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ABSTRACT

Understanding Internet access trends at a global soaleyhat do
people do on the Internet, is a challenging problem thatdially
addressed by analyzing network traces. However, obtaisirap
traces presents its own set of challenges owing to eitheagyi
concerns or to other operational difficulties. The key hjpgsts of
our work here is that most of the information needed to prdfike
Internet endpoints is already available around us — on the we
In this paper, we introduce a novel approach for profiling and
classifying endpoints. We implement and deplogangl e-based
profiling tool, which accurately characterizes endpoinhdagor
by collecting and strategically combining informationehg avail-
able on the web. Our ‘unconstrained endpoint profiling’ apgh
shows remarkable advances in the following scenarigsEyen
when no packet traces are available, it can accurately giragpli-
cation and protocol usage trends at arbitrary network$;When
network traces are available, it dramatically outperfostete-of-
the-art classification tools;i¢) When sampled flow-level traces
are available, it retains high classification capabilitidgen other
schemes literally fall apart. Using this approach, we penfoin-
constrained endpoint profiling at a global scale: for ckeintfour
different world regions (Asia, South and North America andgt E
rope). We provide the first-of-its-kind endpoint analysisigh re-
veals fascinating similarities and differences amongetregions.

Categories and Subject Descriptors
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1. INTRODUCTION

Understanding what people are doing on the Internet at aalob
scale,e.g, which applications and protocols they use, which sites
they access, and who they try to talk to, is an intriguing and i
portant question for a number of reasons. Answering thistpe
can help reveal fascinating cultural differences amongpnatand
world regions. It can shed more light on important sociabmn
cies €.9, [36]) and help address imminent security vulnerabilities
(e.q, [34, 44]). Moreover, understandirghiftsin clients’ interests,
e.g, detecting when a new application or service becomes pppula
can dramatically impact traffic engineering requiremestwall as
marketing and IT-business arena&uTube [19] is probably the
best example: it came ‘out of nowhere,” and it currently acds
for more than 10% of the total Internet traffic [24].

The most common way to answer the above questions is to an-
alyze operational network traces. Unfortunately, suchpr@ach
faces a number of challenges. First, obtaining ‘raw’ patkates
from operational networks can be very hard, primarily dugpiie
vacy concerns. As a result, researchers are typically dichib
traces collected at their own institutions’ access netwdgkg,
[29, 30]). While certainly useful, such traces can have angfr
‘locality’ bias and thus cannot be used to accurately reveal
diversity of applications and behaviors at a global Inteseale.
Moreover, sharing such traces among different institigisragain
infeasible due to privacy concerns.

Even when there are no obstacles in obtaining non-access,
core-level traces, problems still remain. In particularcuarately
classifying traffic in an online fashion at high speeds isramer-
ently hard problem. Likewise, gathering large amounts ¢&dar
off-line post-processing is an additional challenge. Tgfy, it is
feasible to collect only flow-level, asampledflow-level informa-
tion. Unfortunately, the state-of-the-art packet-leveffic classifi-
cation tools €.g, [29]) are simply inapplicable in such scenarios,
as we demonstrate below.

In this paper, we propose a fundamental change in appragchin
the ‘endpoint profiling problem’: depart from strictly réhg on
(and extracting information from) network traces, and Iéokan-
swers elsewhere. Indeed, our key hypothesis is that the kmd
representative amount of information about endpoint biginas
available in different forms all around us.



For communication to progress in the Internet, in the vagorma
ity of scenarios, information about server®., which IP address
one must contact in order to proceed, must be publicly availa
In p2p-based communication, in which all endpoints can att b
as clients and servers, this means that association be&veend-
point and such an application becomes publicly visible. rEiwve
classical client-server communication scenarios, infran about
clientsdoes stay publicly available for a number of reasang,(
at website user access logs, forums, proxy lege). Given that
many other forms of communication and various endpoint eha

P
Ad
ior (e.g, game abuses) does get captured and archived, this implies

that enormous information, invaluable for characterizamgipoint
behavior at a global scale, is publicly available — on the web

The first contribution of this paper is the introduction of@val
methodology, which we term ‘unconstrained endpoint pmogli
for characterizing endpoint behavior by strategically éémng in-
formation from a number of different sources available anteb.
The key idea is to query th€oogl e search engine [6] with IP
addresses corresponding to arbitrary endpoints. In paaticwe
search on text strings corresponding to the standard ddged
mal representation of IP addresses, and then charactedpeiats
by extracting information from the responses returnebyggl e.
The core components of our methodology afjea(rule generator
that operates on top of theoogl e search engine, and:§ anIP
tagger, which tags endpoints with appropriate features basedysole
on information collected on the web. The key challenge esu-
tomaticallyand accurately distilling valuable information from the
web and creating a semantically-rich endpoint database.

about many Internet endpoints’ activities inevitably spaplicly
archived. Of course, not all active endpoints appear on téle, w
and not all communication leaves a public trace. Still, wewsh
that enormous amounts of information do stay publicly alé,
and that a ‘purified’ version of it could be used in a numberai-c
texts that we explore later in the paper.

1.URL| hit text —>| Rapid match |—>| IP Tagging |
2.URL| hit text v
3.URL | hit text 1. domain name | keywords
2. domain name | keywords
Search hits i Web site cache
page lookup

Figure 1: Web-based endpoint profiling

2.1 Unconstrained Endpoint Profiling

Figure 1 depicts our web-based endpoint profiling tool. At th
functional level, the goal is straightforward: we query Geogl e
search engine by searching on text strings correspondirtgeto
standard dotted decimal representation of IP addresses. dgioen
input in the form of an IP address,g, 200.101.18.182, we col-

able advances in the following scenariof: dven whemo opera-
tional traces from a given network are available, it can sz@ly
predict traffic mixesj.e., relative presence of various applications
in given networks, ;) when packet-level traces are available, it can
help dramatically outperform state of the art traffic cléisation al-
gorithms,e.g, [29], both quantitatively and qualitatively andj
when sampled flow-level traces are available, it retain loigs-
sification capabilities when other state-of-the-art sceeifiterally
fall apart.

Our second contribution lies in exploiting our methodoldagy
perform, to the best of our knowledge, the first-of-its-kimder-
net access trend analysis for four world regions: Asia, $.€n
America, and Europe. Not only do we confirm some common wis-
dom, e.g, Googl e massively used all around the worldj nux
operating system widely deployed in France and Brazil, oltimu
player online gaming highly popular in Asia; we confirm famsat-
ing similarities and differences among these regions. kamgple,
we group endpoints into different classes based on thelicapion
usage. We find that in all explored regions, the online gamseys
strongly protrude as a separate group without much overligp w
others. At the same time, we explore locality properties, where
do clients fetch content from. We find strong locality biasAsia
(China), but also for N. America (US), yet much more inteioael
behavior by clients in S. America (Brazil) and Europe (Fe&nc

This paper is structured as follows. In Section 2 we explain o
unconstrained endpoint profiling methodology which we est#
in a number of different scenarios in Section 3, and apply #ipi-
proach to four different world regions in Section 4. We dssue-
lated issues in Section 5, and provide an overview of relateidk
in Section 6. Finally, we conclude in Section 7.

2. METHODOLOGY

Here, we propose a new methodology, which we term ‘Uncon-
strained Endpoint Profiling’ (UEP). Our goal is to charaiztelend-
points by strategically combining information availabt@aumber
of different sources on the web. Our key hypothesis is thainds

about the corresponding endpoint. The output is a stgs(fea-
tures) associated with this IP address. For exanfideum user,
kazaa node,gane abuser,nmail| server,etc Ingeneral,
an endpoint could be tagged by a number of feat@eg,af or um
user and ap2p client. Such information can come from a
number of different URLSs.

At a high level, our approach is based on searching for infor-
mation related to IP addresses on the web. The larger the num-
ber of search hits returned for a queried IP address, andatberl
number of them confirming a given behaviae( ast r eani ng
ser ver), the larger the confidence about the given endpoint activ-
ity. The profiling methodology involves the following threeod-
ules: ¢) Rule generation,if) Web classification, and4) IP tag-
ging, which we present in detail below.

2.1.1 Rule Generation

The process starts by queryi@og! e [6] using a sample ‘seed
set’ of random IP addresses from the networks in four differe
world regions (details in Section 3) and then obtaining tbieas
search hits. Each search hit consists of a URL and corregmpnd
hit text i.e., the text surrounding the word searched. We then ex-
tract all the words and biwords (word pairs) from the hit teat all
the hits returned for this seed set. After ranking all the dgoand
biwords by the number of hits they occur in and after filterihg
trivial keywords €.g, ‘the’), we constrain ourselves to the tdp
keywordé that could be meaningfully used for endpoint classifica-
tion.

Then, in the only manual step in our methodology, we cons&uc
set of rules that map keywords to an interpretation for timefion-
ing of that websitei.e., thewebsite classThe rules are as shown
in the relationship between Column 1 and 2 in Table 1. For exam
ple, the rules we develop in this step capture the inteltgetmat
presence of one of the following keywordsount er stri ke,
worl d of warcraft,age of enpires,quake, organe
abuse in either the URL or the text of a website implies that it is

'We find and use the top 60 keywords in this paper.



Table 1: Keywords - Website Class - Tags mapping

Keywords

Website Class Tags

{ftp” [‘'webmalil' [ ‘dns’ [ ‘emalil’ | ‘proxy” [ 'smtp’
| ‘mysql’ | ‘pop3’ | ‘mms’ | ‘netbios’}

Protocols and Services <protocol name- server

{"trojan’ [ ‘worm” [ ‘malware’[ ‘spyware’] ‘bot’ }

Malicious information list| <issue name affected host

‘spam’ Spamlist spammer
{"blacKiist’ | ‘banlist’ | ‘ban’ | "blocklist’ } Blacklist blacklisted
‘adserver’ Ad-server list adserver
{"domain’[ ‘whois’ | ‘website’} Domain database website
{"dns’ | 'server' | 'ns’} DNS Tist DNS server
{"proxy’ | ‘anonymousT ‘transparent} Proxy Tist proxy server
‘router’ Router addresses list router
‘mail server’ Mail server list mail server
‘mail server’& {‘spam’| ‘dictionary attacker} Malicious mail server

mail servers list [spammer] [dictionary attacker

‘quake’ ‘halo’ | ‘game’} & {‘abuse’| ‘block’ }

{"counter strike’| ‘warcraft’ | ‘age of the Gaming servers list <game namg
empires’| ‘quake’ | ‘halo’ | ‘game’} server
{"counter strike’| ‘warcraft’ | ‘age of the empiresf Gaming abuse list <game> node

[abuser] [blocked]

{"torrent” | ‘'emule’ | ‘kazaa’| ‘edonkey’[ ‘announce ‘tracker” |
‘xunlei’ | ‘limewire’ | ‘bitcomet’ | ‘uusee’| ‘qglive’ | ‘pplive’ }

p2p node Tist <protocol name> p2p node

{firc’ [*undernet’] innernet’| ‘dal.net’}

IRC servers list IRC server

{"yahoo' [ ‘gtalk’ ['msn’['qq” | ‘icq” | "server’ | ‘block’ }

Chat servers <protocol name- chat server

‘comentario’| ‘commentaire’| ‘posted’ | ‘poste’ |
‘registered| ‘registrado’| ‘enregistre’| 'created’ | 'criado’

{"generated by] ‘awstats'] ‘wwwstat’ | Web log site web user [operating system]
‘counter’ | ‘stats’} [browser][date]
{"cachemgr| ‘ipcache’} Proxy Tog proxy user [site accessed]
{"forum™ ["answer’| ‘resposta’] ‘reponse’] ‘comment’]| Forum forum user [date][user name]

‘cree’ | ‘bbs’ | ‘board’ | ‘club’ | ‘guestbook’| ‘cafe’ }

[http share ][ftpshare]
[streaming node]

a gaming website (either gaming server list or abuse listpld 1
shows a few rules to differentiate the information contdimeweb-
sites. For instance, if a website only contains the keywuad|
server from the set of keywords, then it is classified as a site
containing list of mail servers. However, if a website caméaone

of the following words,spamor di cti onary attacker be-
sidesmai | server, then itis classified as one containing list of
maliciousmail serverse.g, one which is known to originate spam.
Similar rules are used to differentiate between websitesiging
gaming servers list and gaming abuse list.

2.1.2 Web Classifier

Extracting information about endpoints from the web is a-non
trivial problem. Our approach is to first characterize a giveeb-
page (returned bgoogl e), i.e,, determine what information does
the website contain. This approach significantly simplifresend-
point tagging procedure.

Rapid URL Search. Some websites can be quickly classified
by the keywords present in their domain name itself. Henfter a
obtaining a search hit we first scan the URL string to identtify
presence of one of the keywords from our keyword set in the URL
and then determine the website’s class on the basis of the il
Table 1. For instance, if the URL matches the rufé:or um |
... | caf e} (see last row in Table 1) then we classify the URL as
a Forum site. Typically, websites that get classified by thfsd
URL search belong to the Forum and Web log classes. If thedRapi
URL search succeeds, we proceed to the IP tagging phaséofsect
2.1.3. If rapid match fails, we initiate a more thorough search in
the hit text, as we explain next.

Hit Text Search. To facilitate efficient webpage characterization
and endpoint tagging, we build a website cache. The key lea i
to speed-up the classification of endpoints coming from thmees
web sites/domains under the assumption that URLs from tine sa
domain contain similar content. In particular, we implemtre

website cache as a hashtable indexed by the domain part of the

URL. For example, if we have a hit coming from the following
URL: www. r obt ex. coml dns/ 32. net . ru. ht m ,the key in

the hashtable becomesbt ex. com Hence, all IPs that return a
search hit from this domain can be classified in the same way.

Whenever we find a URL whose corresponding domain name is
not present in the cache, we update the cache as follows, Wis
insert the domain name for the URL as an index into the cactie wi
an empty list (no keywords) for the value. In addition, weeins
counter for number of queried IP addresses that return tRis &k
a hit along with the corresponding IP address. High valueshi®
counter would indicate that this domain contains inforimatiseful
for classifying endpoints. Thus, when the counter for nunaféP
addresses goes over a threshold (we currently use a thdesh?),
we retrieve the webpage based on the last URhen, we search
the webpage for the keywords from the keyword set and extnact
ones which can be found.

Next, we use the rule-based approach to determine the dass t
which this website (and hence the domain) belongs. Finaléy,
insert an entry in the cache with the domain name as the key and
the list of all associated keywords (from Tablel) as the e/alkeor
instance, if the URL matches the ruleri | server & {spam
| dictionary attacker }, then the domain gets classified as
a list of malicious mail servers. Further, we insert all tlegnkords
in the cache. When a URL's domain name is found in the cache,
then we can quickly classify that URL by using the list of keyds
present in the cache. In this way, the cache avoids havirigs$sity
the URL on every hit and simplifies the IP-tagging phase, as we
explain next.

2.1.3 P tagging

The final step is to tag an IP address based on the collected in-
formation. We distinguish between three different scersari

URL based tagging. In some scenarios, an IP address can be
directly tagged when the URL can be classified via rapid $earc
for keywords in the URL itself. One example is classifying @i
p2p servers based on tleerul e- pr oj ect. net domain name.

2In an alternative, yet more expensive method, we could have
stored all the past URLs and then retrieved all the webpages.



Another example is the torrent list found &@br r ent port al .

of the IP address’ behavior. In the second case, if an IP addre

com In such scenarios, we can quickly generate the appropriate behavior has been identified by multiple sites, then cogntire

tags by examining the URL itself. In particular, we use thepiag

unique sites which reaffirm that behavior would generaténérig

between a website class (Column 2) and IP tags (Column 3) in confidence. In this paper, we consider this confidence tbtdsis

Table 1 to generate the tags. In majority of the cases, sumtl ra
tagging is not possible and hence we have to examine thexit te
for additional information.

General hit text based tagging. For most of the websites, we

1,i.e., even if one URL hit proclaims a particular behavior then
classify the endpoint accordingly. We relegate trade-ofislved
in setting such a threshold to future exploration.

are able to accurately tag endpoints using a keyword based ap 2.1.4 Examples

proach. The procedure is as follows. If we get a match in thie-we
site cache (for the specific URL we are currently trying to chat
we check if any of the keywords associated with that domaittima
in the search hit text. Surprisingly, we typically find atdeasingle
keyword, which clearly reveals the given IP’s nature andoéas
tagging. Table 1 provides the mapping between the domass cla
and IP tags.

For hit texts which match multiple keywords, we explain the

To illustrate the methodology, we provide the analysis of tw

IP addresses and the corresponding websites returnédaad e

hits: () 200.101.18.182 inf orum i nsi te. com and (:) 61.
172.249.13 t t zai . com The first site contains the wofdr um

in the URL. Thus, the rapid URL match succeeds and we classify
the site as a forum. Next, since the site is classified as fomen
examine the hit text via the forum-based approach; as we find a
post date next to a username in the hit text, we tag the IP ssldse

generation of tags via an example. For instance, a URL such asgf or um user.

pr oj ect honeypot . or g provides multiple information about
an IP address.g, not only that it is a mail server but also a spam-
mer. Due to a match with both the keywords, this URL's domain
would be entered in the website cache as a malicious mags2rv
list. Then queries to an ip-address that is listegratj ect honey-
pot . or g could return either:#) both the keywordsmai | server

In the second case, at first the rapid URL match fails, sinee th
website cache does not contain an entrytfozai . com Thus,
we initially install an entry to this website in the hash &hhitial-
ize a counter for number of IP addresses to 1 and log the IReasldr
Whenever another IP address returns a hit from the samettsite,
threshold of 2 is crossed. Then, we retrieve the last URL, and

andspam in which case, the ip-address would be tagged by both search for the keyword set through the web page reveals #s pr

the tagsmai | server andspammer, (iz) only the keyword
mai | server where the ip-address would be tagged asal
ser ver only and ¢iz) only the keywords pamwhere the ip-address
would be tagged aspanmer via the one-to-one mapping but also
asmai | server. This expansion of tags (from spam to mail
server) can be done unambiguously because there is no riige in
ble 1 with only one keywordpam Similarly, regardless of the
combination of keywords found in the hit text for gaming ss/
list or gaming abuse list, their rules can be disambiguasade.

In some cases, such as for Web logs and Proxy logs, we can,q

obtain additional tags (labeled by square brackets in ColGrof
Table 1). For Web logs we can obtain the access date and déthe
exists, the operating system and browser that was usedla8ini
in the case of Proxy logs, we can obtain the site that was sedes
by the IP address.

Hit text based tagging for Forums. The keyword-based ap-
proach fails when a URL maps to an Internet forum site. This is
because a number of non-correlated keywords may appeanat a f
rum page. Likewise, forums are specific because an IP addaess
appear at such a site for different reasons. Either it has bato-
matically recorded by a forum post, or because a forum udédr-de
erately posted a link (containing the given IP address) &ious
reasons.

In the case of forums, we proceed as follows. First, we use a

post-date and username in the vicinity of the IP address to de
termine if the IP address was logged automatically by a forum
post. Hence, we tag it as tHeor um user . If this is not the
case, the presence of the following keywords:t p: \, ft p: \,
ppstream \, ms: \, etc. in front of the IP address string in the
hit text suggests that the user deliberately posted a lirgkgbared
resource on the forum. Consequently, we tag the IP address as
http shareorftp share, orasastrean ng node sup-
porting a given protocol (ppstream, mms, tvants, sip).

Because each IP address generates several search hiiplemult
tags can be generated for an IP address. Thus aggregatitig all
tags corresponding to an IP address either reveals adalitim
havior or reaffirms the same behavior. For the first case,idens
the scenario where an IP address hosts multiple serviceishwh
would then be identified and classified differently and thgrgen-
erate different tags for that IP address, revealing theiplalfacets

ence of at least one keyword that can classify the site asunfor
site. Further, we proceed to the tagging phase. Bedause: \ is
found in front of the original IP address (61.172.249.18§ $ys-
tem concludes that a user deliberately posted the IP addnettse
forum - as a part of the link to a shared resource. Hence, st tiag
IP accordingly.

2.2 Where Does the Information Come From?

Here, we attempt to answer two questions. First, which sites
ak’ information about endpoints? While we have alreadyéd

at some of the answers, we provide more comprehensivetg&tstis
next. Second, our goal is to understand if and how such ‘inéion-
leaking’ sites vary in different world regions.

Sites containing information about endpoints could begmte
rized in the following groups:

e \Web logs:Many web servers run web log analyzer programs
such as AWStats, Webalizer, and SurfStats. Such prograins co
lect information about client IP addresses, statisticaualaacess
dates, host operating systems and host browsers. They tharse
web server log file and generate a report or a statistics wgbpa

e Proxy logs: Popular proxy services also generate logs of IP
addresses that have accessed them. For instance, the Soxyd p
server logs the requests’ IP addresses, and then dispkyysdh a
webpage.

e Forums: As explained above, Internet forums provide wealth
of information about endpoints. Some forums list the useadP
dresses along with the user names and the posting dateseintord
protect against forum spam. Examples ard orum i nsi t e.
com br orwww. reptil esworl d. coni bbs. Likewise, very
frequently clients use Internet forums to post links camiteg (of-
ten illegal) CDs or DVDs with popular movies as either ftptpht
or streaming shares. We explained above how our methodology
captures such cases.

e Malicious lists: Denial of service attacks, and client misbe-
havior in general, are a big problem in today’s Internet. ©@he
the ways to combat the problem is to track and publicize nmli
endpoint behavior. Example lists are: banlists, spamlsdlists,
gaming abuse lists, adserver lists, spyware lists, mallistse fo-
rum spammers listgtc.

e Server lists:For communication to progress in the Internet, in-



Table 2: Website caches - Top entries

N. America Asia S. America

Nr | Site Hits | Info Nr | Site Hits | Info | Nr | Site Hits | Info

1 | whois.domaintools.conj 338 | D 1 | jw.dhu.edu.cn 1381 S 1 | weblinux.ciasc.gov.br| 395 | S

2 | en.wikipedia.org 263 | F 2 | projecthoneypot.org 377 | M 2 | projecthoneypot.org | 371 | M

3 | robtex.com 255 | BDN 3 | info.edu.sh.cn 268 | S 3 | robtex.com 252 | BDN

4 | projecthoneypot.org 217 M 4| czstudy.gov.cn 227 1S 4 | redes.unb.br 252 'S

5 | extremetracking.com 202 S 5 | gqdj.gov.cn 181 ] S 5 | pt.wikipedia.org 200 | F

6 | botsvsbrowsers.com 182 | W 6 | zhidao.baidu.com 176 | F 6 | appiant.net 136 | S

7 | cuwhois.com 151 | D 7 | 1bl.org 154 B 7 | www.tracemagic.net | 116 | S

8 | proxy.ncu.edu.tw 132 | P 8 | cqlp.gov.cn 149 ] S 8 | www.luziania.com.br 91| F

9 | comp.nus.edu.sg 116 | S 9 | cache.vagaa.com 142 T 9 | pgl.yoyo.org Q] A
10 [ quia.jp 108 | M 10 | bid.sei.gov.cn 122 ] S 10 | netflow3.nhlue.edu.tw] 76 | S
Cache size: 827 Cache size: 892 Cache size: 728
A:adservers, B:blacklist, D:domaindb, F:forum, M:ma#sn, N:dnsdb , P:proxy cache, S:Web logs, T:torrent, W:btéaior

formation about serversge., which IP address one must contact in ASia Table 3: %t'lfr%%?igftworks,\,' America

order to proceed, must be publicly available. Examples areain
name servers, domain databases, gaming servers, maitsdRE
servers, router (POP) liststc.

e P2P communicationin p2p communication, an endpoint can
act both as a client and as a server. Consequently, an IP’s in-
volvement in p2p applications such as eMule, gnutella, kejgn
kazaa, torrents, p2p streaming softwaate,, becomes publicly vis-

XXX.39.0.0/17

XXX.96.128.0/17

XXX.160.0.0/12

XXX.172.0.0/18

XXX.101.0.0/17

XXX.160.0.0/13

XXX.78.192.0/18

XXX.103.0.0/17

XXX.168.0.0/14

XXX.83.128.0/17

XXX.140.128.0/18

XXX.70.0.0/16

ible in general. Example websites aeul e- pr oj ect . net,

edonkey2000. cn, orcache. vagaa. com which lists torrent
nodes. Gnutella is a special case siGo®gl e can directly iden-
tify and list gnutella nodes using their IP addresses. Giliahour
system iS<00gl e-based, it inherits this desirable capability.

All the above examples confirm that publicly available imia-
tion about endpoints is indeed enormous in terms of size end s
mantics. The key property of our system is its ability to aniad-
ically extract all this information in a unified and methaalievay.
Moreover, because we operate on tofgzobgl e, any new source
of information becomes quickly revealed and exploited.

Table 2 answers the second question: how different are tthe en
point information sites in different world regions? In padiar,
Table 2 shows top entries for three different world regioresex-
plored (details provided in the next sectiGn)While some sites,
e.g, proj ect honeypot . org or r obt ex. com show global
presence, other top websites are completely divergentffierelint
world regions. This reveals a strong locality bias, a featue ex-
plore in more depth in Section 4 below.

3. EVALUATION

Next, we demonstrate the diversity of scenarios in whichonnc
strained endpoint profiling can be applied. In particulag, sthhow
how it can be used ta) discover active IP rangasithoutactively
probing the same,i{) classify traffic at a given network and pre-
dict application- and protocol trends @bsenceof any operational
traces from a given networkji¢) perform a semantically-rich traf-
fic classification when packet-level traces are availabhel, @)
retain high classification capabilities even when only sachfiow-
level data is available.

Table 3 shows the networks we study in this paper. They belong
to Tier-1 ISPs representative of one of the largest countriedif-
ferent geographic regions: Asia (China), South Americaagy,
North America (US), and Europe (France). The Asian and S.rAme
ican ISPs serve IPs in the /17 and /18 range, while the N. Araeri
and European ISPs serve larger network ranges.

In most scenarios (Asia, S. and N. America), we manage to ob-
tain either packet-level (Asia and S. America) or flow-leysl
America) traces from the given ISPs. The packet-level sae

3We omit details for the fourth region - Europe - due to spaage co
straints.

XXX.239.128.0/18| XXX.163.0.0/17 XXX.0.0.0/11
XXX.69.128.0/17 | XXX.193.192.0/18
XXX.72.0.0/17 XXX.10.128.0/18 Europe
XXX.14.64.0718 62.147.0.0/16
XXX.15.64.0/18 81.56.0.0/15
XXX.24.0.0/18 82.64.0.0/14

XXX.25.64.0/18
XXX.34.0.0/18

couple of hours in duration while the flow-level trace is akha
week long. These traces are invaluable for the following tem-
sons. First, they present the necessary ‘ground truth’ lilegis
us evaluate how well does our approach (without using op-
erational traces) work to discover active IP ranges (Secid)
and classify traffic at given networks (Section 3.2). Secome
use these traces to understand how our approach can bedaipplie
the classical traffic classification scenarios, both usimckpt-level
(Section 3.3) and flow-level (Section 3.4) traces.

To preserve privacy of the collaborating ISPs, in Table 3, we
anonymize the appropriate IP ranges by removing the firse Byt
from the address. We do not anonymize the IP range for the-Euro
pean ISPRroxad,http://ww. free. fr/,AS 12322), sim-
ply because we use no operational network trace. In this ease
stick with the endpoint approach, and thus only use pubhesil-
able information.

3.1 Revealing Active Endpoints

First, we explore if the Google hits can be used to infer the ac
tive IP ranges of the target access networks. This knowlélie
valuable in a number of scenarios. For example, for Intescate
measurement projects.g, [32]) knowing which IPs are active in
a given ISP can help direct measurements towards the active p
of the address space. The approach is particularly usefehghat
large-scale active probing and network scanning mighgaiga
ban from either the host or the targeted ISP. Indeed, ourdnti
approach efficiently solves this problem since we get thgetad
active IP subset by simply googling the IP addresses.

To demonstrate the potentials of this approach, we showtsesu
for the XXX.163.0.0/17 network range, which spans 32,76&dP
dresses. As one source of information about active IPs, wglgo
this IP range. As another source, we extract the active IP ad-
dresses from a packet-level trace we obtained from the sjoored-
ing ISP. Necessarily, a relatively short trace does notaionall
active IPs from this network range. The results are as falowe
extract 3,659 active IPs using Google. At the same time, Wwaex
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Figure 2: Inferring endpoints - XXX.163.0.0/17

paring results from Table 8 with the ‘ground truth,’ in therfoof (:)
traces from operational networks, arnid) (other publicly available
information such as from news articles about endpoint biehav

Correlation with operational traces. We select the S. Amer-
ican trace to exemplify correlation between the resultsnfroa-
ble 8 and the network traces. Other network traces (Asia and N
America) show results consistent with this example, as vpdaéx
below. In particular, we compare the following traffic cateigs:
p2p, chat, gaming, and browsing. Other characteristicsh s1$
OS type, browser type, spamtc., are either hard or impossible to
extract from network-level traces.

We find a remarkable correlation between the two sourcesciSpe
ically, in three of the four traffic categories, we find that teading
applications shown in Table 8 is also the leading applicaiticthe
trace. In particularGnut el | a is the leading p2p systemgn is
the leading chat software, a@ogl e is the leading website in the

2,120 IPs from the trace. The overlap is 593 addresses, or 28%trace. Similarly, for all other scenarios where our systestedts a

(593/2120).

By carefully examining the two results, we find that spatiat-c
relation is highj.e., in each trace the active IPs are very close in IP
space. Indeed, to ease network management, network athainis
tors typically assign contiguous IP addresses to hostsersdme
network. To exploit this feature, we proceed as follows. &ach
of the active IP addresses (Google- and trace-based), wet sel
small IP range window. If the distance between 2 IPs is less than
the window size, we denote all IPs between the two as active.

Figure 2 shows the results for both Google- and trace-based a
tive hosts obtained in this way. Indeed, the figure shows sigttial
correlation between the two sets. In particular, enhancedg-
based trace now has 12,375 IPs, while enhanced networkesce

strong application presence.§, ppst r eamandTencent QQ
software in China), that behavior is inevitably reflectedrates as
well.

Necessarily, not always does the information from netwoakes
and Table 8 stay in the same order. For example, results for ga
ing applications found in the traces are often not in the sarder
as shown in Table 8. The same can happen for the relative or-
der among other applications as well. For exam@ekut comes
beforewi ki pedi a in the network trace, contrary to the results
shown in Table 8.

The reasons for this behavior are obvious. The results ifeT&b
represent a spatial sample (over the IP space) averagedimmeer
On the other hand, results from the trace represent a saakg@a in

10,627 IPs. The number of overlapped addresses is as high asa short time intervali.e., a few hours in this particular case (South
8,137, such that the overlap between the two sets now becomesamerican ISP). Still, the key point here is that despiteathces

77% (8,137/10,627).

We stress once again that the key point of this approachtit
accurately predict if a given IP address is active or notratliter to
hint at the highly probable active IP ranges and ease methodslogi
that require such informatiore(g, [32]). One other observation is
that the active IP coverage obtained with this approacheaszs
as the studied network range increases. This is becausdsthe d
tance between active IP clusters increases with the sizeeaitud-
ied network. Consequently, we note that this approach besom
even more useful in the context of IPv6. This is because nmé&two
ranges will become larger; hence, randomly probing a aeriat-
work space might immediately trigger a ban.

3.2 When No Traces are Available

Table 8 (Appendix) shows the comprehensive results (includ
ing statistics about operating systems, browsers, makcaativity,
p2p, protocols and services, chat, gaming, and most popitits)
we obtained by applying the unconstrained endpoint approac
a subsetof the IP range belonging to the four ISPs shown in Ta-
ble 3. In particular, we explore approximately 200,000 @ndy
chosen IP addresses from each of the four world regions. We em
phasize that the information in Table 8 is obtained solelggithe
Google-based approach, without exploitiagy information from
the operational network traces, nor any other sources.

The key question we aim to answer here is how representatve a
these results. In particular, can they be used to predighdpelar-
ity of a given application in a given world region? Or, is taemy
correlation between these results and operational netivades
collected at given networks? We answer these questionsiy co

“Numerous experiments on other network ranges corrobonate t
the window of 17 shows the best compromise between maxigizin
the overlap between Google- and trace-based active IPs amnd m
mizing the size of enriched subsets.

in the nature of the data present in Table 8 and that taken from
operational networks, there is still a remarkably high etation.
Apparently, when an application is strongly present in &gigrea
this result shows up consistently in both network traces Eatde

8.

Correlation with other sources. Here, we compare the results
from Table 8 with other publicly available sources. One egkmis
the presence of operating systems in different world regiéws we
can seeWW ndows is the leading operating system in all examined
regions except France where tBebi an Li nux distribution is
prevalent. This is not a surprise given that French adnratish
and schools run Linux distributions [10-12]. Note that aikEm
trend can be observed in Brazil, whaiéndows has only a small
advantage ovelri nux. Again, this is because similar measures to
the ones in France have been implemented in Brazil as wel9]
related issue is that of browsers. We can seelbai | | a is more
popular in France and Brazil, as a natural result of the dpera
systems popularity.

Another example is p2p activity. Table 8 reveals some preshic
reported locality tendencies, such as torrents aMil e being
widely used in France [39], and p2p streaming software beéng
popular in China [5]. Likewise, our results confirm the wifiewn
‘Googlemania’ phenomenon. They also reveal thiaki pedi a
is a very popular website all over the world. This is not theeca
for China, where the number of hits is low, potentially dueato
ban [17] at some point. Similarlgr kut , the social network built
by Googl e, shows hits in Brazil, the region where it is very popu-
lar [1,14].

Summary. Strong correlation between the data from Table 8 and
those from operational network traces and elsewhere inalithe
unconstrained endpoint profiling approach can be effelgtiveed
to estimate application popularity trends in differenttpasf the
world. We demonstrate that this is possible to achieve inia un



fied and methodical way for all different world regions, yathout
using any operational network traces.

3.3 When Packet-Level Traces are Available

Traffic classification (based on operational network tratean-
other case where the unconstrained endpoint approach cap-be
plied. Indeed, the state-of-the-art traffic classificatmols are con-
strained in several ways. To the best of our knowledge, aH cu
rent approaches try to classify traffic by exclusively fdogson
observed packets and connection patterns establishecetsnth
points. One example is BLINC [29], which uses a graphlet Base
approach to classify network traffic. Issues with such an@ggh
are the following. First, BLINC is primarily an off-line tddhat
might be challenging to deploy in the network core. Secofak-c
sification semantics of such a system is not particularlly atthe
application level. For example, it can classify a flow as pay,
cannot say which particular protocol it is. Finally, it mdi upon
ad-hoc thresholds, which might produce variable qualispthes for
different traces, as we show below. For the same reason pthe a
proach simply falls apart when sampled traffic traces ardabla,
as we demonstrate later.

Table 4: Determining traffic classes and user behavior

Client tag Server tag Traffic class,
User behavior
web user, proxy use website Browsing
mail server mail server Mail
<game namg node | <game namg Gaming
[abusef [blocked server
n/a <protocol name- Chat
chat server
n/a IRC server Chat
[streaming node [streaming node Streaming
<issue namg <issue name Malware
affected host affected host
p2p node p2p node P2P
[ftp sharg ftp server Fip

The unconstrained endpoint approach can be applied inighgttra
forward way to the traffic classification problem. In parte
there is no reason to constrain ourselves to strictly olisgmack-
ets and connection patterns. Indeed, why not use the eltecn
lected information about the endpoints to classify traffdzhtrary
to classification in the ‘dark’ approaches.d, BLINC), we argue
that the endpoint-centric approach can not only providesgap
classification results, but also efficiently operate atranbpeeds.
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Figure 3: Traffic destinations

The first reason that makes this approach online capabls is it
ability to classify traffic based on a single observed pafdehich
one of the endpoints is revealeelq, a web server). The second
reason is a huge bias of traffic destinatiomg)(95% of traffic is tar-
geted to 5% of destinations [41]). The implication is thés possi-
ble to accurately classify 95% of traffic by reverse-engimep5%
of endpoints, which can be cached in the network. IndeedirEig

confirms strong endpoint bias fall traces: Asian, S. and N. Amer-
ican. In particular, 1% of endpoints account for more thagoGif
the traffic, and 5% endpoints carry more than 95% of trafficlin a
cases.

We apply the endpoint approach to classify traffic for theafsi
and S. American ISPs for which we have packet-level trachs.
particular, we do this in two phases. First, we collect thestpmp-
ular 5% of IP addresses and tag them by applying the methggolo
from Section 2. Next, we use this information to classify titafic
flows into the classes shown in Column 3 of Table 4. The classifi
cation rule is simple — if one of the endpoints in a flow is tatjgg
a server tage.g, as anebsi t e, then the flow is classified appro-
priately, e.g, asBrowsing The detailed classification rules are as
shown in the mapping between Column 2 and Column 3 in Table
4.

Table 5 shows the classification results relative to BLINCtfie
S. American trace. We get similar results for other tracesall
cases, we manage to classify over 60% of the traffic. At theesam
time, BLINC classifies about 52% of traffic in the Asian case] a
29.60% in the S. American case (Figure 5 forl and Table 5).
Also, in addition to outperforming BLINC quantitativeljheé end-
point approach provides a much richer semantics quality.eke
ample, we are able not only to classify traffic as chat, butiestely
pinpoint the exact types.g, msn vs.yahoo vs.usenet .

Since a flow is classified by the endpoint(s) that it involues,
correctness of our traffic classification is dependent orctneect-
ness of our endpoint profiling. We next explore the issue ofewt-
ness by comparing the set of endpoints classified by our appro
versus BLINC. Table 6 shows the percentage breakdown pss cla
(for S. America trace) in terms of endpoints found by both BCI
and our approach (BU), only by BLINC (B-U) and only by our
approach (U-B). It is clear that our approach uncovers mack e
points and hence classifies more traffic. Moreover, the nurobe
endpoints that a constrained approach such as BLINC faileldhs-
sify is quite high (100% of streaming, mail and Ftp). Finaltyis
also worth noting that the number of endpoints our approaiad
to classify is fairly limited (7% of chat, 10% of browsing aBéb6
of p2p and 0% in others). Infact, as we will explain in detaithe
next subsection, while analyzing sampled traffic, the gawéen
BLINC and our approach widens even further; the number of end
points that only our approach classifies becomes higher &
for all classes.

One last question remains to be answered: why was the eridpoin
approach unable to classify the remaining 38% of the trafig?
carefully examining the traces, we realize that the vasbnitgjof
unclassified traffic is p2p traffic, either file sharing or atréng.
The key reason why these p2p ‘heavy hitters’ were not claskifi
by the endpoint approach is because information about thse
is not available on the web (or at least not found Gyogl e).
Still, these IPs are traceable.g, [31]); indeed, we found many
of these unclassified IP addresses by joining and searcloipg-p
lar p2p systemse(g, BitTorrent). This certainly implies that the
traffic classification result for the endpoint approach ddog fur-
ther improved. Still, we refrain from pursuing that diregtiat this
point. This is because the information collected from théoige
sufficient to demonstrate the superiority of the endpoimgraach
over BLINC, even more so in sampled scenarios as we show below

5Because the N. American trace is a sampled Netflow trace, we
discuss it in the next subsection.

SMalware for BLINC indicates scan traffic. However, for ourden
point approach it includes trojans, worms, malware, spgvard

bot infected traffic.

"We do not compare Malware class due to different definitians b
tween BLINC and UEP.



Table 5: Traffic classes for S. America

Class Packet trace 1:100 Sampled frace case). Still, the key observation is that the most popular Which
(% of total flows) | (% of sampled flows) are critically ne_eded for the endpoint approach, do s_tayémlace,
BLINC [ UEP | BLINC UEP and only marginally decrease as the sampling rate increases
Chat 0.398 3.38 0.46 5.35
Browsing 23.16 44.70 1.22 40.71 20
P2P 472 | 11.31 03 9.22 2
Gaming 0.14 0.15 0 0.14 z 07 e e
Malware® 2.93 2.3 0 0.72 g 5o Asian 15P - Bi
H sian - Blinc —8—
Streamlng 0 0.18 0 0.5 £ 40 Asian ISP - Endpoints method ---©---
Mail 0 1.58 0 3.13 3 a0k . Ameri IE.PAmEerijcan IISP— I?rl:ng e
3‘5 . American - Endpoints method
Fip 0 0.1 0 1.22 7 2
Classified 29.60 | 62.14 2.02 57.28 S 1 S
Unclassified | 70.40 | 37.86 | 97.98 42.72 o T R it B %
[ Tol [ 100 [ 100 | 100 | 100 | 0 20 0 60 80 100

. . Sampling rate
Table 6: Endpoints per class for S. America

Clsf Pkt. trace 1:100 Sampled trace Figure 5: Classified traffic with the point x=1 representing ron-
Tot. [ BNU [ B-U[UB [ Tot. | BhU | B-U [ UB )
% % % % % % sampled packet-level traffic
C | 1769| 16 7 77 | 484 8 1 91
Br | 9950 | 31 10 | 59 | 4964 | 4 0 | 996 Figure 5 shows the classification results as a function of the
P | 8842| 14 8 78 | 1346 | .8 2 99 sampling rate. The first observation is that the endpointcgh
G 22 95 0 5 22 0 0 | 100 remains largely unaffected by sampling. Indeed, the péroén
S | 160 ] O 0 | 100 81 0 0 | 100 classified traffic drops only marginally. This is exactly duethe
M 3086 | 0 0 |100]11/9] O 0 100 slight drop in the percent of popular IPs at high samplingsat
F 197 | 0 0 | 100 ] 52 0 0 | 100 At the same time, BLINC's performance dramatically degsads
Br browsing,C chat,M mail,P p2p,S streaming,G gaming,F ftp . - ?
B BLINC, U Unconstrained Endpoint Profiling the sampling rate increases, for the reasons explainedeabov

particular, at sampling rate 40, the classification ratgsroelow
5%, and for the rate of 100, it becomes close to zero. In faen e
3.4 When Sampled Traces are Available at sampling rate of 100, the endpoint approach identifieshall
Not always are packet-level traces available from the ng&wo classes of traffic wherea_s BLINC is com_plet_ely unable to Ii'rﬂye_n
Often only sampledflow-level traces are available,g, collected any class (see Table ?_;)Fmally, worth noting IS that the en(_jpomt
usingCi sco’ s Net fl ow. This is particularly the case for the approach shows consistent rgsults for our thqu trace (egaiund
network core, where collecting all packets traversing #fsigeed 60%). We do not show it in Figure 5 because it is a Netflow trace

link is either infeasible or highly impractical. While it iwell-  With the sampling rate of 1:200.
known that sampled traces can cause problems to anomalg-dete

tion algorithms €.g, [33]), sampled data can create even more sig- 4. ENDPOINT PROFILING

nificant problems to traffic classification tools, such asBC| as Next, we apply our methodology to answer the following ques-
well. The key problem is that due to sampling, insufficientamt tions: (i) how can we cluster endpoints that show alike access pat-
of data remains in the trace, and hence the graphlets apgpsaae terns and how similar or different are these classes foeudfit

ply does not work. world regions, andif) where do clients fetch content frome.,

how local or international are clients’ access patterngtiese re-

100 gions? In all scenarios, we utilize the maximum possiblerimia-

= tion that we have, and apply our approach accordingly. When n
% 8 traces are available (Europe), we stick with pure endpgipt@ach
2 60t S. American Trace - Popular [Ps —&— | (Section 3.2). When packet level traces are available (As@S.
= < AmericanTrace Al Ips o America), we apply the endpoint approach as explained iicec
£ 401 s fgSiAN TraCE - All IPS -6 3.3. Finally, when flow level traces are available (N. Amajjave
2 20} i apply the approach from Section 3.4.
& . .

0 : : : : 4.1 Endpoint Clustering

0 20 40 60 80 100

Sampling rate

4.1.1 Algorithm

Figure 4: IP addresses First, we introduce an algorithm we selected to perform end-
point clustering. The key objective of such clustering is&dter
This is not the case for the endpoint approach. The key reasontnderstand endpoints’ behavior at a large scale in difteneid
is that popular endpoints are still present in the tracepitesam- regions. Employing clustering in networking has been doefere
pling. Thus, classification capabilities remain high. Fegd shows ~ (€-9. [22,25,46]). We select the autoclass algorithm [21], fiyain
the percent of IPs (both all IPs and popular 5% ones) as aiimct ~ Pecause it providesnsupervisedtlustering. This means that, in a

of the sampling rate. In particular, we create sampled varsi Bayesian manner, it can actually infer the different classem the
the Asian and S. American traces by randomly selecting packe [NPut data and classify the given inputs with a certain pbaliig
with a given probability, the waet f | owwould do it. For ex- into one of these classes. The autoclass algorithm setetspti-
ample, for sampling rate of 50, the probability to select ekesiis mal number of classes and also the definition of these clasies
1/50. The figure clearly reveals that the percent of IPs prteise $Due to sampling, the % of flows in classes may change; accord-

the trace decreases as the sampling rate increasgsaf sampling ingly, it is possible that the % of classified flows in a giveass
rate 100, 20% of of IPs remain in the trace relative to no samgpl increases relative to the non-sampled case.



a Bayesian maximum posterior probability criterion. In didd
to accurate clustering, the algorithm also provides a ramkif the
variables according to their significance in generatingdlassifi-
cation.

For each of the regions we explore, input to the endpoint-clus
tering algorithm is a set aiagged|P addresses from the region’s
network. Since in this case we are interested in the accéswioe
of users in the network, we determine the tags via an extersio
the mapping in Table 4. For regions with traces, ifiametwork
IP address sends/receives traffic to/fromoait-networkiP address
which is tagged by a server tag,g, aswebsi t e, then the in-
network address is tagged appropriately (using the mapiporg
column 2 to 3 in the table) as browsing. For regions with nodra
(Europe), if an in-network IP address has a client tag fouadhe
endpoint method, then it is tagged via the mapping from caldm
to 3 in the table and we also note the URRE the site where the tag
was obtained from. Thus, the in-network IP addresses agethg
as browsing, chat, mail, p2p, ftp, streaming, gaming, medva
combination thereof. The sample set for the explored nédsvor
is around 4,000 in-network IP addresses for all regions pixise
American, where we gather about 21,000 addresses.

4.1.2 Evaluation

Table 7: Classification on regions
Cls. S. Amer. Asia N. Amer. Eur.
1 B,C-0.421| B-0.644 B-0.648 B- 0.520
2 B-0.209 | B,C-0.254| B,M-0.096 | B,M-0.291
3 [ BM-0.109| P-0.034 | B,C-0.087| B,L-0.120
4 B,P-0.087| G-0.016 | B,L-0.073 P-0.064
5 C-0.077 | FB-0.015] P-0.038 | S,B-0.003
6 P,C-0.068 | P,B-0.015| B,P-0.036| G-0.002
7 S,B-0.022| F,C-0.012| P,C-0.017
8 G-0.007 | S,B-0.007| P,S-0.003
9 P,S-0.003| G-0.002
B browsing, C chat, M malil, P p2p
S streaming, G gaming, L malware, F ftp

Table 7 lists the top clusters generated for each regionlsdt a
provides the proportion of endpoints from a region that wgiped
into a cluster. It should be noted that this result captemsela-
tion in clients’ behavior, not necessarily the absolute presafia
given characteristic. The insights from Table 7 are as fadlo

First, browsing along with a combination of browsing andtcha
or browsing and mail seems to be the most common behavior glob
ally. Another interesting result is that gaming users tgflicdo
not engage in any other activity on the Internet. Indeed,iggm
users are clustered in a separate group of their ovatl iscenarios.
Likewise, Asian users show a much higher interest in Integaen-
ing relative to other regions. This is not a big surprise gitee
known popularity of Massively Multiplayer Online Role-Riag
Games (MMORPG) in Asia [3,4]. Finally, it is worth noting tha
p2p users do engage in other online activities such as bngvesid
chat globally albeit in varying proportions.

Interestingly enough, these global trends remain the same i
spective of the trace duration. For instance, the Asian addrier-
ican packet-level traces are of short duration (order of$jowhile
the N. American trace is of the order of several days. Mostimp
tantly, the global trends are the same for the European mktfeo
which we relied strictly upon the endpoint approach, withasing
anyoperational traces. This implies that even in the absenop-of
erational network traces, valuable information regaragingpoints’
behavior can be effectively gleaned from the web.

9The use of the URL is explained in the next subsection on Traffi
Locality.

4.2 Traffic Locality

Next, we explore where do clients fetch the content fram,
how local or global are clients’ access patterns? Such rpatte
might not necessarily reflect clients’ interests at the alooi cul-
tural levels. For example, a client might access highlybglocon-
tent, generated at another continent, by fetching it fronearloy
Content Distribution Network's replica. Likewise, clisntan get
engaged in a strictly ‘local’ debate at a forum hosted at tiero
part of the world. Still, we argue that the results we presehbw
are necessarily affected by clients’ interests at socidl @rtural
planes as well.

We proceed as follows. First, from the mechanism mentioned i
Subsectior}.1.1we obtain a pair oin-, out-networkP addresses
for each flow. Note that for the case where we only have the URL,
we obtain its corresponding IP address via DNS lookup. Negt,
obtain the AS-level distance between the two IP addressesdy
lyzing the BGP Routing Tables as obtained from Routeviev@$ [1
using the method described in [40]. Finally, we resolve tbenc
try code for a given destination AS by using the relevantrimse
Routing Registries database (ARIN, RIPE, APNIC and LACNIC)

Figure 6 shows the results. The above plots in the figure show
AS-level distance among sources and destinations; the pebw
show the country code distribution for a given AS destinatids
an example, for the S. American trace, the AS-level figurevsho
that the majority of the destinations are 2 AS-level hopsyafi@m
the sources. The corresponding figure below indicates thsti-d
nations two AS hops away from sources reside in Brazil (adoun
30%), in US (around 30%), and in Europe (about 208%y,

The most interesting insights from Figure 6 are as followisstF
results for China show very high locality: not only are thejonidy
of destinations in China as well, but majority of communicat
beyond country borders still stays in Asia. Surprisingly (ot),
similar behavior holds for US, where the vast majority of ot
is fetched from within US. Quite opposite behavior holds $or
American and European endpoints. In addition to the locetss
patterns, they show strong global behavior as well: S. Acaési
clients fetch a lot of content from US and Europe; while Ewap
clients fetch a lot from US, and much less from Asia.

5. DISCUSSION

How accurate is the information on the web?The first ques-
tion we discuss here is how trustworthy is the informationttos
web? To get a sense for this, we performed small scale experi-
ments. In particular, we checked links posted on forumsg,als
we did a port-scan against randomly chosen servers fronowari
server lists available on the web. We found that the inforomais
highly accurate. The vast majority of links posted on forumese
active, pointing to the ‘right’ content. Likewise, the pothat were
found active on the servers that we checked fully correlatk the
information available on the web.

How up-to-date is the information on the web?This is related
to the following two questions: How quickly can we detect new
or updated information about endpointsiZ) How can we detect
if the information on a given site is outdated? For the firsties
we depend upoioogl e, which is capable of quickly detecting
new content on the web; tl@oogl e crawler determines how fre-
quently content changes on a page and schedules the fregoienc
crawl to that page accordingly [7]. For detecting outdateftr-
mation, we can leverage the following information: Firstamy
websites provide information about the time the content et
updated’. Likewise, entries on Internet forums typicalhglicate
the date and time of access. In both cases, this informataluc
be used to filter-out outdated informatiaag, older than a given
date.
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Figure 6: Traffic locality

Dynamic IP addresses The number of endpoints using dy-
namic IP addresses is not negligible in today’s Internef. [£e-
cause such IP addresses are used by multiple endpoinesediff
clients’ activities can be projected on the same addresse that

mation available on the web for understanding endpoirgs, IP
addresses. In this regards, our work can be considered &s$ luftr
important step towards developing a vertical search erfginend-
points. Indeed, one of our future research directions isitlollsuch

serversare typically not run over dynamic IP addresses and even if a crawler to index IP address information from the web (iadtef
they are, they have to use a dynamic DNS service to be mapped tooverriding on generic search engines).

a DNS name. In this case, our endpoint classification coulkehbe
hanced with information about dynamic IP addresses asrwatai
from logs maintained at dynamic DNS registries. While ourcu
rent endpoint classification approach is primarily dependa in-
formation about servers hosted on static IP addressesn iblsa
be used to accurately detect dynamic IPs. Indeed, if an |Reasd
shows highly active behavior and matches to an abnormaigela
number of different applications, that could imply a dynart®
address.

Using other sources of information Not all information about
the endpoints is directly available on the web. The most impo
tant example is p2p file sharing or streaming. Indeed, theyen
points’ to such systems are necessarily available on the(aigb
torrentportal.con). Yet, the next stage in communication,
i.e., getting the appropriate peer IP address to download a dife,fr
is not necessarily available in the web. Still, this infotioa is
publicly available. It could be collected in a straightvi@rd way
by crawling such systeme (g, [31]).

Non-Latin keywords. While we currently rely on parsing Latin
language scripts to generate our keyword set, even thiwslls to
develop interesting insights about the non-Latin langusmgaking
countries, as we have shown while analyzing a network trama f
Asia. In future, however, we plan to extend our methodolagy t
wards parsing non-Latin language pages in order to devetopra
comprehensive keyword set.

6. RELATED WORK

Information available on the web has traditionally beemdeal
and indexed by generic search engines suckoag)| e [6], Yahoo
[18], Ask [2] andM cr osoft Sear ch [13]. However, recently
there has been a steady increase in ‘vertical search endiats
crawl and index only specific content suchlasdeed [8], a job
search engine an8pock [15], a people search engine. To the
best of our knowledge, this paper is the first to propose usifug-

In the context of correlating multiple sources of infornagti
our work is closely related to [45] and [23]. The authors 8][4
correlate email addresses with IP addresses to determiieh wh
IP addresses are dynamic. The authors in [23] correlat@wsri
IP address lists such as Bots, Phishing sites, Port scaaners
Spammers to conclude that botnet activity predicts spamrair
scanning while phishing activity appears to be unrelateathers.
While similar to [23] one of the tags generated by our method i
mal war e we also provide for a wide variety of tags (Tablel) us-
ing a complete behavior profile for an endpoint.

Most existing traffic classification techniques classiBffic on
the basis of characteristics of the traffic stream itse)fpbrt num-
bersare used to classify traffic in [26, 28, 29, 37, 38, 42], howeve
they have been rendered ineffective because applicatiomsne
ually change port numbers to evade detectian,, Skype; (i7)
payload signaturesare used in [26, 28, 43]. However, their de-
merit is that payload inspection is expensive and ineffectin
encrypted payloads; and@i{) numerical and statistical techniques
in [20, 27, 29, 35, 38, 42] inspect flows for their properties!s as
average packet size, average flow duration, distributioparfs,
etc., and cluster flows accordingly. However, their effesmtiess
decreases rapidly with sampling rate as shown in Sectiorr & fo
representative technique, BLINC [29]. We depart from |owki
into the traffic stream to characterize it, and propose aduomeh-
tal shift in the traffic classification problem by first cldfgang the
endpoints themselves via information available on the w@br
‘unconstrained endpoint profiling’ is able to achieve hidgssifi-
cation rates even at high sampling rates.

7. CONCLUSIONS

In this paper, we proposed a novel approach to the endpaint pr
filing problem. The key idea is to shift the research focusifrain-
ing operational network traces to extracting the informatabout



endpoints from the web. We developed and deployed a profiling [26] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACASo#ated

tool that operates on top of tli@®ogl e search engine. It is capa-
ble of collecting, automatically processing, and stratally com-
bining information about endpoints, and finally tagging #zene
with extracted features. We demonstrated that the propaped
proach cani) accurately predict application and protocol usage
trends even wheno network traces are available;) dramatically
outperform state-of-the-art classification tools whenkeadraces
are available; andi{i) retain high classification capabilities even
when only sampled flow-level traces are available.

We applied our approach to profile endpoints residing at four
different world regions, and provided a unique and compnsive
set of insights aboutif network applications and protocols used
in these regions,i{) characteristics of endpoint classes that share
similar access patterns, andij clients’ locality properties. Our
approach opens the doors for revealing people’s interestafini-
ties far beyond those related to network applications antbpols.
Indeed, the Internet is only a medium that people use to espre
their social interests and needs. Generalizing our appraacn-
derstand such interests and needs, by exploring thecontentthat
clients access, is an exciting research challenge we plaatkte.
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Table 8: Traffic mix for studied networks - obtained using sokly the Googl e-based ap

proach (no traces)

Asia (China)

S. America (Brazil)

N. America (US)

Europe (France)

Operating
systems

windows(2,445) ubuntu(209)
redhat(189) linux(137)
unix(92) longhorn(23)
slackware(20) debian(17)
suse(13) gentoo(10)
fedora(10) opensuse(4)

windows(1,783) debian-br(1,700
ubuntu(721) linux(151) redhat(91
fedora(39) unix(13) opensuse(11)
mandrivalinux(10) suse(10)
gentoo(7) mandrake(5)
slackware(5)

windows(659) redhat(310)
linux(144) opensuse(100)
ubuntu(72) debian(34)
suse(20) unix(13) fedora(12)
gentoo(10) slackware(2)
mandrake(2)

debian(1,206) windows(805)
ubuntu(570) linux(556) redhat(263)
opensuse(105) mandrivalinux(78
unix(76) mandrake(60)
suse(50) fedora-fr(26) gentoo(19
knoppix-fr(10) slackware(1)

Browsers

MSIE(2,694) mozilla(417)
opera(48) netscape(29)
maxthon(14)

mozilla(1,354) MSIE(1,061)
opera(54) netscape(49)
enigma(17) maxthon(3)

MSIE(495) nozilla(451)
netscape(72) opera(20)

mozilla(515) MSIE(320)
netscape(75) opera(29)
enigma(8) maxthon(1)

Malicious
activity

spam(2,392) net-abuse(2,087
malware(883) dnsbl(253)
googlebot(100) blacklist(92)
worm(30) virus(29) trojan(21)
spyware(17) hijack(5)
gquakeabuse(4) stormworm(4)
banlist(4)

spam(5,532) net-abuse(1,514)
blacklist(1,152) blocklist(443)
virus(272) dnsbl(239)

malware(210) bots(90)
googlebot(48) trojan(35)

gquakeabuse(34) banlist(28)
spyware(12) worm(10)
hijack(8) stormworm(10)

spam(2,240) bots(259)
blacklist(129) googlebot(113)
malware(112) dnsbl(89)
net-abuse(85) spyware(54)
virus(52) hijack(32)
adservers(24) worm(20)
stormworm(12) trojan(7)
banlist(5) quakeabuse(4)

spam(7,672) net-abuse(314)
gquakeabuse(182) malware(120)
banlist(116) blacklist(98)
googlebot(98) dnsbl(50)
virus(50) bots(35)
adservers(16) spyware(15)
stormworm(9) trojan(7)
hijack(5) worm(5)

P2P

ppstream(12,818) torrent(4,441]
Foxy(2,612), gnutella(884)
announce(547) tracker(388)
p2psky(160) bitcomet(39)
edonkey2000(24) eMule(18)
ed2k(16) xunlei(14)
LimeWire(7) tvants(5)
morph500(3) gnucdna(3)
Ares(3) Pplive(2)

) gnutella(1,560) gnucdna(923)
morph500(850) LimeWire(636)
torrent(476) tracker(96)
ppstream(50) announce(49)
Ares(47) emule(16) p2psky(8)
ed2k(4) Foxy(3) bitcomet(3)

LimeWire(311) gnutella(274)
gnucdna(234) morph500(227
torrent(104) tracker(53)
announce(19) Ares(8)
p2psky(4) WinMX(2)
emule(1) ed2k(1)

torrent(2,125) emule(689)
gnutella(317) announce(283)
gnucDNA(231) tracker(224)
morph500(223) ppstream(153)
LimeWire(116) p2psky(68)
Foxy(59) ed2k(33) bitcomet(19)
edonkey2000(11) Ares(4)

Protocols
& services

ftp(10,725) webmail(937)
dns(692) email(462)
proxy(347) mms(156)
smtp(72) mysql(6)
pop3(2) nethios(1)

ftp(3,383) webmail(2,638)
proxy(1,023) dns(542)
email(527) smtp(145)
mysql(79) pop3(13)
mms(9) netbios(2)

ftp(1,868) dns(386)
webmail(326) proxy(302)
email(144) smtp(81)
mms(23) pop3(13)
netbios(2) mysql(1)

ftp(12,417) webmail(7,044)
proxy(442) smtp(161)
dns(149) email(131)
mysql(66) mms(33)
netbios(20) pop3(13)

Instant
messaging

0q(938) yahoo(700)

msn(106) usenet(68)
oicq(67) irc(31)
icq(25) skype(4)

msn(1,233) yahoo(989)
usenet(240) icq(170)
qq(126) aol(111)
irc(93) skype(1)

yahoo(240) aol(115)
msn(61) usenet(32)
irc(30) icq(8)
messenger(8) skype(6)

yahoo(383) usenet(314)

irc(185) aol(89) msn(70)

qq(19) gaim(18) icq(18)
skype(12)

Gaming

counter-strike(37) quake(36)
mmorpg(30) starcraft(21)

poker(14) warcraft(6) sims(4)

sims(261) poker(145)
counter-strike(144) mmorpg(30)
warcraft(19) quake(9)
world_of_warcraft(8) halo(4)
starcraft(2)

worldofwarcraft(32)

poker(14) halo(5)

quake(4) sims(2)
cstrike(1)

counter-strike(49) quake(43)
poker(26) sims(23)
warcraft(7) mmorpg(7)
world_of_warcraft(5) halo(5)
starcraft(2)

Browsing

google(47,584) bbs(32,134)
blog(4,282) baidu(3,009)
board(2,298) yahoo(700)
youtube(356) forums(278)

wikipedia(170) rapidshare(6)

httpshare(4)

google(61,495) wikipedia(8,245)
board(3,239) bbs(1,787)
forum(1,436) blog(996)
yahoo(989) orkut(564)
youtube(370) baidu(76)
brturbo(71) rapidshare(20)

httpshare(8)

google(2,874) wikipedia(1,819
forums(1,139) bbs(522)
board(298) blog(287)
yahoo(240) youtube(44)
rapidshare(1)

google(20,454) wikipedia(6,637)
forum(6,609) blog(728)
bbs(709) board(533)
yahoo(383) youtube(124)
baidu(57) skyrock(12)
rapidshare(4)




