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Abstract

A highly accurate client-independent geolocation service
stands to be an important goal for the Internet. Despite an
extensive research effort and significant advances in this
area, this goal has not yet been met. Motivated by the fact
that the best results to date are achieved by utilizing ad-
ditional ’hints’ beyond inherently inaccurate delay-based
measurements, we propose a novel geolocation method
that fundamentally escalates the use of external informa-
tion. In particular, many entities (e.g., businesses, uni-
versities, institutions) host their Web services locally and
provide their actual geographical location on their Web-
sites. We demonstrate that the information provided in
this way, when combined with network measurements,
represents a precious geolocation resource. Our method-
ology automatically extracts, verifies, utilizes, and op-
portunistically inflates such Web-based information to
achieve high accuracy. Moreover, it overcomes many of
the fundamental inaccuracies encountered in the use of
absolute delay measurements. We demonstrate that our
system can geolocate IP addresses 50times more accu-
rately than the best previous system,i.e., it achieves a
median error distance of 690 meters on the correspond-
ing data set.

1 Introduction

Determining the geographic location of an Internet host
is valuable for a number of Internet applications. For ex-
ample, it simplifies network management in large-scale
systems, helps network diagnoses, and enables location-
based advertising services [17,24]. While coarse-grained
geolocation,e.g., at the state- or city-level, is sufficient in
a number of contexts [19], the need for ahighly accurate
and reliable geolocation service has been identified as an
important goal for the Internet (e.g., [17]). Such a sys-
tem would not only improve the performance of existing
applications, but would enable the development of novel
ones.

While client-assisted systems capable of providing
highly accurate IP geolocation inferences do exist [3, 5,
9], many applications such as location-based access re-
strictions, context-aware security, and online advertising,
can not rely on clients’ support for geolocation. Hence,
a highly accurateclient-independent geolocation system
stands to be an important goal for the Internet.

An example of an application that already extensively
uses geolocation services, and would significantly ben-
efit from a more accurate system, is online advertising.
For example, knowing that a Web user is from New York
is certainly useful, yet knowing the exact part of Man-
hattan where the user resides enables far more effective
advertising,e.g., of neighboring businesses. On the other
side of the application spectrum, example services that
would benefit from a highly accurate and dependable ge-
olocation system, are the enforcement of location-based
access restrictions and context-aware security [2]. Also
of rising importance is cloud computing. In particular,
in order to concurrently use public and private cloud im-
plementations to increase scalability, availability, or en-
ergy efficiency (e.g., [22]), a highly accurate geolocation
system can help select a properly dispersed set of client-
hosted nodes within a cloud.

Despite a decade of effort invested by the network-
ing research community in this area,e.g., [12, 15–19],
and despite significant improvements achieved in recent
years (e.g., [17, 24]), the desired goal, a geolocation
service that would actually enable the above applica-
tions, has not yet been met. On one hand, commercial
databases currently provide rough and incomplete loca-
tion information [17, 21]. On the other hand, the best
result reported by the research community (to the best
of our knowledge) was made by the Octant system [24].
This system was able to achieve a median estimation er-
ror of 22 miles (35 kilometers). While this is an ad-
mirable result, as we elaborate below, it is still insuffi-
cient for the above applications.

The key contribution of our paper lies in designing a
novel client-independent geolocation methodology and
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in deploying a system capable of achieving highly accu-
rate results. In particular, we demonstrate that our system
can geolocate IP addresses with a median error distance
of 690 meters in an academic environment. Comparing
to recent results on the same dataset shows that we im-
prove the median accuracy by 50 times relative to [24]
and by approximately 100 times relative to [17]. Im-
provements at the tail of the distribution are even more
significant.

Our methodology is based on the following two in-
sights. First, many entities host their Web services lo-
cally. Moreover, such Websites often provide the actual
geographical location of the entity (e.g., business and
university) in the form of a postal address. We demon-
strate that the information provided in this way repre-
sents aprecious resource,i.e., it provides access to a
large number of highly accurate landmarks that we can
exploit to achieve equally accurate geolocation results.
We thus develop a methodology that effectively mines,
verifies, and utilizes such information from the Web.

Second, while we utilize absolute network delay mea-
surements to estimate the coarse-grained area where an
IP is located, we argue that absolute network delay mea-
surements are fundamentally limited in their ability to
achieve fine-grained geolocation results. This is true in
general even when additional information,e.g., network
topology [17] or negative constraints such as uninhabit-
able areas [24], is used. One of our key findings, how-
ever, is thatrelative network delays still heavily correlate
with geographical distances. We thus fully abandon the
use of absolute network delays in the final step of our ap-
proach, and show that a simple method that utilizes only
relative network distances achieves the desired accuracy.

Combining these two insights into a single methodol-
ogy, we design a three-tier system which begins at the
large, coarse-grained scale, first tier where we utilize a
distance constraint-based method to geolocate a target IP
into an area. At the second tier, we effectively utilize a
large number of Web-based landmarks to geolocate the
target IP into a much smaller area. At the third tier, we
opportunistically inflate the number of Web landmarks
and demonstrate that a simple, yet powerful, closest node
selection method brings remarkably accurate results.

We extensively evaluate our approach on three dis-
tinct datasets – Planetlab, residential, and an online maps
dataset – which enables us to understand how our ap-
proach performs on an academic network, a residential
network, and in the wild. We demonstrate that our algo-
rithm functions well in all three environments, and that it
is able to locate IP addresses in the real world with high
accuracy. The median error distances for the three sets
are 0.69 km, 2.25 km, and 2.11 km, respectively.

We demonstrate that factors that influence our sys-
tem’s accuracy are: (i) Landmark density,i.e., the more
landmarks there are in the vicinity of the target, the bet-
ter accuracy we achieve. (ii) Population density,i.e., the

more people live in the vicinity of the target, the higher
probability we obtain more landmarks, the better accu-
racy we achieve. (iii) Access technology,i.e., our sys-
tem has slightly reduced accuracy (by approximately 700
meters) for cable users relative to DSL users. While our
methodology effectively resolves the last mile delay in-
flation problem, it is necessarily less resilient to the high
last-mile latencyvariance, common for cable networks.

Given that our approach utilizes Web-based landmark
discovery and network measurements on the fly, one
might expect that the measurement overhead (crawling in
particular) hinders its ability to operate in real time. We
show that this is not the case. In a fully operational net-
work measurement scenario, all the measurements could
be done within 1-2 seconds. Indeed, Web-based land-
marks are stable, reliable, and long lasting resources.
Once discovered and recorded, they can be reused for
many measurements and re-verified over longer time
scales.

2 A Three-Tier Methodology

Our overall methodology consists of two major compo-
nents. The first part is a three-tier active measurement
methodology. The second part is a methodology for
extracting and verifying accurate Web-based landmarks.
The geolocation accuracy of the first part fundamentally
depends on the second. For clarity of presentation, in this
section we present the three-tier methodology by simply
assuming the existence of Web-based landmarks. In the
next section, we provide details about the extraction and
verification of such landmarks.

We deploy the three-tier methodology using a dis-
tributed infrastructure. Motivated by the observation that
the sparse placement of probing vantage points can avoid
gathering redundant data [26], we collect 163 publicly
available ping and 136 traceroute servers geographically
dispersed at major cities and universities in the US.

2.1 Tier 1

Our final goal is to achieve a high level of geolocation
precision. We achieve this goal gradually, in three steps,
by incrementally increasing the precision in each step.
The goal of the first step is to determine a coarse-grained
region where the targeted IP is located. In an attempt
not to ’reinvent the wheel,’ we use a variant of a well es-
tablished constrained-based geolocation (CBG) method
[15], with minor modifications.

To geolocate the region of an IP address, we first send
probes to the target from the ping servers, and convert
the delay between each ping server and the target into a
geographical distance. Prior work has shown that pack-
ets travel in fiber optic cables at 2/3 the speed of light
in a vacuum (denoted by c) [20]. However, others have
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Figure 1: An example of intersection created by distance
constraints

demonstrated that 2/3 c is a loose upper bound in practice
due to transmission delay, queuing delayetc. [15, 17].
Based on this observation, we adopt 4/9 c from [17] as
the converting factor between measured delay and geo-
graphical distance. We also demonstrate in Section 4,
by using this converting factor, we are always capable of
yielding a viable area covering the targeted IP.

Once we establish the distance from each vantage
point, i.e., ping server, to the target, we use multilater-
ation to build an intersection that covers the target using
known locations of these servers. In particular, for each
vantage point, we draw a ring centered at the vantage
point, with a radius of the measured distance between
the vantage point and the target. As we show in Section
4, this approach indeed allows us to always find a region
that covers the targeted IP.

Figure 1 illustrates an example. It geolocates a col-
lected target (we will elaborate the way of collecting the
targets in the wild in Section 4.1.2) whose IP address
is 38.100.25.196 and whose postal address is ’1850, K
Street NW, Washington DC, DC, 20006’. We draw rings
centered at the locations of our vantage points. The ra-
dius of each ring is determined by the measured distance
between the vantage point (the center of this ring) and the
target. Finally, we geolocate this IP in an area indicated
by the shaded region, which covers the target, as shown
in Figure 1.

Thus, by applying the CBG approach, we manage to
geolocate a region where the targeted IP resides. Ac-
cording to [17, 24], CBG achieves a median error be-
tween 143 km and 228 km distance to the target. Since
we strive for a much higher accuracy, this is only the
starting point for our approach. To that end, we depart
from pure delay measurements and turn to the use of ex-
ternal information available on the Web. Our next goal is
to further determine a subset of ZIP Codes,i.e., smaller
regions that belong to the bigger region found via the
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Figure 2: An example of measuring the delay between
landmark and target

CBG approach. Once we find the set of ZIP Codes, we
will search for additional websites served within them.
Our goal is to extract and verify the location information
about these locally-hosted Web services. In this way, we
obtain a number of accurate Web-based landmarks that
we will use in Tiers 2 and 3 to achieve high geolocation
accuracy.

To find a subset of ZIP Codes that belong to the given
region, we proceed as follows. We first determine the
center of the intersection area. Then, we draw a ring
centered in the intersection center with a diameter of 5
km. Next, we sample 10 latitude and longitude pairs at
the perimeter of this ring, by rotating by 36 degrees be-
tween each point. For the 10 initial points, we verify that
they belong to the intersection area as follows. Denote
byU the set of latitude and longitude pairs to be verified.
Next, denote byV the set of all vantage points,i.e., ping
servers, with known location. Each vantage pointvi is
associated with the measured distance between itself and
the target, denoted byri. We wish to find allu ∈ U that
satisfy

distance(u, vi) ≤ ri for all vi ∈ V

The distance function here is the great-circle distance
[23], which takes into account the earth’s sphericity and
is the shortest distance between any two points on the
surface of the earth measured along a path on the surface
of the earth. We repeat this procedure by further obtain-
ing 10 additional points by increasing the distance from
the intersection center by 5 km in each round (i.e., to 10
km in the second round, 15 km in the thirdetc.). The
procedure stops when not a single point in a round be-
longs to the intersection. In this way, we obtain a sample
of points from the intersection, which we convert to ZIP
Codes using a publicly available service [4]. Thus, with
the set of ZIP Codes belonging to the intersection, we
proceed to Tier 2.
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2.2 Tier 2

Here, we attempt to further reduce the possible region
where the targeted IP is located. To that end, we aim to
find Web-based landmarks that can help us achieve this
goal. We explain the methodology for obtaining such
landmarks in Section 3. Although these landmarks are
passive,i.e., we cannot actively send probes to other In-
ternet hosts using them, we use the traceroute program to
indirectly estimate the delay between landmarks and the
target.

Learning from [11] that the more traceroute servers
we use, the more direct a path between a landmark and
the target we can find, we first send traceroute probes to
the landmark (the empty circle in Figure 2) and the tar-
get (the triangle in Figure 2) from all traceroute servers
(the solid squaresV1 andV2 in Figure 2). For each van-
tage point, we then find the closest common router to
the target and the landmark, shown asR1 andR2 in
Figure 2, on the routes towards both the landmark and
the target. Next, we calculate the latency between the
common router and the landmark (D1 andD3 in Fig-
ure 2) and the latency between the common router and
the target (D2 andD4 in Figure 2). We finally select
the sum (D) of two latencies as the delay between land-
mark and target. In the example above, fromV1’s point
of view, the delayD between the target and the landmark
isD = D1 +D2, while fromV2’s perspective, the delay
D isD = D3 +D4.

Since different traceroute servers have different routes
to the destination, the common routers are not necessar-
ily the same for all traceroute servers. Thus, each van-
tage point (a traceroute server) can estimate a different
delay between a Web-based landmark and the target. In
this situation, we choose the minimum delay from all
traceroute servers’ measurements as the final estimation
of the latency between the landmark and the target. In
Figure 2, since the path between landmark and target
from V1’s perspective is more direct than that fromV2’s
(D1 +D2 < D3 +D4), we will consider the sum ofD1

andD2 (D1 +D2) as the final estimation.
Routers in the Internet may postpone responses. Con-

sequently, if the delay on the common router is inflated,
we may underestimate the delay between landmark and
target. To examine the ’quality’ of the common router we
use, we first traceroute different landmarks we collected
previously and record the paths between any two land-
marks, which also branch at that router. We then calcu-
late the great circle distance [23] between two landmarks
and compare it with their measured distance. If we ob-
serve that the measured distance is smaller than the cal-
culated great circle distance for any pair of landmarks,
we label this router as ’inflating’, record this informa-
tion, and do not consider its path (and the corresponding
delay) for this or any other measurement.

Through this process, we can guarantee that the esti-

Figure 3: An example of shrinking the intersection

mated delay between a landmark and the target is not un-
derestimated. Nonetheless, such estimated delay, while
converging towards the real latency between the two en-
tities, is still usually larger. Hence, it can be considered
as the upper bound of the actual latency. Using multilat-
eration with the upper bound of the distance constraints,
we further reduce the feasible region using the new tier 2
and the old tier 1 constraints.

Figure 3 shows the zoomed-in subset of the con-
strained region together with old tier 1 constraints,
marked by thick lines, and new tier 2 constraints, marked
by thin lines. The figure shows a subset of sampled land-
marks, marked by the solid dots, and the IP that we aim
to geolocate, marked by a triangle. The tier 1 constrained
area contains 257 distinctive ZIP Codes, in which we are
able to locate and verify 930 Web-based landmarks. In
the figure, we show only a subset of 161 landmarks for
a clearer presentation. Some sampled landmarks lie out-
side the original tier 1 level intersection. This happens
because the sampled ZIP Codes that we discover at the
borders of the original intersection area typically spread
outside the intersection as well. Finally, the figure shows
that the tier 2 constrained area is approximately one order
of magnitude smaller than the original tier 1 area.

2.3 Tier 3

In this final step, our goal is to complete our geoloca-
tion of the targeted IP address. We start from the region
constrained in Tier 2, and aim to find all ZIP Codes in
this region. To this end, we repeat the sampling proce-
dure deployed in the Tier 2. This time from the center of
the Tier 2 constrained intersection area, and at a higher
granularity. In particular, we extend the radius distance
by 1 km in each step, and apply a rotation angle of 10
degrees. Thus, we achieve 36 points in each round. We
apply the same stopping criteria,i.e., when no points in
a round belong to the intersection. This finer-grain sam-
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Figure 4: An example of associating a landmark with the
target as the result

pling process enables us to discover all ZIP Codes in the
intersection area. For ZIP Codes that were not found in
the previous step, we repeat the landmark discovery pro-
cess (Section 3). Moreover, to obtain the distance es-
timations between newly discovered landmarks and the
target, we apply the active probing traceroute process ex-
plained above.

Finally, knowing the locations of all Web-based land-
marks and their estimated distances to the target, we se-
lect the landmark with the minimum distance to the tar-
get, and associate the target’s location with it. While this
approach may appear ad hoc, it signifies one of the key
contributions of our paper. We find that on the smaller-
scale,relative distances are preserved by delay measure-
ments, overcoming many of fundamental inaccuracies
encountered in the use of absolute measurements. For
example, a delay of several milliseconds, commonly seen
at the last mile, could place an estimate of a scheme that
relies on absolute delay measurements hundreds of kilo-
meters away from the target. On the contrary, select-
ing the closest node in an area densely populated with
landmarks achieves remarkably accurate estimates, as we
show below in our example case, and demonstrate sys-
tematically in Section 4 via large-scale analysis.

Figure 4 shows the striking accuracy of this approach.
We manage to associate the targeted IP location with a
landmark which is ’across the street’,i.e., only 0.103 km
distant from the target. We analyze this result in more
detail below. Here, we provide the general statistics for
the Tier 3 geolocation process. In this last step, we dis-
cover 26 additional ZIP Codes and 203 additional land-
marks in the smaller Tier 2 intersection area. We then
associate the landmark, which is at ’1776 K Street North-
west, Washington, DC’ and has a measured distance of
10.6 km, yet a real geographical distance of 0.103 km,
with the target. To clearly show the association, Figure 4
zooms into a very finer-grain street level in which the

 200

 400

 600

 800

 1000

 0.1  0.2  0.3  0.4  0.5  0.6

M
ea

su
re

d 
di

st
an

ce
 [k

m
]

Geographical distance [km]

Figure 5: Measured distance vs. geographical distance.

constrained rings and relatively more distant landmarks
are not shown.

2.3.1 The Power of Relative Network Distance

Here, we explore how the relative network distance ap-
proach achieves such good results. Figure 5 sheds more
light on this phenomenon. We examine the 13 landmarks
within 0.6 km of the target shown in Figure 4. For each
landmark, we plot the distance between the target and the
Web-based landmarks (y-axis) (measured via the tracer-
oute approach) as a function of the actual geographical
distance between the landmarks and the target (x-axis).
The first insight from the figure is that there is indeed
a significant difference between measured distance,i.e.,
their upper bounds, and the real distances. This is not
a surprise. A path between a landmark, over the com-
mon router, to the destination (Figure 2) can often be cir-
cuitous and inflated by queuing and processing delays,
as demonstrated in [17]. Hence, the estimated distance
dramatically exceeds the real distance, by approximately
three orders of magnitude in this case.

However, Figure 5 shows that the distance estimated
via network measurements (y-axis) is largelyin propor-
tion with the actual geographical distance. Thus, de-
spite the fact that the direct relationship between the
real geographic distance and estimated distance is in-
evitably lost in inflated network delay measurements,
the relative distance is largely preserved. This is be-
cause the network paths that are used to estimate the
distance between landmarks and the target share vastly
common links, hence experience similar transmission-
and queuing-delay properties. Thus, selecting a land-
mark with the smallest delay is an effective approach,
as we also demonstrate later in the text.
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3 Extracting and Verifying Web-Based
Landmarks

Many entities,e.g., companies, academic institutions,
and government offices, host their Web services locally.
One implication of this setup is that the actual geographic
addresses, (in the form of a street address, city, and ZIP
Code), which are typically available at companies’ and
universities’ home Web pages, correspond to the actual
physical locations where these services are located. Ac-
cordingly, the geographical location of the correspond-
ing web-servers’ IP addresses becomes available, and
the servers themselves become viable geolocation land-
marks. Indeed, we have demonstrated above that such
Web-based landmarks constitute an important geoloca-
tion resource. In this section, we provide a compre-
hensive methodology to automatically extract and verify
such landmarks.

3.1 Extracting Landmarks

To automatically extract landmarks, we mine numerous
publicly available mapping services. In this way, we are
able to associate an entity’s postal address with its do-
main name using such mapping services. Note that the
use of online mapping services is a convenience,not a
requirement for our approach. Indeed, the key resource
that our approach relies upon is the existence of geo-
graphical addresses at locally hosted websites, which can
be accessed directly at locally hosted websites.

In order to discover landmarks in a given ZIP Code,
which is an important primitive of our methodology ex-
plained in Section 2 above, we proceed as follows. We
first query the mapping service by a request that consists
of the desired ZIP Code and a keyword,i.e., ’business’,
’university’, and ’government office’. The service replies
with a list of companies, academic institutions, or gov-
ernment offices within, or close to, this ZIP Code. Each
landmark in the list includes the geographical location of
this entity at the street-level precision and its web site’s
domain name.

As an example, a jewelry company at ’55 West 47th
Street, Manhattan, New York, NY, 10036’, with the do-
main name www.zaktools.com, is a landmark for the ZIP
Code 10036. For each entity, we also convert its domain
name into an IP address to form a (domain name, IP ad-
dress, and postal address) mapping. For the example
above, the mapping in this case is (www.zaktools.com,
69.33.128.114, ’55 West 47th Street, Manhattan, New
York, NY, 10036’). A domain name can be mapped into
several IP addresses. Initially, we map each of the IP
addresses to the same domain name and postal address.
Then, we verify all the extracted IP addresses using the
methodology we present below.

3.2 Verifying Landmarks

A geographic address extracted from a Web page using
the above approach may not correspond to the associated
server’s physical address for several reasons. Below, we
explain such scenarios and propose verification methods
to automatically detect and remove such landmarks.

3.2.1 Address Verification

The businesses and universities provided by online map-
ping services may be the landmarksnear the areas cov-
ered by the ZIP Code, not necessarilywithin the ZIP
Code. Thus, we first examine the ZIP Code in the postal
address of each landmark. If a landmark has a ZIP Code
different from the one we searched for, we remove it
from the list of candidate landmarks. For example, for
the ZIP Code 10036, a financial services company called
Credit Suisse (www.credit-suisse.com) at ’11 Madison
Ave, New York, NY, 10010’ is returned by online map-
ping services as an entity near the specified ZIP Code
10036. Using our verification procedure, we remove
such a landmark from the list of landmarks associated
with the 10036 ZIP Code.

3.2.2 Shared Hosting and CDN Verification

Additionally, a company may not always host its website
locally. It may utilize either a CDN network to distribute
its content or use shared hosting techniques to store its
archives. In such situations, there is no one-to-one map-
ping between an IP address and a postal address in both
CDN network and shared hosting cases. In particular,
a CDN server may serve multiple companies’ websites
with distinct postal addresses. Likewise, in the shared
hosting case a single IP address can be used by hundreds
or thousands of domain names with diverse postal ad-
dresses. Therefore, for a landmark with such character-
istics, we should certainly not associate its geographical
location with its domain name, and in turn its IP address.
On the contrary, if an IP address is solely used by a sin-
gle entity, the postal address is much more trustworthy.
While not necessarily comprehensive, we demonstrate
that this method is quite effective, yet additional verifi-
cations are needed, as we explain in Section 3.2.3 below.

In order to eliminate a bad landmark, we access its
website using (i) its domain name and (ii) its IP address
independently. If the contents, or heads (distinguished
by <head> and</head>), or titles (distinguished by
<title> and</title>) returned by the two methods are
the same, we confirm that this IP address belongs to a
single entity. One complication is that if the first request
does not hit the ’final’ content, but a redirection, we will
extract the ’real’ URL and send an additional request to
fetch the ’final’ content.

Take the landmark (www.manhattanmailboxes.com)
at ’676A 9 Avenue, New York, NY, 10036’ as an ex-
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ample. We end up with a web page showing ’access
error’ when we access this website via its IP address,
216.39.57.104. Indeed, searching an online shared host-
ing check [8], we discover that there are more than 2,000
websites behind this IP address.

3.2.3 The Multi-Branch Verification

One final scenario occurs often in the real world: A com-
pany headquartered in a place where its server is also
deployed may open a number of branches nationwide.
Likewise, a medium size organization can also have its
branch offices deployed locally in its vicinity. Each such
branch office typically has a different location in a dif-
ferent ZIP Code. Still, all such entities have the same
domain name and associated IP addresses as their head-
quarters.

As we explained in Section 2, we retrieve landmarks in
a region covering a number of ZIP Codes. If we observe
that some landmarks, with the same domain name, have
different locations in different ZIP Codes, we remove
them all. For example, the Allstate Insurance Company,
with the domain name ’www.allstate.com’ has many af-
filiated branch offices nationwide. As a result, it shows
up multiple times for different ZIP Codes in an intersec-
tion. Using the described method, we manage to elimi-
nate all such occurrences.

3.3 Resilience to Errors

Applying the above methods, we can remove the vast
majority of erroneous Web landmarks. However, excep-
tions certainly exist. One example is an entity (e.g., a
company) without any branch offices that hosts a web-
site used exclusively by that company, but does not lo-
cate its Web server at the physical address available on
the Website. In this case, binding the IP address with
the given geographical location is incorrect, hence such
landmarks may generate errors. Here, we evaluate the
impact that such errors can have on our method’s accu-
racy. Counterintuitively, we show that the larger the error
distance is between the claimed location (the street-level
address on a website) and the real landmark location, the
more resilient our method becomes to such errors. In all
cases, we demonstrate that our method poses significant
resilience to false landmark location information.

Figure 6 illustrates four possible cases for the rela-
tionship between a landmark’s real and claimed location.
The figure denotes the landmark’s real location by an
empty circle, the landmark’s claimed location by a solid
circle, and the target by a triangle. Furthermore, denote
R1 as the claimed distance,i.e., the distance between the
claimed location and the target. Finally, denoteR2 as
the measured distance between the landmark’s actual lo-
cation and the target.

Figure 6: The effects of improper landmark

Figure 6(a) shows the baseline error-free scenario. In
this case, the claimed and the real locations are identi-
cal. Hence,R1 = R2. Thus, we can draw a ring that is
centered at the solid circle and is always able to contain
the target, since the upper bound is used to measure the
distance in Section 2.2.

Figure 6(b) shows the case when the claimed land-
mark’s location is different from the real location. Still,
the real landmark is farther away from the target than the
claimed location is. Hence,R2 > R1. Thus, we will
draw a bigger ring with the radius ofR2, shown as the
dashed curve, than the normal case with the radius of
R1. Thus, such an overestimate yields a larger coverage
that always includes the target. Hence, our algorithm is
unharmed, since the target remains in the feasible region.

Figures 6 (c) and (d) show the scenario when the
real landmark’s location is closer to the target than the
claimed location is,i.e., R2 < R1. There are two sub
scenarios here. In the underestimate case (shown in Fig-
ure 6(c)), the real landmark location is slightly closer to
the target and the measured delay is only a little smaller
than it should be. However, since the upper bound is
used to measure the delay and convert it into distance,
such underestimates can be counteracted. Therefore, we
can still draw a ring with a radius ofR2, indicated by
the dashed curve, covering the target. In this case, the
underestimate does not hurt the geolocation process.

Finally, in the excessive underestimate case (shown
in Figure 6), the landmark is actually quite close to the
target and the measured delay is much smaller than ex-
pected. Consequently, we end with a dashed curve with
the radius ofR2 that does not include the target, even
when the upper bounds are considered. In this case, the

7



excessive underestimate leads us to an incorrect intersec-
tion or an improper association between the landmark
and the target (R2 < R1). We provide a proof to demon-
strate that the excessive underestimate case is not likely
to happen in a technical report [10], yet we omit the proof
here due to space constraints.

4 Evaluation

4.1 Datasets

We use three different datasets, Planetlab, residential,
and online maps, as we explain below. Comparing with
the large online maps dataset, the number of targets in
the Planetlab and the residential datasets are relatively
small. However, these two datasets help us gain valuable
insights about the performance of our method in different
environments, since the online maps dataset can contain
both types of targets.

4.1.1 Planetlab dataset

One method commonly used to evaluate the accuracy of
IP geolocation systems is to geolocate Planetlab nodes,
e.g., [17, 24]. Since the locations of these nodes are
known publicly (universities must report the locations of
their nodes), it is straightforward to compare the location
given by our system with the location provided by the
Planetlab database. We select 88 nodes from Planetlab,
limiting ourselves to at most one node per location. Oth-
ers (e.g., [17]) have observed errors in the given Planet-
lab locations. Thus, we manually verify all of the nodes
locations.

4.1.2 Residential dataset

Since the set of Planetlab nodes are all located on aca-
demic networks, we needed to validate our approach on
residential networks as well. Indeed, many primary ap-
plications of IP geolocation target users on residential
networks. In order to do this, we created a website,
which we made available to our social networks, widely
dispersed all over the US. The site automatically records
users’ IP addresses and enables them to enter their postal
address and the access provider. In particular, we enable
six selections for the provider: AT&T, Comcast, Veri-
zon, other ISPs, University, and Unknown. Moreover,
we explicitly request that users not enter their postal ad-
dress if they are accessing this website via proxy, VPN,
or if they are unsure about their connection. We then dis-
tribute the link to many people via our social networks,
and obtained 231 IP address and location pairs.

Next, we eliminate duplicate IPs, ’dead’ IPs that are
not accessible over the course of the experiment, which
is one-month after the data was collected. We also elim-
inate a large number of IPs with access method ’univer-
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Figure 7: The distribution of the population density of
three datasets

sity’ or ’unknown’, since we intend to extract residen-
tial IPs and compare with those of academic IPs in Sec-
tion 4.2. After elimination, we are left with 72 IPs.

4.1.3 Online Maps dataset

We obtained a large-scale query trace from a popular on-
line maps service. This dataset contains three-months of
users’ search logs for driving directions.1 Each record
consists of the user access IP address, local access time
at user side, user browser agent, and the driving sequence
represented by two pairs of latitude and longitude points.
Our hypothesis here is that if we observe a location, as
either source or destination in the driving sequence, pe-
riodically associated with an IP address, then this IP ad-
dress is likely at that location. To extract such association
from the dataset, we employ a series of strict heuristics
as follows.

We first exclude IP addresses associated with multi-
ple browser agents. This is because it is unclear whether
this IP address is used by only one user with multiple
browsers or by different users. We then select IP ad-
dresses for which a single location appears at least four
times in each of the three months, since such IP addresses
with ’stable’ search records are more likely to provide ac-
curate geolocation information than the ones with only a
few search records. We further remove IP addresses that
are associated with two or more locations that appear at
least four times. Finally we remove all ’dead’ IPs from
the remaining dataset.

4.1.4 Dataset characteristics

Here, our goal is to explore the characteristics of the lo-
cations where the IP addresses of the three datasets are.

1We respect a request of this online map service company and do
not disclose the number of requests and collected IPs here and in the
rest of the paper.
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Figure 8: Comparison of error distances of three datasets

In particular, population density is an important param-
eter that indicates the rural vs. urban nature of the area
in which an IP address resides. We will demonstrate be-
low that this parameter influences the performance of our
method, since urban areas typically have a large number
of web-based landmarks.

Figure 7 shows the distribution of the population den-
sity of the ZIP Code at which the IP addresses of the
three datasets locate. We obtain the population density
for each ZIP Code by querying the website City Data [1].
Figure 7 shows that our three datasets cover both rural
areas, where the population density is small, and urban
areas, where the population density is large. In particu-
lar, all three datasets have more than 20% of IPs in ZIP
Codes whose population density is less than 1,000. The
figure also shows that PlanetLab dataset is the most ’ur-
ban’ one, while the Online Maps datasets has the longest
presence in rural areas. In particular, about 18% of IPs
in the Online Maps dataset reside in ZIP Codes whose
population density is less than 100.

4.2 Experimental results

4.2.1 Baseline results

Figure 8 shows the results for the three datasets. In par-
ticular, it depicts the cumulative probability of the error
distance,i.e., the distance between a target’s real location
and the one geolocated by our system. Thus, the closer
the curve is to the upper left corner, the smaller the error
distance, and the better the results. The median error for
the three datasets, a measure typically used to represent
the accuracy of geolocation systems [15,17,24], are 0.69
km for Planetlab, 2.25 km for the residential dataset, and
2.11 km for the online maps dataset. Beyond excellent
median results, the figure shows that the tail of the dis-
tribution is not particularly long. Indeed, the maximum
error distances are 5.24 km, 8.1 km, and 13.2 km for
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Planetlab, residential, and online maps datasets, respec-
tively. The figure shows that the performances of the res-
idential and online maps datasets are very similar. This
is not a surprise because the online maps dataset is dom-
inated by residential IPs. On the other hand, our system
achieves clearly better results in the Planetlab scenario.
We analyze this phenomenon below.

4.2.2 Landmark density

Here, we explore the number of landmarks in the prox-
imity of targeted IPs. The larger the number of land-
marks we can discover in the vicinity of a target, the
larger the probability we will be able to more accurately
geolocate the targeted IP. We proceed as follows. First,
we count the number of landmarks in circles of radiusr,
which we increase from 0 to 6 km, shown in Figure 9.
Then, we normalize the number of landmarks for each
radius relative to the total number of landmarks seen by
all three datasets that fit into the 6 km radius. Because
of such normalization, the normalized number of targets
for x = 6km sum up to 1. Likewise, due to normaliza-
tion, the value on y-axis could be considered the land-
mark density.

Figure 9 shows the landmark density for the three
datasets as a function of the radius. The figure shows
that the landmark density is largest in the Planetlab case.
This is expected because one can find a number of Web-
based landmarks on a University campus. This certainly
increases the probability of accurately geolocating IPs in
such an environment, as we demonstrated above. The
figure shows that residential targets experience a lower
landmark density relative to the Planetlab dataset. At the
same time, the online maps dataset shows an even lower
landmark density. As shown in Figure 7, our residen-
tial dataset is more biased towards urban areas. On the
contrary, the online maps provide a more comprehensive
and unbiased breakdown of locations. Some of them are
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rural areas, where the density of landmarks is naturally
lower. In summary, the landmark density is certainly a
factor that clearly impacts our system’s geolocation ac-
curacy. Still, additional factors such as access network
level properties do play a role, as we show below.

4.2.3 Global landmark density

To understand the global landmark density (more pre-
cisely, US-wide landmark density), we evenly sample
18,000 ZIP Codes over all states in US. Figure 10 shows
that there are 79.4% ZIP Codes which contain at least
one landmark within the ZIP Code. We manually check
the remaining ZIP Codes and realize that they are typ-
ically the rural areas, where local entities,e.g., busi-
nesses, are rare naturally. Nonetheless, for 83.78% of
ZIP Codes, we are capable of finding out at least one
landmark in its vicinity of 6 km; for 88.51% of ZIP
Codes, we are always able to discover at least one land-
mark in its vicinity of 15 km; finally, for 93.44% of ZIP
Codes, we find at least one landmark in its vicinity of 30
km.

We make the following comments. First, Figure 10
can be used to predict US-wide performance of our
method from thearea perspective. For example, it shows
that for 6.6% of the territory, the error can only be larger
than 30 km. Note, however, that such areas are extremely
sparsely populated. For example, the average population
density in the 6.6% of ZIP Codes that have no landmark
within 30 km is less than 100. Extrapolating conserva-
tively to the entire country, it can be computed that such
areas account for about 0.92% of the entire population.

4.2.4 The role of population density

Here, we return to our datasets and evaluate our system’
s performance,i.e., error distance, as a function of pop-
ulation density. For the sake of clarity, we merge the
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results of the three datasets. Figure 11 plots the best fit
curve that captures the trends. It shows that the error dis-
tance is smallest in densely populated areas, while the
error grows as the population density decreases. This re-
sult is in line with our analysis in Section 4.2.3. Indeed,
the larger the population density is, the higher probabil-
ity we can discover more landmarks. Likewise, as shown
in Section 4.2.2, the more landmarks we can discover in
the vicinity of targeted IP address, the higher probability
we can more accurately geolocate the targeted IP. Finally,
the results show that our system is still capable of geolo-
cating IP addresses in rural areas as well. For example,
we trace the IP that shows the worst error of 13.2 km.
We find that this is an IP in a rural area with no land-
marks discovered within the ZIP Code, which has a pop-
ulation density of 47. The landmark with the minimum
measured distance is 13.2 km away, which our system
selected.

4.2.5 The role of access networks

Contrary to the academic environment, a number of res-
idential IP addresses access the Internet via DSL or ca-
ble networks. Such networks create the well-known last-
mile delay inflation problem, which represents a funda-
mental barrier to methods that rely on absolute delay
measurements. Because our method relies onrelative
delay measurements, it is highly resilient to such prob-
lems, as we show below. To evaluate this issue, we ex-
amine and compare our system’s performance for three
different residential network providers that we collected
in Section 4.1.2. These are AT&T, Comcast, and Veri-
zon.

Figure 12 shows the CDF of the error distance for the
three providers. The median error distance is 1.48 km
for Verizon, 1.68 km for AT&T, and 2.38 km for Com-
cast. Thus, despite the fact that we measure significantly
inflated delays in the last mile, we still manage to geolo-
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Figure 12: Comparisons of error distance in different
ISPs

cate the endpoints very accurately. For example, a delay
of 5 ms [13] that we commonly see at the last mile could
place a scheme relying on absolute delay measurements
700 km away from the target. Our approach effectively
addresses this problem and geolocates the targets within
a few kilometers.

Figure 12 shows that our method has reduced perfor-
mance for Comcast targets, who show a somewhat longer
tail than the other two providers. We explore this issue in
more depth. According to [7], AT&T and Verizon offer
DSL services. Comcast is dominantly a cable Internet
provider, and offers DSL only in a smaller number of ar-
eas. As demonstrated in [13], cable access networks have
a much larger latencyvariance, which may rapidly vary
over short time scales, than DSL networks. While our
relative delay approach is resilient toabsolute delay in-
flation at the last mile, it can still be hurt by measured de-
lay variance. Because latency in cable networks changes
over short time scales, it blurs our measurements, which
are not fully synchronized. Hence, the landmarks’ rela-
tive proximity estimation gets blurred, which causes the
effects shown in the figure. In particular, the median er-
ror distance of the cable case increases by approximately
700 meters relative to the DSL case (shown by the ar-
row from AT&T to Comcast in the middle of Figure 12),
while the maximum error distance increases by 2 km
(shown by the arrow from AT&T to Comcast at the top
of Figure 12).

5 Discussion

Measurement overhead.Our methodology incurs mea-
surement overhead due to Web crawling and network
probing. Still, it is capable of generating near real-time
responses, as we explain below. To geolocate an IP ad-
dress, we crawl Web landmarks for a portion of ZIP
Codes on the fly, as we explained in Sections 2.2 and

2.3. It is important to understand that this is aone-time
overhead per ZIP Code because we cache all landmarks
for every ZIP Code that we visit. Thus, when we want to
geolocate other IP addresses in the vicinity of a previous
one, we reuse previously cached landmarks. Once this
dataset is built, only occasional updates are needed. This
is because the Web-based landmarks we use are highly
stable and long-lived in the common case.

On the network measurement side, we generate con-
current probes from multiple vantage points simultane-
ously. In the first tier, we need 2 RTTs (1 RTT from
the master node to the vantage points, and 1 RTT for the
ping measurements). In the second and third tiers each,
the geolocation response time per IP can be theoretically
limited by 3 round-trip times (1 RTT from the master
node to the measurement vantage points, and 2 RTTs for
an advanced traceroute overhead2). Thus, the total over-
head on the network measurement side is 8 RTTs, which
typically translates to a 1-2 seconds delay.

Migrating web services to the cloud.Cloud services
are thriving in the Internet. One might have a concern
that this might dramatically reduce the number of land-
marks that we can rely upon. We argue that this is not the
case. While more websites might indeed be served on
the cloud, the total number of websites will certainly in-
crease over time. Even if the large percent of the websites
will end up in the cloud, the remaining percent of web-
sites will always create a reliable and accurate backbone
for our method. Moreover, even when an entity migrates
a Web site to the cloud, the associated e-mail exchange
servers do remain hosted locally (results not shown here
due to space constraints). Hence, such servers can serve
as accurate geolocation landmarks. Our key contribution
lies in demonstrating that all such landmarks (i.e., Web,
e-mail, or any other) can be effectively used for accurate
geolocation.

International coverage. Our evaluation is limited to
US simply as we were able to obtain the vast majority of
the ground-truth information from within the US. Still,
we argue that our approach can be equally used in other
regions as well. This is because other countries such as
Canada, UK, China, India, South Koreaetc., also have
their own “ZIP Code” systems. We are currently adjust-
ing our system so that it can effectively work in these
countries. Moreover, we expect that our approach will
be applicable even in regions with potentially poor net-
work connectivity. This is because our relative-delay-
based method is insensitive to inflated network latencies
characteristic for such environments.

2In the advanced traceroute case, 1 RTT is needed to obtain theIPs
of intermediate routers, while another RTT is needed to simultaneously
obtain round-trip time estimates to all intermediate routers by sending
concurrent probes.
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6 Related work

6.1 Client-independent IP geolocation sys-
tems

6.1.1 Data mining-based

DNS-based.Daviset al. [12] propose a DNS-based ap-
proach, which suggests adding location segments in the
format of a Resource Record (RR). Nevertheless, such
modification can not be easily deployed in practice and
the administrators have little incentive to register or mod-
ify new RRs. Moreover, Zhanget al. [25] have demon-
strated that DNS misnaming is common, and that it can
distort Internet topology mapping.

Whois-based. Moore et al. [18] argue that geoloca-
tion can also be obtained by mining the Whois database.
However, as the authors themselves pointed out, large en-
tities with machines dispersed in different locations can
register their domain names with the geographical loca-
tion of their headquarters. As an example, many exist-
ing IP geolocation databases that use this approach incor-
rectly locate all Google’s servers worldwide to Mountain
View, CA.

Hostname-based.The machine hostnames can some-
times indicate the geolocation information. In particu-
lar, Padmanabhan’s and Subramanian’s GeoTrack [19]
parses the location of the last access router towards the
target to be located from its hostname and uses the loca-
tion of this router as that of the target. Unfortunately, this
method can be inhibited by several factors, as pointed
by [14]. First, not all machine names contain geolocation
associating information. Second, administrators can be
very creative in naming the machines; hence, parsing all
kinds of formats becomes technically difficult. Finally,
such last hop location substitution can incur errors.

Web-based. Guo et al.’s [16]’s Structon, mines the
geolocation information from the Web. In particular,
Structon builds a geolocation table and uses regular ex-
pressions to extract location information from each web
page of a very large-scale crawling dataset. Since Struc-
ton does not combine delay measurement with the land-
marks it discovers, it achieves a much coarser (city-level)
geolocation granularity. For example, they extract all lo-
cation keywords from a web page rather than just the lo-
cation address. Likewise, they geolocate a domain name
by choosing one from all locations provided by all the
web pages within this domain name. Indeed, such ap-
proaches are error prone. Moreover, geolocating a /24
segment with a city blurs the finer-grained characteris-
tics of each IP address in this segment.

Other sources. Padmanabhan’s and Subramanian’s
GeoCluster [19] geolocates IP addresses into a geograph-
ical cluster by using the address prefixes in BGP rout-
ing tables. In addition, by acquiring the geolocation in-
formation of some IP addresses in a cluster from pro-

prietary sources,e.g., users’ registration records in the
Hotmail service, GeoCluster deduces the location of this
entire cluster. This method highly depends on the cor-
rectness of users’ input and the private location infor-
mation, which is in general not publicly available. Our
approach differs from GeoCluster in that web designers
have strong incentive to report correct location informa-
tion in their websites, while users are less likely to pro-
vide accurate location information in their registration
application with online services, on which GeoCluster
highly relies. Moreover, we have demonstrated that us-
ing active network measurements instead of extrapolat-
ing geo information to entire clusters, is far more accu-
rate.

6.1.2 Delay measurement-based

GeoPing.Padmanabhan and Subramanian design GeoP-
ing [19], which assumes that two machines that have
similar delay vectors tend to be close to each other. The
authors rely on a set of active landmarks,i.e., those capa-
ble of actively probing the target. Necessarily, the accu-
racy of such an approach (the comparable results shown
later in the text) depends on the number of active land-
marks, which is typically moderate.

CBG. Instead of yielding a discrete single geo point,
Gueyeet al. [15] introduce Constraint Based Geoloca-
tion (CBG), a method that provides a continuous geo
space by using multilateration with distance constraints.
In particular, CBG first measures the delays from all van-
tage points to the target. Then, it translates delays into
distance by considering the best network condition of
each vantage point, termedbestline. Finally, it returns
a continuous geo space by applying multilateration.

CBG uses bestline constraints to compensate for the
fact that Internet routes are sometimes undirected or in-
flated. However, due to the difficulty of predicting the di-
rectness of a network route from a vantage point to a tar-
get, CBG only works well when the target is close to one
of the vantage points. As explained above, we use the
CBG approach straightforwardly in our tier 1 phase to
discover the coarse-grained area for a targeted IP. More-
over, using newly discovered web landmarks in this area,
we further constrain the targeted area in the tier 2 phase
as well. Thus, while CBG is good at limiting the destina-
tion area, it is inherently limited in its ability to achieve
very fine-grained resolution due to measurement inaccu-
racies.

TBG. Taking the advantage of the fact that routers
close to the targets can be more accurately located, Katz-
Bassettet al. [17] propose Topology-based Geolocation
(TBG), which geolocates the target as well as the routers
in the path towards the target. The key contribution of
this work lies in showing that network topology can be
effectively used to achieve higher geolocation accuracy.
In particular, TBG uses the locations of routers in the in-
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terim as landmarks to better quantify the directness of the
path to the target and geolocate it.

In addition to using network topological information,
a TBG variant also takes advantage of passive landmarks
with known locations. However, such an approach is
constrained by the fact that it only has a very limited
number of such landmarks. On the contrary, our web-
based technique can conquer this difficulty significantly
by discovering a large number of web-based landmarks.
More substantially, TBG fundamentally relies on theab-
solute delay measurements, which are necessarily inac-
curate at short distances. On the contrary, in addition to
relying on a large number of web-based landmarks in an
area, we demonstrate that our relative distance approach,
while technically less attractive, is far more accurate.

Octant. Wonget al. [24] propose Octant, which con-
siders the locations of intermediate routers as landmarks
to geolocate the target. Further, Octant considers both
positive information, the maximum distance that a tar-
get may be from the landmark, and negative information,
the minimum distance this target may be from the land-
mark. In addition to delay-based constraints, Octant also
enables any kind of positive and negative constraints to
be deployed into its system,e.g., the negative constraints
(oceans and uninhabitable areas) obtained from geogra-
phy and demographics.

In attempt to achieve high accuracy, Octant (as well
as the above TBG method) also adopts the locations of
routers in the path to the destination as landmarks to ge-
olocate the target. However, such an approach is ham-
pered to reach finer-grained accuracy because it fails to
accurately geolocate routers at such precision in the first
place. Finally, while Octant ’pushes’ the accuracy of
delay-based approaches to an absolutely admirable limit,
it is incapable of achieving a higher precision simply due
to the inherent inaccuracies associated with absolute de-
lay measurements.

Comparative results. According to [17], TBG has
the median estimation error of 67 km that a factor of
three outperforms CBG with the median estimation error
of 228 km. According to [24], comparing with GeoP-
ing and CBG, Octant with a median estimation error of
22 miles is three times better than GeoPing with an esti-
mation error of 68 miles and four times better than CBG
with an error distance of 89 miles respectively. Because
TBG and Octant used the PlanetLab nodes to evaluate
their system’s accuracy, we can directly compare them
with our system. As outlined above, our system’s me-
dian error distance is 50 times smaller than Octant’s, and
approximately 100 times smaller than TBG’s.

6.2 Client-dependent IP geolocation sys-
tems

6.2.1 Wireless geolocation

GPS-based geolocationGlobal Positioning System
(GPS) devices, that have been embedded into billions of
mobile phones and computers at nowadays, could pre-
cisely provide user’s location. However, GPS technology
differs from our geolocation strategy in the sense that it
is a ’client-side’ geolocation approach, which means that
the server does not know where the user is, unless the
user explicitly reports his information back to the server.

Cell tower and Wi-Fi -based geolocation. Google
My Location [5] and Skyhook [9] introduced their cell
tower-based and Wi-Fi -based geolocation approaches.
In particular, the cell tower-based geolocation offers
users estimated locations by triangulating from cell tow-
ers surrounding users, while the Wi-Fi-based geolocation
uses Wi-Fi access point information instead of cell tow-
ers. Specifically, every tower or Wi-Fi access point has
a unique identification and footprint. To find a user’s ap-
proximate location, such methods calculate user’s posi-
tion relative to the unique identifications and footprints
of nearby cell towers or Wi-Fi access points.

Such methods could provide accurate results,e.g., 200
- 1000 meters accuracy in cell tower scenario, and 10-20
meters in Wi-Fi scenario [9], on the expense of sacrific-
ing the geolocation availability at three aspects.

First, these approaches require end user’s permission
to share their location. However, as we discussed above,
many applications such as location-based access restric-
tions, context-aware security, and online advertising,
can not rely on client’s support for geolocation. Sec-
ond, companies utilizing such an approach must deploy
drivers to survey every single street and alley in tens of
thousands of cities and towns worldwide, scanning for
cell towers and Wi-Fi access points, as well as plotting
their geographic locations. However, in our approach,
we avoid such ’heavy’ overhead by lightly crawling land-
marks from the Web. Third, these approaches are tailored
towards mobile phones and laptops. However, there are
many devices (IPs) bound with wired network on the In-
ternet. Such wireless geolocation methods are necessar-
ily incapable of geolocating these IPs, while our method
does not require any precondition on the end devices and
IPs.

6.2.2 W3C geolocation

A geolocation API specification [3] is going to become
a part of HTML 5 and appears to be a part of current
browsers already [6].This API defines a high-level in-
terface to location information, and is agnostic of the
underlying location information sources. The underly-
ing location database could be collected and calculated
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by GPS, Wi-Fi access point, cell tower, RFID, Bluetooth
MAC address, as well as IP address, associated with the
devices. Again, this approach requires end users’ col-
laboration for geolocation. In addition, this method also
requires browser compatibility,e.g., Web browser must
supports HTML 5. Finally, to geolocate wired devices,
W3C geolocation has to conduct IP address-based ap-
proaches discussed in Section 6.1.1 and Section 6.1.2. In
this case, our method can be considered as an effective
alternative to improve the accuracy.

7 Conclusions
We have developed a client-independent geolocation sys-
tem able to geolocate IP addresses with more than an
order of magnitude better precision than the best previ-
ous method. Our methodology consisted of two powerful
components. First, we utilized a system that effectively
harvest geolocation information available on the Web to
build a database of landmarks in a given ZIP Code. Sec-
ond, we employed a three tiered system that begins at
a large, coarse-grained, scale and progressively works
its way to a finer, street-level, scale. At each stage, it
takes advantage of landmark data and the fact that on
the smaller-scale, relative distances are preserved by de-
lay measurements, overcoming many of fundamental in-
accuracies encountered in the use of absolute measure-
ments. By combining these we demonstrated the effec-
tiveness of using both active delay measurements and
web-mining for geo-location purposes.

We have shown that our algorithm functions well
in the wild, and is able to locate IP addresses in the
real world with extreme accuracy. Additionally, we
demonstrated that our algorithm is widely applicable
to IP addresses from both academic institutions, a
collection of residential addresses, as well as a larger
mixed collection of addresses. The high accuracy of
our system in a wide range of networking environments
demonstrates its potential to dramatically improve the
performance of existing location-dependent Internet
applications and to open the doors to novel ones.
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