become
more powerful and have greater resources available, a greater
amount of computing power can be devoted to congestion
control and network management, as was seen in [1].

We used our testbed from Section IV-A to explore the
time cost of of fragmentation to the end-hosts. In particular,
we attempt to measure the time cost associated with packet
fragmentation and reassembly. We consider two conditions:
no fragmentation, and a fixed fragmentation on every packet.
We then compare the difference in flow completion times for
flows of increasing size, from 10 KB to 10 MB, repeating each
condition on each size 30 times. We found no measurable dif-
ference in the times, suggesting that the ultimate performance
bottle-neck lies elsewhere in the packet path.

V. DISCUSSION

Overhead Reduction Header overhead can be further re-
duced by restricting the frequency of fragmentation at the
router. In particular, a flow need not receive information
at every single acknowledgement. In fact, the majority of
these packets likely contain the same rate and are therefore
redundant. The router could therefore restrict the number of
packets it fragments by only fragmenting for particular time
interval. Alternatively, the router could generate hashes for
flows and attempt to only fragment packets once per RTT
per flow, ensuring that it at worst overestimates the number
of fragments needed. Such schemes would stand to further
minimize overhead at the router [22].

IPv6 One component of the IPv6 specification is that it pro-
vides a mechanism for enabling end-hosts to perform end-to-
end fragmentation, by way of a fragmentation extension header
[23]. This provides IPv6 headers with the necessary fields
to enable fragmentation (a fragment offset, more-fragments
indicator, id number). This mechanism could be reused by
routers, despite its usual prohibition in IPv6, without any
side-effects for downstream routers or receivers. An IPv6-
enabled Kick-Ass router would make use of these, providing
the split packets with the appropriate header extensions, and
performing these splits as in IPv4.

VI. RELATED WORK

We provide a necessarily non-comprehensive overview of
related work, pointing out a subset of prior work relating
to Kick-Ass. Endpoint congestion control mechanisms have
ranged from classic back-off mechanisms [24], [14], [25],
[26], to complex analytic methodologies [27], [28], to RTT
and delay based mechanisms [12], [29], [30]. More recently,
work has been done to further improve the effectiveness of end
point schemes, using machine learning to generate congestion
control rules [1]. While often very effective, these approaches
are limited by their lack of feedback from routers. Kick-
Ass enables such router communication, while continuing to
operate with these existing mechanisms.

Others have looked to routers to ease the problem of
congestion, including the development of queue management



techniques [2], [31], [16]. Other systems have recognized the
value in using information at the router to inform endpoints
directly of congestion, [6], [3], [4], [5], [32], but have been
limited by the necessity of compliance with traditional TCP/IP
formats. Kick-Ass further builds off these works. Rather than
providing an alternative algorithm for congestion control,
it stands to enable the implementation of existing explicit
rate schemes in the current Internet and the development of
novel congestion control schemes that can be deployed within
the Kick-Ass framework. In doing so, however, it does not
prohibit the use of existing techniques, allowing the continued
operation of time-proven congestion management schemes.

Our work further relates to cases where network mecha-
nisms are used for purposes beyond their original design [33],
[34]. For example, the use of port numbers in NAT firewalls,
which effectively enlarged the IPv4 space [35]. We use IP
fragmentation for congestion control. However, unlike the use
of port numbers for NAT, our use of IP packet fragmentation
is in agreement with internet design principles.

VII. CONCLUSIONS

In this paper, we presented Kick-Ass, a congestion control
mechanism that enables the deployment of advanced explicit-
rate congestion control protocols within the TCP/IP stack.
We showed that packet sizes can be effectively utilized to
implicitly communicate explicit-rate and other information
from routers to endpoints and vice versa. Our large-scale
testbed and Internet experiments demonstrated that Kick-Ass
achieves superior performance in full-deployment scenarios,
outperforming CUBIC on FQ-CoDeL and PCC. Further-
more, we showed that it retains high performance in partial-
deployment scenarios, yet without causing any side-effects for
the legacy traffic. Kick-Ass is incrementally deployable on the
Internet. Endpoints and routers in operational networks can be
seamlessly upgraded to support Kick-Ass. It thus enables a
truly realistic pathway towards a faster Internet today. Beyond
congestion control, we showed that embedding information
into traffic patterns can be a powerful approach for overriding
rigidity of internet protocols.
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