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Abstract—Search engines have greatly influenced the way peo-
ple access information on the Internet as such engines provide the
preferred entry point to billions of pages on the Web. Therefore,
highly ranked web pages generally have higher visibility to people
and pushing the ranking higher has become the top priority
for webmasters. As a matter of fact, search engine optimization
(SEO) has became a sizeable business that attempts to improve
their clients’ ranking. Still, the natural reluctance of search
engine companies to reveal their internal mechanisms and the
lack of ways to validate SEO’s methods have created numerous
myths and fallacies associated with ranking algorithms; Google’s
in particular.


In this paper, we focus on the Google ranking algorithm and
design, implement, and evaluate a ranking system to systemati-
cally validate assumptions others have made about this popular
ranking algorithm. We demonstrate that linear learning models,
coupled with a recursive partitioning ranking scheme, are capable
of reverse engineering Google’s ranking algorithm with high
accuracy. As an example, we manage to correctly predict 7 out
of the top 10 pages for 78% of evaluated keywords. Moreover,
for content-only ranking, our system can correctly predict 9 or
more pages out of the top 10 ones for 77% of search terms. We
show how our ranking system can be used to reveal the relative
importance of ranking features in Google’s ranking function,
provide guidelines for SEOs and webmasters to optimize their
web pages, validate or disapprove new ranking features, and
evaluate search engine ranking results for possible ranking bias.


I. INTRODUCTION


Search engines have become generic knowledge retrieval
platforms used by millions of Internet users on a daily bases.
As such, they have become important vehicles that drive users
towards web pages highly ranked at them (e.g., [21], [24]).
Consequently, finding ways to improve ranking at popular
search engines is an important goal of all web sites that care
about attracting clients.


Ways to improve a web page’s search engine ranking
are different. On one side, SPAM farms are a well-known
approach to boost a web site’s ranking. This is achieved by
artificially inflating a site’s popularity, i.e., by increasing the
number of fake links pointing to it. Luckily, ways to detect and
contain such approaches appear to be quite successful [20],
[22], [26]. On the other side, an entire new industry, i.e., search
engine optimization (SEO) (e.g., [15], [19]), is booming. Such
companies and experts claim to be capable of improving a web
page’s rank by understanding which page design choices and
factors are valued by the ranking algorithms.


Unfortunately, the combination of the natural reluctance
of search engine companies to reveal any detail about their
internal mechanisms (which are kept top secret), the lack


of any knowledge or independent validation of the SEO
methodologies, and the ever-lasting interest on this topic, has
opened the doors to various theories and claims, myths and
folklore about which particular factor is influential e.g., [1]–
[3], [6], [14], [17], [18]. To the best of our knowledge, none of
these claims are backed by any scientific evidence. At the same
time, the problem of reverse-engineering a search engine’s
ranking algorithm, such as Google’s, is widely considered a
close-to-impossible task in the academic community due to its
inherent complexity.


The key contribution of our paper is that we demonstrate
that simple linear learning models, accompanied by a recursive
partitioning ranking scheme, are capable of predicting a search
engine’s (Google’s, in particular) ranking results with high
accuracy. As an example, we show that when non-page-
content factors are isolated, our ranking system manages to
correctly predict 8 pages within the top 10 ones for 92% of
explored keywords. In the more general scenarios, we manage
to correctly predict 7 or more pages within the top 10 ones
for 78% of explored keywords.


In this paper, we develope an automated ranking system that
directly queries Google, collects search results, and feeds the
results to its ranking engine for learning. Our ranking engine
incorporates several learning algorithms, based on training
both linear and polynomial models. Using our ranking system,
we show that a linear model trained with linear programming
and accompanied with recursive partitioning algorithm is able
to closely approximate Google’s ranking algorithm. In addi-
tion, we use our ranking system to analyze the importance
of different ranking features to provide guidelines for SEOs
and webmasters to improve Google’s ranking of web pages.
Finally, we present case studies on how our ranking system
can facilitate in validating and disapproving potential new
ranking features reported in the Internet. More specifically, we
confirm that Google imposes negative bias toward blogs, and
that HTML syntax errors have little to no impact to Google’s
ranking.


This paper is structured as follows. In Section II, we define
the problem and outline the folklore. In Section III, we present
the detailed design of our ranking system. We present our
evaluation results of our ranking system in Section IV and
several case studies in Section V. Finally, we conclude in
Section VI.
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II. PROBLEM STATEMENT


A. Goals
There have been numerous efforts that attempt to reveal


the importance of ranking factors to a search engine [1], [3],
[14], [18]. While some of them are guess-works by webmas-
ters [1], [18], others are based on experience of search engine
optimization (SEO) experts [3], [14]. While we recognize that
guessing and experience might indeed be vehicles for revealing
search engine internals, we strive for more systematic and
scientific avenues to achieve this task. The goal of our study
is to understand the important factors that affect the ranking
of a web page as viewed by popular search engines. In doing
so, we validate some folklore and popular beliefs advertised
by webmasters and the SEO industry.


1) Ranking Features: In this work, we focus on Google’s
search engine, and aim to study the relative importance of
web page features that potentially affect the ranking of a
web page, as listed in Table I. For each web page (URL),
we collect 17 ranking features. These ranking features can
further be divided into 7 groups. The page group represents
characteristics associated with the web page including page
rank score (PR) and the age of the web page (AGE). The
URL group represent features associated with the URL of the
web page. Parameter HOST counts the number of occurrences
of the keyword that appear in the hostname and PATH counts
the number of occurrences of the keyword in the page segment
of the URL.


The domain group consists of features related to the domain
of a web site. D SIZE reports the number of web pages
indexed by Google in the domain and D AGE reports the age
of the first page index by archive.org in the domain. Groups
header, body, heading and link are features extracted from
the content of the web page. TITLE counts the number of
occurrences of the keyword in the title tag. M KEY counts the
number of occurrences of the keyword in the meta keyword tag
and M DES counts the number of occurrences of the keyword
in the meta description tag. DENS is the keyword density of a
web page which is calculated as the number of occurrences of
the keyword divided by the number of words in the web page.
H1 through H5 is the number of occurrences of the keyword
in all the headings H1 to H5, respectively. ANCH counts the
number of occurrences of the keyword in the anchor text of
an outgoing link and IMG counts the number of occurrences
of the keyword in an image tag.


Google claims to use more than 200 parameters in its
ranking system. Necessarily, we explore only a subset of all
possible features. Still, we demonstrate that ranking features
listed in Table I are adequate for providing high ranking
prediction accuracy. Moreover, we are capable of establishing
important relationships among the explored features.


B. State-of-the-Affairs (the Folklore)
The natural Google’s reluctance to reveal any details about


their internal mechanisms on one hand, and the great popular-
ity and the impact it has in shaping users’ browsing behavior
on the other, has created a great interest and attempts to
understand how its ranking algorithm works. Still, there is no
consensus on the set of the most important features. Different
people express quite different opinions, as we illustrate below.


We collect different opinions for Google’s ranking features
and summarize in Table II. The second column labeled by


Group Feature Detail


Page PR pagerank score
AGE age of the web page


URL HOST keyword appear in hostname
PATH keyword in the path segment of url


Domain D SIZE size of the web site’s domain
D AGE age of the web site’s domain


Header
TITLE keyword in the title tag of html header
M KEY keyword in meta-keyword tag
M DES keyword in meta-description tag


Body DENS keyword density


Heading


H1 keyword in h1 tag
H2 keyword in h2 tag
H3 keyword in h3 tag
H4 keyword in h4 tag
H5 keyword in h5 tag


Link ANCH keyword in anchor text
IMG keyword in image tag


TABLE I
RANKING FEATURES


# SEOmoz’07 Survey Idv


1 Keyword use in title
tag Keywords in title Keyword in URL


2 Anchor text of in-
bound link


Keywords in
domain name


Keyword in domain
name


3 Global link popular-
ity of site


Anchor text of in-
bound links Keyword in title tag


4 Age of site Keywords in head-
ing tags


Keyword in H1, H2
and H3


5


Link popularity
within the sites
internal link
structure


Keywords in URL Page Rank


6 Topical relevance of
inbound links to site


Anchor text from
within the site


Anchor text of in-
bound link to you


7
Link popularity of
site in topical com-
munity


Internal links Site listed in DMOZ
Directory


8 Keyword use in
body text


Keywords in Alt at-
tribute of images


Site listed in Yahoo
Directory


9 Global link popular-
ity of linking site


Relevance of exter-
nal links


Rank Manipulation
by Competitor At-
tack


10 Topical relationship
of linking page Keywords in body Site Age


TABLE II
VARIOUS RANKING FEATURE OPINIONS


SEOmoz’07 [6] is a list of top 10 ranking factors created by
surveying 37 SEO experts by SEOmoz [14] in 2007. This
column represents observations from knowledgeable experts.
The third column labeled by Survey [18] is a list of top 10
ranking features rated by a poll of Internet users interested in
this topic. This column represents the perception of Google
ranking algorithm from general Internet users. The fourth
column labeled as Idv [17] is the top 10 ranking feature list
posted by an Internet marketing expert on his personal web
page. This column represents an individual investigator that
studies this topic.


Due to the lack of systematical measuring and evaluating
guidelines, it is not surprising to see a huge difference of
ranking between the three lists. The SEO experts obviously
favor ranking features associated with hyperlinks as they rated
7 out of the top 10 ranking features in this category. On
the contrary, the other two opinions have only 3 and 1 top
10 ranking features associated with links, respectively. In
addition, the web-site’s age feature is in the top 4 features
among SEOs, but is absent in the second list and is at the
bottom of the third list. Moreover, some of the ranking features
are counter-intuitive. For example, the 7th ranking feature in
the Idv list suggests that a site listed in the Yahoo directory
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can help Google’s ranking. Furthermore, we are surprised to
see only one list(Idv) includes the page rank in the top 10
lists, which is still widely believed as an important Google’s
ranking factor.1


From time to time, Internet users will see rumors that spread
about Google’s ranking algorithm. However, to the best of
our knowledge, there does not exist a systematic approach to
validate or disapprove these assumptions. This motivates us to
perform research in this topic and build a system to facilitate
the necessary evaluation process.


III. METHODOLOGY


In this section, we discuss the design of our ranking system
that analyzes and reverse-engineers Google’s ranking algo-
rithm. The architecture of our system is depicted in Figure 1.
The two major components are the crawler and the ranking
engine. The data collection is performed by the crawler which
queries Google and receives the ranked search results. In
addition, it downloads HTML web pages from their original
web sites and queries domain information as described in
Section III-A.


Second, since multiple features can affect the ranking of
web pages in complicated ways, the ranking engine extracts
features under study from raw web pages and performs learn-
ing to train several ranking models to approximate the ranking
results by Google. In this part, we make several contributions:
(1) We confirm that Google’s ranking function is not a simple
linear function of all the features, by showing a nonlinear
model can outperform, i.e., approximates Google’s ranking
better than, a simple linear model. However, a nonlinear
model is difficult for humans to digest. (2) We present a
simple recursive ranking procedure based on a simple linear
model and show that it can achieve comparable accuracies to
the nonlinear model. The theoretical underpinning for such
a procedure is that recursive application of a linear model
(function) can effectively approximate a non-linear function.
In addition, the linear model converges more efficiently and
outputs more human readable results.


A. The Crawler
The crawler submits queries to Google search engine and


obtains top 100 web pages (URL) for each keyword. Without
losing generality, we limited our queries to HTML files to
avoid web pages generated dynamically by server side scripts
such as CGI or PHP. In addition, we focus on web pages
composed in English in our experiments. The Google API
syntax we use for the above two features is as filetype:
html&lr=lang en. Moreover, to obtain the date Google indexed
the web pages, we submit our queries with an additional
parameter qdr:y10. By doing so, the date Google indexed the
web page will be returned in the search result page for us to
extract the age of the page ranking feature. Finally, for each
web page, the crawler does the following:


1) Downloads the web page from the original web site.
2) Queries the URL’s page rank score by Google toolbar’s


API [11].
3) Obtains the age of a page (the date Google indexed the


web page) by parsing the search result page.


1It is possible that the importance of the Page Rank feature was implicitly
assumed. Nevertheless, we were unable to find any such explicit statement
associated with the given lists.


Fig. 1. System Architecture


4) Obtains the size (the total number of pages) of the
domain by querying Google with site:[domain].


5) Queries archive.org and fetches the age of the web site
(the date when the first web page was created on this
web site).


B. The Ranking Engine


There are three components in the ranking engine. The
HTML parser [12] converts web pages into the document
object model (DOM) for the tag analyzer to exam the number
of keywords that appear in different HTML tags such as
anchor text. The ranking engine trains the ranking model
by combining features obtained from the web page contents,
page rank scores, and domain information. After the model is
created, the ranking engine evaluates the testing sets by ap-
plying the model. The evaluator then analyzes the results and
provides feedback to the ranking engine which is used to adjust
parameters in the learning algorithms such as error threshold.
In the following sections, we describe the two ranking models
we experimented in this paper – Linear programming and
SVM. We use ranking features listed in Table I to train our
ranking models.


1) Linear Programming Ranking Model: In this Section,
we describe our linear programming ranking model. Given
a set of documents I = (i1, i2, ..., in), pre-defined Google
ranking G = (1, 2, ..., n), and a ranking algorithm A, the
goal is to find a set of weights W = (w1, w2, ..., wm)
that makes the ranking algorithm re-produce Google ranking
with minimum errors. The objective function of the linear
programming algorithm attempts to minimize errors (the sum
of penalties) of the ranking of a document set. Equation (1)
defines the objective function which is a pairwise comparison
between two documents in a given data set.


Φ(W ) =
n∑


i=1


n∑
j=i+1


ci · |i− j| ·D(i, j) (1)


In Equation (1), ci is a factor that weights the importance of
the ith document (e.g., a top 5th page is more important than
a top 50th page). |i − j| is the distance (ranking difference)
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between the ith and the jth page. Finally, D(i, j) is a decision
function we define as


D(i, j) =


{
0 if f(A,W, i) >= f(A,W, j),
1 if f(A,W, i) < f(A, W, j).


(2)


where f(A,W, i) is the score produced by algorithm A with a
set of weights W for the ith page in the given data set. Page
X is ranked higher than page Y if it receives a higher score
than page Y. The decision function denotes that if the ranking
of the two pages preserves the order as Google’s ranking, the
penalty is zero. Otherwise, the penalty will be counted in the
error function which is denoted in Equation (1).


Since we cannot import conditional functions (e.g., D(i, j))
into a linear programming solver, we transform the decision
function into the following form:


f(A,W, i) + DijFmax ≥ f(A, W, j), (3)


where Fmax is the maximum value to which f(A,W, ·) would
evaluate, and Dij ∈ {0, 1}. When Dij = 0, the preceding
inequality is satisfied only if


f(A,W, i) ≥ f(A,W, j). (4)


When Dij = 1, the inequality is always satisifed. There-
fore, we have effectively converted the original minimization
problem into the problem of minimizing the Dij . Hence, we
can now replace D(i, j) in the objective function with Dij .
Finally, the score function f(A,W, i) can be represented by
a dot product of ranking parameters X = (x1, x2, ..., xm)
and weights W = (w1, w2, ..., wm) denoted as f(A,W, i) =
fA(wi ·xi). For example, the parameter xi can be the number
of keywords that occur in the title tag and wi is the weight
associated with xi.


In addition to the objective function, we set constrains to
our linear programming model. For each pair of pages (i, j)
where i < j (i is ranked higher than j by Google), we have a
constrain:


f(A,W, j)− f(A,W, i) ≤ τ (5)


where τ is the maximum allowed error which is set to a
predefined constant τ . The constant τ is adjusted by the
feedback from the evaluator to refine the ranking results.
For example, when linear programing solver cannot find a
feasible solution, we relax the maximum allowed error τ . The
linear programming solver we use in our experiments is ILOG
CPLEX [9]. In addition, we apply a recursive partitioning
algorithm as we describe in Section III-B3 below.


2) Support Vector Machines Ranking Model: Support vec-
tor machines (SVMs) are a set of supervised learning meth-
ods used for classification, regression and learning rank-
ing functions [25]. In a SVM, data points are viewed as
n-dimensional vectors (n equals to the number of ranking
features in our case). A SVM constructs a hyperplane or a set
of hyperplanes in a high-dimensional space, which is used
as a classifier to separate data points. In our experiments,
we use the SVM-rank [16], [23] implementation with linear
and polynomial kernels to train the ranking functions. The
ranking features we used in our SVM experiments are the same
as the linear programming model as discussed in Section II.
The parameter c in SVM-rank controls the trade-off between
training error and margin. The ranking engine adjusts the value
of parameter c according to the feedback provided by the


evaluator in order to find the best value for prediction accuracy.
Finally, we perform a recursive partitioning algorithm as we
describe in the following section.


3) Recursive Partitioning Ranking Algorithm: It is common
that a search engine keeps several layers of indices in practice.
For example, the first layer of indices may serve as a cache
and it is able to answer queries for top 20 pages. When the
first layer query fails, it is then sent to subsequent indices.
Additionally, the search engine’s internal ranking algorithm
can be non-linear. To capture such a non-linear and/or non-
equational behavior for search engine’s ranking function, we
developed a recursive partitioning algorithm to approximate
this ranking behavior. We apply this algorithm to both our
linear and SVM models. We evaluate the power of this
recursive partitioning ranking algorithm in Section IV-C. First,
we describe our recursive partitioning algorithm with pseudo-
code shown below.


Algorithm 1 Recursive Partitioning Ranking Algorithm
1: procedure PARTITION(S, X) S: a set of pages, X: top


X
2: Rank(S) Train or apply ranking models
3: while |S| > 2.5 ∗X do
4: N = Max(2 ∗X, |S|


2 )
5: S ← Top(S,N) Return top N pages
6: return Partition(S, X)
7: end while
8: return Top(S, X) Return top X pages
9: end procedure


In algorithm 1, S denotes a set of pages in a dataset and
X denotes the target top X pages to be evaluated (e.g., top 10
pages). Algorithm 1 can be explained by giving an example
of how to train recursive ranking models for selecting top
10 pages (X = 10) out of 100 web pages (|S| = 100). In
the first round of recursion, the learning algorithm produces
a set of weights by training all 100 pages (in line #2 of
algorithm 1). Next, line #4 calculates N = 50. In line #5,
the function returns the top 50 pages out of 100 using the
model learned previously. Next, the algorithm moves on to the
second recursion with a set of 50 pages in S. Similarly, in the
second recursion, a new set of weights for ranking is learned
and the variable N in line #4 becomes 25. The partitioning
algorithm further extracts top 25 pages from the 50 pages (in
line #5) and proceeds to the third round. In the third round,
an additional new set of weights is learned in line #2 of the
algorithm 1. The condition statement in line #3 is not met
in this round. Therefore, the algorithm escapes the recursive
while loop. Algorithm 1 then proceeds to line #8 and return
the top 10 pages by applying the ranking model learned in the
third round.


The process of evaluating the testing sets using our recursive
partitioning ranking algorithm is similar to the steps we
described above. The input of this evaluation process contains
a set of pages to evaluate S, a variable X , and ranking models
learned in the previous training procedure. For example, to
evaluate top 10 pages out of 100 pages in a dataset, the
recursive partitioning algorithm first obtains top 50 pages
using the weights learned in the first round of the training
process. The top 50 pages are sent to the second round and
the algorithm extracts top 25 pages using the set of weights
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learned in the second round. Finally, the third round evaluates
top 10 pages out of the 25 pages using the third set of weights
learned in the third round of the training process.


IV. EVALUATION


In this section, we evaluate the accuracy of our ranking
system in predicting Google’s ranking results. We first explain
our experimental methodology. Next, we evaluate our system’s
overall ranking accuracy. Then, we evaluate the importance of
the recursive partitioning ranking algorithm and demonstrate
its effectiveness in dealing with the underlying non-linearities.
Finally, we evaluate the relative importance of various web
page features.


A. Experimental Setup
Using our crawler, we collect search results from Google


for 60 keywords in 4 categories during May 2009, shown in
Table III. The four categories are Linux commands, chemical
elements, as well as music and astronomy terms. We select
these terms and the corresponding keywords to keep our
experiments simple and at the same time not lose generality.
In particular, the goal is to avoid plural, similar words that
Google might take into account, etc. Later, in Section V-A, we
demonstrate that our approach is applicable to other popular
keywords as well.


In each experiment, we randomly select 15 keywords to
form the training set. We then run these keywords through
our ranking system and develop a ranking model. Then, we
use the remaining 45 keywords, which we term the testing set,
to evaluate the accuracy of our model.


Type Keywords
Linux
commands


tcpdump, modprobe, egrep, chmod, dhclient, dmesg,
netstat, nslookup, traceroute, rsync, crontab, iconv,
telnet, vmstat, xtail


Chemicals potassium, boron, chlorine, manganese, lithium, mag-
nesium, phosphorus, sulfur, fluorine, iodine, helium,
zinc, platinum, cobalt, uranium,


Music Terms adagio, arpeggio, baroque, cadence, crescendo, dimin-
uendo, fortissimo, legato, moderato, pianissimo, pizzi-
cato, ritardando, rubato, sforzando, staccato,


Astronomy
Terms


aphelion, apogee, chromosphere, ecliptic, equinox,
photon, pulsar, supernova, zodiac, galaxy, polaris,
neutron, perihelion, magnetosphere, perigee.


TABLE III
QUERY KEYWORDS


B. Overall Ranking Accuracy
Here, we evaluate the effectiveness of our ranking system


by comparing its ranking results to those of Google. In the
experiments, we use linear programming (Section III-B1) as
well as the two SVM learning algorithms (Section III-B2), i.e.,
linear and polynomial. In all cases, we apply three rounds of
recursion (Section III-B3).


Figure 2 shows the ranking results of our system under
the LP model and the two SVM models, using the ranking
features listed in Table I as input variables. In this figure, the
x-axis represents the hit rate of the top 10 pages, i.e., the
percent of the top 10 pages ranked by Google that are also
captured in the top 10 pages output by our system. The y-axis
shows the percent of pages, distributed over all keywords from
the test set, that satisfy the given hit rate. For example, the
point (60,100) in the figure for the SVM polynomial algorithm
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Fig. 2. Comparison of Ranking Models


means that for all 45 keywords from the test set, our algorithm
managed to always (100% of time) correctly predict at least
6 pages out of the top ten ones reported by Google (hence,
60%). In general, the closer the curve is to the upper right
corner, the better the result is.


Figure 2 shows that the linear programming model achieves
accuracy comparable to SVM-linear, and has only slightly
lower accuracy compared to the SVM-polynomial model. In
particular, for the LP model, 78% of the keywords experi-
enced a hit rate greater than 70%, and 54% of the keywords
experienced a hit rate greater than 80%. Despite the slight
lag behind the polynomial model, the linear model is much
more practical and convenient because it provides human-
readable insights (feature weights in our case). Hence, we use
linear programming models in the rest of our experiments. An
exception is the next section, where our goal is to understand
the role of recursive partitioning ranking. Hence, we explore
this issue in the context of the non-linear algorithm as well.


C. The Power of Recursive Partitioning Ranking
Several factors potentially introduce non-linear effects in


Google’s ranking results. First, it is more than likely that
Google uses non-linear functions in their ranking algorithms.
Second, it is preferable for a search engine to keep multiple
indices (e.g., one for the most accessed top 20 pages, another
one for pages 20-40, etc.), instead of having a huge index.
These indices can be ranked independently and then merged
together. Hence, this can add another level of non-linearity
that can further complicate the reverse-engineering problem.


Our goal here is to understand the role of the recursive par-
titioning and its ability to “smooth out” these non-linearities.
Hence, we compare the performance of recursive and non-
recursive ranking approaches. We study both linear and poly-
nomial models. Our hypothesis is that recursion should be
much more effective in the linear case, because the polynomial
model should be able to track non-linearities more effectively.
We validate this hypothesis below.


Figure 3 compares the results of the LP model and the SVM-
polynomial model without recursive partitioning and with 1,
2, 3 rounds of recursive partitioning. We make the following
observations. (1) Without recursive partitioning ranking, the
LP model achieves lower prediction accuracy than the SVM-
Polynomial model. For example, the former predicted 8 out
of the top 10 pages by Google for 18% of the keywords,
while the later predicted 8 out of the top 10 pages by
Google for 32% of the keywords. (2) Recursive partitioning
significantly improves the ranking accuracy for both models.
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Fig. 3. Power of Recursive Partitioning


The improvement reaches diminishing return after 3 rounds.
The average hit rate after 3 rounds of recursion improves by
20% over the no recursion algorithm. This also suggests that
Google’s ranking function is not linear (at least of the features
we studied.) (2) After 3 rounds of recursive partitioning, the
LP model achieves similar accuracy as the SVM-polynomial
model. Hence, it is sufficient to analyze the linear model
which gives human-readable outputs as the weights of the
linear model directly reflect the relative importune of different
features. We next investigate the weights of the features in the
linear model.


D. Relative Importance of Features
We next analyze the relative importance of different ranking


features towards contributing to the overall ranking of a page.
Since in the LP model the ranking function is simply a linear
combination of all the ranking features, the relative importance
of them boils down to the relative values of the weights in the
linear function.


Figure 4 shows the weights of the linear equation from
the LP and SVM ranking models, sorted in the decreasing
order, for the three recursion rounds. The first insight is that
the dominant features (i.e., the first 7 on x-axis) carry larger
weights in the first two recursion rounds, than in the last. This
effect is particularly pronounced in Figure 4(b), for the SVM-
linear model. This suggests that these features are dominant
in “pushing” web pages to the top 50 or 20 pages, yet in order
to get into the top 10 ones, other factors (including those that
are in general less valued) become relatively more important
as well.


We observe that despite some disagreement in the two linear
models, the features weights in the two models are highly
correlated. In particular, the first 5 features are in the same
order for both algorithms. Not surprisingly, page rank is the
dominant factor in both cases. Nevertheless, HOST (keyword
appearing in the hostname), TITLE (keyword appearing in the
title tag of the HTML header), M DES (keyword appearing
in the meta-description tag), and PATH (keyword appearing in
the path segment of the URL), are the other leading factors,
respectively.


Figure 4 also shows a high correlation among the factors
that have little to no impact (the bottom of the x-axis). In
particular, AGE (the age of the web page) is at the bottom
of the list; on the contrary, D AGE, the domain age, is an
important parameter valued by the ranking system. This is
not a surprise since the domain age in general increases


its reputation. Continuing with the factors at the bottom of
the list, both algorithms show that M KEY (keyword in the
meta-keyword tag) has low impact; on the contrary, M DES
(keyword in the meta-description tag) has a higher impact, as
we explained above. Further, D SIZE (domain size) and IMG
(keyword in the image tag) do not have much influence.


V. CASE STUDIES


Here, we perform several case studies. In particular, we first
focus on isolating the content score and explore the general
effects of dealing with a smaller number of ranking features.
Next, we evaluate the ability of our approach to add new
ranking features in a methodical way; we explore whether a
given category, e.g., blogs, is a factor considered by the search
engine ranking algorithm. Finally, we explore whether HTML
syntax errors affect ranking results or not.


A. Isolating Subsets of Ranking Features
In this case study, we explore how well our ranking system


works, i.e., approximates Google, when focusing on a subset
of parameters; in particular, all but Page features shown in
Table I. These include the features that belong to the URL,
Domain, Header, Body, Heading, and Link groups. To do so,
we need to decouple the Page ranking features from others. We
achieve this by crawling only “young” web pages (i.e., past 24
hours) using Google search API qdr:d. Indeed, by looking
only at ’young web pages’, we manage to effectively remove
the age factor. This is because all pages are of the same age.
Moreover, we manage to remove the pagerank factor, because
it takes much more than one day for a web page to obtain its
page rank, as we also evaluate experimentally.


In order to find enough new web pages (at least 100 per
keyword) that are generated in recent 24 hours, we necessarily
abandon the keywords shown in Table III. This is simply be-
cause not enough new web pages that contain these keywords
(and are indexed by Google) appear daily. Hence, we turn our
attention to more popular keywords. In particular, we query
the popular Google Trends website [5] and obtain a list of
60 popular keywords for our experiment. We then query the
above advanced Google API (qdr:d), which gives us only
new web pages, using the 60 keywords. If a given keyword
cannot return 100 or more links, we abandon such a keyword.
Finally, we randomly select 15 keywords as the training set,
and the remaining 45 as the testing set.


Figure 5 shows the ranking results using the LP model
and three iterations of recursive partitioning and ranking.
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(a) Linear Programming
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(b) SVM-Linear


Fig. 4. Weights in Different Rounds
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Fig. 5. Ranking Results for “Young” Pages


The x-axis shows our ranking system’s hit rate of top 10
pages returned by Google. We observe that the hit rate is
about 80% for 92% of keywords, and about 90% for 77%
of keywords. These results are much better than those in
Figure 2, suggesting that our ranking system is more accurate,
i.e., approximates Google’s ranking results much better, when
only content related features affect the ranking. This case study
suggests when the parameters are more specific, i.e., fewer and
closely related, our ranking engine performs better.


B. Negative Bias Toward Blogs
In this case study, we show that our methodology can be


used to validate new ranking features. In this particular case,
we introduce a new ranking feature that represents a web page
category, e.g., news, music, blogs, etc. Our goal is to discover
if there exists positive or negative bias toward some categories.
For example, there are rumors on the Internet saying that blogs
rank lower than regular web pages by Google. We validate this
belief using our ranking system.


To characterize web sites into different categories, we apply
a simple keyword approach. For example, in case of the Blog
category, we looked at keyword “blog” in the URL, title tag,
and Google’s snippet, in a case insensitive manner. If the
keyword appears in any of the three places (regardless of how
many times it appears), we categorized the page as a blog. We
apply a similar approach to all other categories using different
keywords.


Next, we add a new feature to our ranking algorithm, named
CAT (which stands for category) and explore each of the


categories in isolation. For example, when we explore the
news category, we test both potential positive and negative
bias towards the given category; (by assigning a positive or
negative unit value to the CAT feature parameter in the linear
model for pages from the given category); at the same time,
all other non-news-related web pages that are returned by the
search engine have the CAT feature turned off. We then run
our ranking system with all features (including CAT) using
the LP model and three iterations of recursive partitioning and
ranking.


For all explored categories, except for Blogs, the assigned
category feature (either positive or negative) has no influence
whatsoever on the ranking prediction (the result was the same
as when we used the original 17 features). Figure 6 compares
the ranking results with and without testing the negative bias
hypothesis for the Blogs feature. The figure clearly shows that
the negative hypothesis indeed shows true for Blogs. Indeed,
the prediction results improve when we adopt the negative bias
hypothesis for Blogs. The weight for the negative Blog bias
is as high as 0.2, which puts it in the top 10 features explored
in our paper.
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Fig. 6. Category Analysis


For example, in our iptables dataset, a blog article titled
’Iptables dependency: why we got there and how we got
out’ [10] has high scores in all of our top 3 ranking factors.
Specifically, it has a high page rank score of 6, and the target
search term appears in the title and URL. However, this blog
is ranked 62th out of 100 by Google and it would have been
ranked 22th without the negative bias toward blogs. Another
example is a blog titled ’Rsync Version 3 Alpha Out - O’Reilly
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ONLamp Blog’ [13] in our rsync dataset has everything it
needs to be ranked as a top 10 web page. It has a good page
rank score of 4 and the keyword appears in the title, URL and
meta description tag. In addition, it also has a good keyword
density in its content. However, this blog is ranked 32th by
Google while it should have been ranked 8th without the bias.


Thus, we show that our system is capable of validating new
conjectures about Google’s ranking algorithm and that Google
imposes negative bias toward blogs.


C. HTML syntax errors do not matter
In this final case study, we explore the impact of HTML


syntax errors on Google’s ranking algorithm. Some SEO
experts hypothesised that Google estimate the quality of
a web page which includes the correctness of HTML syntax
[4], [8]. However, we demonstrate that this is not the case by
adding this new feature into our ranking system.
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Fig. 7. HTML Syntax Analysis


In this experiment, we use the HTML tidy library pro-
gram [7] to analyze and count HTML errors of each web page
in our data set. This new feature is then added to our ranking
system to train new ranking models. In the training set, the
number of web pages with one or more syntax errors is 275
out of 1,500 pages (18.33%). In the testing set, the number of
pages with syntax errors is 972 out of 4,500 (21.60%).


Figure 7 compares the results from the original and the new
ranking models. The figure shows that the performance of the
new model is very close to the original one. In addition, the
weights of the new ranking feature in each of the 3 rounds
are very close to zero (0.068, 0.056 and 0.033, respectively).
This indicates that HTML syntax errors have very little to no
impact on a web page’s Google ranking.


VI. CONCLUSIONS


In this paper, we study the problem of reverse engineering
Google’s ranking algorithm. Even though Google’s internal
ranking function can be very complex, we demonstrate that it
is possible to approximate Google’s organic search results by
adopting a linear model trained with a linear programming
optimizer along with a recursive partitioning scheme. We
performed large-scale experiments using over 6000 web pages
and showed that our ranking system is capable of predicting
Google’s ranking results with high accuracy. Specifically, our
system is able to correctly predict 7 out of the top 10 pages
for 78% of evaluated keywords.


Using our ranking system, we revealed the relative im-
portance of ranking features in Google’s ranking function.


In particular, page rank is the dominant factor, followed by
the search keyword appearing in the hostname, in the title
tag of the HTML header, in the meta-description tag, in
the path segment of the URL, as the other leading factors.
Such revelation provides guidelines for SEOs and webmasters
to optimize their web pages and obtain a better position in
Google’s search result pages. Moreover, we showed how to use
our system to validate or disapprove new ranking features and
to evaluate search engine ranking results for possible ranking
bias. In particular, we used our ranking system to confirm
the rumors in the Internet that the Google’s ranking is biased
against blogs.
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