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Abstract—This paper builds upon a previously defined fusion
process that exploits multichannel receiver diversity to enhance
received SNR. This particular diversity combiner aims to enhance
SNR under the challenging constraints that channel gains are
unknown, there is no direct knowledge of the transmitted signal,
and no opportunity to precode the signal into a known waveform.
Thus, fusion is blind in the sense that indirect techniques are
invoked to intelligently weight each sample during fusion, and to
measure the outcome.

Having already established a critical threshold that deter-
mines whether fusion does or does not enhance SNR, this paper
takes the next step by pursuing rigorous analytical development
of a statistical noise model for the effects of the combiner.
We provide the probability distributions of this noise, termed
Rayleigh-normalized Gaussian. With the probability distributions
in hand, we apply them to sample sets of various sizes to
understand how the combiner behaves with each incremental
sample. This allows us to investigate the likelihood that the critical
threshold for SNR gain is met, relative to additional samples, as
well as the likelihood of meeting arbitrary target SNR gains. We
also develop an expression for the average power of the Rayleigh-
normalized Gaussian noise variable.

I. INTRODUCTION

In [1], a diversity combiner is described that addresses a
scenario in which many noise-corrupted copies of a source
signal are to be fused for the purpose of increasing signal to
noise ratio (SNR) over any single received copy. This is to be
achieved under the challenging constraints that channel gains
are unknown, there is no direct knowledge of the transmitted
signal, and no opportunity to precode the signal into a known
waveform. Thus, many techniques common to digital com-
munications that exploit pilot signals, digital encoding (M-ary
QPSK/QAM), or those that invoke channel gain (MRC [2]) are
not applicable. The received signals are analog in nature, even
if stored digitally. Thus, fusion is blind in the sense that indirect
techniques must be applied to intelligently weight each sample
during fusion, and to measure the outcome of the process.

Though clearly approached from a communications point
of view, the combiner’s original motivation comes from a real-
world example in which numerous recordings of a single musi-
cal performance are captured by audience members and shared
online. Signal generated from stage-speakers is recorded in
mono by arbitrarily distributed receivers, a common practice
enabled by mobile phones and digital cameras. The noise
captured at each receiver differs among the recordings due
to spatial diversity that can be exploited during combining.

In the prior work, a critical threshold (detailed in Section II,
Eq. 1) was identified that defines whether the outcome of fu-
sion does or does not enhance SNR over any original received

sample. This model requires only that noise is uncorrelated,
and assumed no particular statistical distribution on the noise.
Now we wish to deepen our understanding of the combiner by
investigating not only whether fusion is successful, but how
likely it is to be successful for sample sets of varying size.
In order to accomplish such a characterization, it is necessary
to assume a distribution on the noise, which will allow us to
calculate probabilities associated with various input conditions.

In this paper, we make reasonable assumptions on noise,
and through the effects of the combiner identify a new
noise random variable, termed Rayleigh-normalized Gaussian
(RnG). We pursue rigorous analytical development of the
closed-form probability density functions (PDF) for both noise
amplitude and power. With the PDFs in hand, we apply
them to sample sets of various sizes to understand how the
combiner behaves with each incremental sample. It should be
emphasized that our goal here is not to build exhaustive tables
of probabilities (since any particular probability value depends
on many parameters), but rather to understand the trending
behavior of the combiner. The paper is organized into three
main sections. Section II gives brief but important background
on the fusion process that motivates the subsequent analysis,
Section III presents the closed-form distributions, and Section
IV provides evaluation and further discussion of the results.

II. NORMALIZED GAIN COMBINING BACKGROUND

The combiner, here termed Normalized Gain Combining
(NGC), relies on the following observation: When adding
uncorrelated noise of differing powers to identical transmitted
signals, the differences in total powers among the received
sample signals is due to noise. Therefore, NGC attempts to
normalize received samples such that their component signal
powers, rather than noise or total powers, are equal.

Meeting this condition allows NGC to rank all noisy sam-
ples in a set by relative SNR and judge whether a fused sample
returns increased or decreased SNR, all without knowing
explicitly the SNR of any individual or fused sample. The
critical enabling detail is the assurance that the powers from
the source signal components of each of the noisy samples are
equal. Note that the condition of equal powers does not imply
knowledge of what that power actually is, hence the absolute
SNRs remain unknown.

To understand how this normalization is achieved, let N
be the number of available received samples, xi, where i, j =
1, 2 . . . N . i and j are indices used to distinguish between two
samples xi being simultaneously considered, though i = j
is permitted. Assume all xi in the set are already synchro-
nized, a procedure addressed in [1], but beyond the scope of



this discussion. Assume noise is uncorrelated (this is more
precisely defined in a moment). Then, let Cov(xref, xi) = ci,
and Cov(xref, xj) = cj . Then Cov(xref, xi) = ci ≡ hj · cj =
Cov(xref, hjxj), where hj , cj , and ci are constants, and xref is
any fixed sample from the set chosen as an internal reference.
Cov represents covariance. Thus there is a scaling factor hj

which sets equal the covariances of any two samples to a
third sample. By applying this technique repeatedly throughout
the sample set, all samples can be scaled such that their
covariances to xref are equal. In a final pass xref can
relinquish its role as the internal reference to another sample
in the set, and similarly be scaled to set its covariance to that
new reference equal with the remaining samples’ covariance to
that new reference. Upon conclusion of this procedure, powers
from the source signal are equal (though it remains unknown
what the absolute power is), and differences in total powers
among the normalized samples are due to the noise.

This allows for ranking of the normalized samples in order
of increasing noise power, relabeling the sample with lowest
power x1. Taking the average of the normalized samples results
in a fused output with unchanged signal power, and total power
that is either increased or decreased. If the total power is lower
than that of x1, then based on our assumptions, fusion has
resulted in an increase in SNR.

Assume a set of normalized samples ranked in order of
increasing noise power, in which the noise power is known. Let
ki, for i = 1, 2 . . . N , be the ratio of the ith ranked sample’s
noise power to the 1st ranked (i.e., the “best” of those received)
sample’s noise power. Then, k1 = 1, and it can be shown
[1] that post-fusion SNR improvement is achieved when there
exists a subset M that satisfies the following condition:

M2

∑M

i=1
ki

> 1, 1 ≤ M ≤ N (1)

M indicates that it may be necessary to fuse only a subset
of the N ranked samples in order to achieve SNR gain. This
can happen, for example, when the poorest samples contribute
so much noise power and so little signal power that any noise-
cancellation effect is overwhelmed.

III. ANALYSIS

Noting that Eq. 1 makes no assumption on the noise
distribution, other than being uncorrelated, we now shift our
attention to understanding the likelihood that Eq. 1 can be met.
This requires a noise model that will serve as the basis for the
remainder of this paper.

Let si be the faded form of the original transmitted signal
s. Let ni ∼ G(0, σ2

ni
) be uncorrelated Gaussian noise, such

that Cov(ni, nj) = 0, i 6= j and Cov(si, ni) = 0, ∀i. Let ai ∼
R(σ2

ai
) be a Rayleigh distributed scaling factor, and si = ais.

Then xi = ais+ ni and σ2
xi

= a2iσ
2
s + σ2

ni
.

The choice of Rayleigh distributed fading for ai deserves
special consideration. Rayleigh fading is a powerful model
commonly applied in multichannel systems [2], [3], [4] when
line-of-sight is compromised, or when spatial diversity [5], [6]
is present including multiantenna MIMO [7] and even vehicu-
lar networks [8], [9]. In the present context, our motivating

scenario assumes that recordings come from users that are
arbitrarily dispersed among the audience, supplying spatial
diversity. In practice our observation is that received samples
do exhibit differing levels of loudness relative to background
noise. We consider Rayleigh fading a reasonable starting point
for analysis, that may later be refined.

Given xi = ais+ ni, consider a set of normalized ranked
samples. For purposes of notational convenience and without
loss of generality, assume that normalization successfully sets
signal power si in each sample equal to that of the original
transmitted signal s, by essentially dividing out ai. Then,
x′

i = xi/ai = s + ni/ai. Let ni/ai ≡ vi, the newly defined
RnG noise term collecting both the Gaussian and Rayleigh
components.

In practice, NGC normalizes relative to the power of an
internal reference chosen from the set of received samples, not
the power of the original transmitted signal s. For example, in
the case that all received samples are normalized to the power
of a1s, then vi = ni/(ai/a1), ∀i. Dividing the various ai by
the same a1 is equivalent to dividing a Rayleigh distributed
random variable by a constant, and the resulting a′i = ai/a1
is still Rayleigh distributed.

We now present the closed-form RnG distributions. De-
tailed derivations can be found in the Appendix, Section VI.

A. RnG Amplitude

The following are the CDF and PDF of the RnG random
variable vi, with ni ∼ G(0, σ2

ni
), and ai ∼ R(σ2

ai
). The

CDF and PDF are first derived with limits inherited from
the standard Gaussian and Rayleigh distributions, namely
(−∞,∞) and (0,∞), respectively. They are then rederived
and generalized with truncation of the Rayleigh component
that directly maps to a critical aspect of the NGC algorithm.
Truncation enables an important guarantee that σv2 , or RnG
average power, is finite. The subscript i is dropped since vi
are i.i.d.

1) CDF:

Fv(x) = P (v ≤ x) = P
(n

a
≤ x

)

(2)

=

∫

∞

0

Φ

(

ax

σn

)

f(a)da (3)

=
1

2

[

1 + x

√

σ2
a

σ2
n + x2σ2

a

]

(4)

where Φ(·) is the unit Gaussian CDF, and f(a) is the
Rayleigh PDF with a > 0, thus the limits of 0 to ∞. The
CDF of v, Fv(x), is shown in Fig. 1 for different values of σ2

a

and σ2
n.

2) PDF:

fv(x) =
d

dx
Fv(x) (5)

=
σaσ

2
n

2 (σ2
n + x2σ2

a)
3
2

(6)

The PDF of v, fv(x), follows from the derivative of the
CDF and is shown in Fig. 2 for different values of σ2

a and
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Fig. 1. Fv(x), the CDF of RnG noise amplitude
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Fig. 2. fv(x), the PDF of RnG noise amplitude

σ2
n. It can be shown that the decay of the PDF is too slow to

ensure a finite σv2 , an issue resolved in the next section.

3) CDF with Truncation: Intuitively, noise of the form
“n over a” leads us to expect an increase in overall noise v
whenever a is small. Signals with small a are deeply faded and
can result in an exploding RnG noise v. The NGC algorithm
eliminates very noisy signals that cannot contribute to an
improved fusion output. To represent this behavior, we place a
lower limit α on the Rayleigh random variable a. Though there
need not be a limit on how strong a signal can be, NGC by
design also identifies the best received signal, so we place an
upper limit β on a. These limits thus correspond directly to the
behavior of the NGC algorithm, and allow redevelopment of
generalized RnG distributions such that σv2 must be finite. The
following presents truncated Fv(x), where 0 < α ≤ a ≤ β.

Fv(x) =

∫ β

α

Φ

(

ax

σn

)

fα,β(a)da (7)

=
1

e
−α2

2σ2
a − e

−β2

2σ2
a

[

Φ

(

αx

σn

)

e
−α2

2σ2
a − Φ

(

βx

σn

)

e
−β2

2σ2
a

+

∫ β

α

x
√

2πσ2
n

e

−a2

2







σaσn√
σ2
n+x2σ2

a







2

da

]

(8)

where Φ(·) is the unit Gaussian CDF, and fα,β(a) repre-
sents the truncated Rayleigh PDF,

fα,β(a) =
1

F (β)− F (α)
· a

σ2
a

e
−a2

2σ2
a (9)

=
1

e
−α2

2σ2
a − e

−β2

2σ2
a

· a

σ2
a

e
−a2

2σ2
a (10)

4) PDF with Truncation: The PDF of truncated fv(x)
again follows from the derivative of the CDF.

fv(x) =
1

e
−α2

2σ2
a− e

−β2

2σ2
a

[

σn√
2π(σ2

n + x2σ2
a)

(

αe
−α2

2σ2 − βe
−β2

2σ2

)

+
σaσ

2
n

(σ2
n + x2σ2

a)
3
2

[

Φ

(

β

σ

)

− Φ
(α

σ

)

]

]

(11)

where σ ≡ σaσn√
σ2
n+x2σ2

a

for compactness. Setting α = 0 and

β = ∞, Eq. 11 reduces to Eq. 6.

B. RnG Power

Already having the PDF of v, the PDF of truncated v2 is
included here for completeness. In addition, we are interested
in the average RnG noise power, σ2

v . Let σ2
v = E[v2]−E[v]2.

We know Eq. 11 gives the density of truncated v, and Fig.
2 illustrates that E[v] = 0 (which is intuitive due to the
symmetry of the Gaussian density function). This allows us to
focus on E[v2] when characterizing the average noise power
of an RnG random variable. The following presents truncated
fv2(x) and E[v2] as a function of α, β.

1) PDF with Truncation:

fv2(x) =
1

|x| ·
1

e
−α2

2σ2
a − e

−β2

2σ2
a

·
[

σn√
2π(σ2

n + x2σ2
a)

(

αe
−α2

2σ2 − βe
−β2

2σ2

)

+
σaσ

2
n

(σ2
n + x2σ2

a)
3
2

[

Φ

(

β

σ

)

− Φ
(α

σ

)

]]

(12)

where σ ≡ σaσn√
σ2
n+x2σ2

a

for compactness.

2) Average Power: Truncation guarantees that the noise
amplitude lies within the range σn

β
≤ v ≤ σn

α
, for 0 < α ≤

a ≤ β, even without knowledge of the density. Truncation also
guarantees the expected value of the noise power, σv2 = E[v2],
is finite.

To find E[v2], recall that v = n
a

and v2 = n2

a2 .

E[v2] = E

[

n2

a2

]

= E[n2] · E
[

1

a2

]

(13)

= σ2
n ·

∫ β

α

1

a2
a

σ2
a

e
−a2

2σ2
a da (14)

=
σ2
n

2σ2
a

[

Ei

(

− β2

2σ2
a

)

− Ei

(

− α2

2σ2
a

)]

(15)

where the Exponential Integral [10] is represented by

Ei(z) =
∫ z

−∞

et

t
dt, and

∫

e−cx2

x
dx = 1

2
Ei(−cx2). For

0 < α ≤ a ≤ β, E[v2] < ∞. Fig. 3 illustrates the relationship
among E[v2], α, and β, and its intuitive correspondence to the
“n over a” form of v. As α shrinks, E[v2] grows. If α were
allowed to shrink unbounded toward 0, E[v2] would grow to
infinity.
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IV. EVALUATION

In this section, we apply the results of our analysis to better
understand the marginal behavior of fusion via NGC, i.e., the
incremental effect of increasing the size of the sample set.

As pointed out in Section III-B2, Fig. 3 illustrates that
E[v2] exhibits an intuitive correspondence to the “n over a”
form of v. Similarly, the density plots of Fig. 2 fall in line with
expectations. Since Gaussian random variables have symmetry
(assuming zero-mean) in that they take positive and negative
values, multiplying or dividing by a Rayleigh random variable
that can take only positive values implies symmetry will be
preserved in RnG noise. However, we expect the density to be
stretched or compressed due to the Rayleigh scaling influence.
This is exactly what is observed in Fig. 2.

To further validate the analytical result depicted in Fig. 2,
we have generated a simulation of RnG noise and plotted its
density in Fig. 4. For added context and ease of comparison,
the PDF of a Gaussian-only simulation has also been super-
imposed over the RnG density. Comparing Figs. 2(b) and 4,
there is direct agreement that persists even when varying σ2

a.
These two figures plot the same information in the same way,
with the only difference being whether the data was produced
via analysis or simulation.

In order to understand how to apply the RnG PDF, we

revisit Eq. 1. Recall that the threshold M2/
∑M

i=1
ki > 1

represents the condition under which SNR in the fused output
exceeds that of the 1st-ranked original sample. This condition
exists independently of any distribution. It depends only on the
number of fused samples, M , and the disparity among noise
powers in the sample set as indicated by the ratios ki. The rea-
son for considering the disparity among noise powers is one of
arithmetic. When averaging two uncorrelated noise signals of
equal powers, noise cancellation results in a fused output with
less power than either of the original noise signals. When one
noise signal’s power is much greater than the other’s, averaging
still results in a degree of cancellation, but the power of the
fused output may actually exceed that of the lower-powered
of the original noise signals. In that case, fusion provided no
benefit and the lower-powered original noise signal should be
preferred. Somewhere between these examples is a point where
noise cancellation and noise disparity exactly balance, such
that the fused output has noise power exactly equal to that of
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Fig. 4. fv(x), the PDF of RnG noise amplitude, generated via simulation
of Gaussian and Rayleigh distributed data points, for varying σ2

a. For added
context, a Gaussian-only density with σ2

n = 1 is superimposed.

the lower-powered of the original noise signals. That balance

point arises when M2 =
∑M

i=1
ki.

Fig. 5 examines the relationship among M2,
∑M

i=1
ki, and

SNR gain from fusion, for an illustrative realization. In this
realization, all ki, i = 2 : M , are set equal to each other. With
the exception of k1 = 1, the particular value chosen is E[v2]
as calculated by Eq. 15 (k1 = 1 offers the convenience that
the ratios ki are the noise powers themselves). In Fig. 5(top),

M2 is seen growing rapidly with M , while
∑M

i=1
ki does not.

With so many of the ki set equal, this is a very favorable
condition to SNR gain, and this is visible in Fig. 5(bottom).
However, by introducing noise power disparity between k1
and the other samples, an important characteristic emerges.
A highly-ranked subset of the ranked samples may be unable
to meet the threshold for improved SNR, and by including
more samples, the threshold may then become satisfied. This
is seen in Fig. 5(bottom), where SNR improvement relative to
the best sample is not achieved for M = 2 and M = 3. Only
when M ≥ 4 is SNR enhanced. For this reason, it is necessary
to fuse every subset of the first-M ranked samples (i.e., the
first two, the first three, the first four, etc.) out of the total N
available samples prior to determining which subset provides
optimal SNR gain. Note that ranking provides the valuable
computational advantage of limiting the number of test subsets
to N , eliminating the need to test every combination within
the N total samples. Given this behavior, it is of great interest
to investigate the effect each incremental sample is likely to
have when being added to the fused subset. More precisely,
we describe this as the marginal effect of the M th sample,
given an existing realization of the first M − 1 samples.

To study the M th sample, we will isolate it according to
Eq. 20. Based on an assumed realization of k1 : kM−1, and

the corresponding
∑M−1

i=1
ki, we can calculate what value of

kM is necessary in order to satisfy the threshold of Eq. 1.
This critical value then serves as the input argument of Eq.
12, the PDF of v2. Equivalently,

√
kM as shown in Eq. 20

serves as the input for Eq. 11, the PDF of v. The result is
the probability that the incremental addition of kM to the set
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Assume k1 = 1, k2 : kM = E[v2] for σ2
n = σ2

a = β = 1, α = 0.01

will result in improved SNR due to fusion. As a matter of
preference, we will proceed focusing on

√
kM and truncated

fv(x) in the amplitude domain.

M2

∑M

i=1
ki

> 1 (16)

M2 >

M
∑

i=1

ki (17)

M2 >

M−1
∑

i=1

ki + kM (18)

M2 −
M−1
∑

i=1

ki > kM (19)

√

√

√

√M2 −
M−1
∑

i=1

ki >
√

kM (20)

The next consideration is what realization to assume for
the first k1 : kM−1 ranked samples. There are two realizations
in particular that are highly instructive. The first has already
been hinted at, and that is the advantageous case when all
noise powers are equal, or ki = 1, ∀i. The second is a less
favorable case in which noise disparity is introduced to the

sample set, so much so that the growth in
∑M−1

i=1
ki exactly

keeps pace with (M − 1)2 as M increases. This growth rate
in noise power prevents improved SNR from fusion of the
first M − 1 samples while ensuring it is still possible through
addition of the M th. Such a realization can be generated by
setting ki = 2i − 1. Observe the following realization of a

sequence of ki, [1 3 5 7]. It is apparent that
∑2

i=1
ki = 4,

∑3

i=1
ki = 9, and

∑4

i=1
ki = 16, exactly matching the square

of the number of samples in the sum.

These two realizations of k1 : kM−1, the equal-power and
rising-power cases, respectively, are the basis for Fig. 6. In
Fig. 6, each data point is the result of assuming the previously
described realizations of the first M − 1 samples, calculating
the necessary

√
kM in the M th sample that would meet the

threshold set in Eq. 20, and using that result as the input of
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Fig. 6. Plot of truncated Fv(x =
∣

∣

√

kM
∣

∣) vs. M , where
√

kM is determined

by the maximum allowable RnG noise in the Mth sample that will allow for
improved SNR after fusion. Assume σ2

n = σ2
a = 1, α = 0

Eq. 11, truncated fv(x). The Rayleigh amplitude bound β is
chosen in each case such that the M th sample cannot surpass
the SNR of the (M − 1)th sample, preserving rank. We set
α = 0 to allow the M th sample to be arbitrarily bad.

Several observations can be made from Fig. 6. In both
cases, the highest ranked samples have a high probability of
contributing favorably towards improved SNR. As expected,
the equal-power case offers a lower hurdle for each M th

sample to overcome. In the rising-power case, each M th

sample has a smaller range of permissible a, by virtue of
having been ranked lower than sample M−1. However, in both
cases, diminishing returns come into play. Probabilities plunge
such that the curves tend to converge beyond approximately
10 samples. Note that the specific probabilities of the y-axis
should not cause undue distraction. These values change for
different input paramters σ2

n and σ2
a. The curves shift upward

or downward, but the general shape persists.

Returning to the example in which many audio recordings
of the same event have been shared online, our real-world
observation is that 3 to 6 copies is typical, with the number
rarely exceeding 10. In this application of NGC, the plausible
range of operation occupies the area of the curve in which there
is a strong probability of SNR improvement due to fusion.

An additional investigation into applying truncated fv(x)
is shown in Fig. 7. In this example, the size of the sample set
is held at M = 6. Given an assumed equal-power realization
of the first M − 1 samples, k1 : k5 = 1, the likelihood that k6
enables a targeted SNR amplitude gain due to fusion is calcu-
lated and plotted. This plot indicates an approximately linear
decay in probability, and exact values are again dependent on
the choice of input parameters σ2

n, σ2
a, α, and β.

In summary, an understanding of fusion via NGC depends
on characterizing the impact each incremental sample has
when added to the set. To illustrate that impact, we incorporate
knowledge of the condition under which SNR improvement is
achieved with knowledge of the statistical distribution of RnG
noise. This enables us to visualize the marginal effects for any
combination of input parameters, including M , σ2

n, σ2
a, α, and

β.
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Fig. 7. Plot of truncated Fv(x =
∣

∣

√

kM
∣

∣) vs. SNR Amplitude Gain, where
√

kM is determined by the maximum allowable RnG noise in the Mth sample
that will allow for a target SNR Gain after fusion. Assume σ2

n = σ2
a = 1, α =

0, M = 6

V. CONCLUSION

We have rigorously analyzed Rayleigh-normalized Gaus-
sian noise in the context of an audio signal combiner. By
providing densities, expectation of power, and describing their
intuitive relation to this form of noise, it is possible to
understand the marginal effect of an increasing number of
samples available for fusion.

We have provided background on the algorithmic operation
of Normalized Gain Combining, which directly motivates
Rayleigh-normalized Gaussian noise. In the process of de-
veloping the RnG densities, we accommodated the need to
ensure finite average noise power. This was accomplished by
placing bounds on the Rayleigh amplitude, which itself offers
three benefits. Average noise power is ensured to be finite, the
bounds map directly to a key feature of the combiner, and the
densities become more generalized and thus more powerful.

We then provided several visualizations of our results, in-
cluding a density for simulated RnG noise that adheres closely
to the analytically-derived density. Marginal impact from the
incremental addition of samples to the set was shown to have
a high probability of supporting SNR gain for the first several
samples, with diminishing returns beyond approximately 10
samples. This implies that seeking large sample sets beyond
10 samples provides little incremental value, when the most
beneficial samples have already been incorporated.

Above all, this work demonstrates the behavior of a unique
blind fusion process that operates under challenging con-
straints. The absence of channel gains and reference informa-
tion about the transmitted signal were overcome using indirect
methods from statistical signal processing and information
fusion, and in the process a new form of noise was identified
and studied.

VI. APPENDIX

In the interest of preserving readability, derivations are kept
to a minimum in the body of this paper. In this appendix,
detailed derivations are presented for a selection of the more
involved solutions. These are: truncated CDF of v, truncated
PDF of v, and truncated PDF of v2.

A. CDF of v with Truncation

Note the truncated Rayleigh PDF,

fα,β(a) =
1

F (β)− F (α)
· a

σ2
a

e
−a2

2σ2
a (21)

=
1

e
−α2

2σ2
a − e

−β2

2σ2
a

· a

σ2
a

e
−a2

2σ2
a (22)

Then substituting below, and integrating by parts gives the
truncated Fv(x) in Eq. 26.

Fv(x) = P (v ≤ x) = P
(n

a
≤ x

)

(23)

=

∫ β

α

Φ

(

ax

σn

)

fα,β(a)da (24)

=



Φ

(

ax

σn

) −1

e
−α2

2σ2
a − e

−β2

2σ2
a

e
−a2

2σ2
a





β

α

−
∫ β

α

−1

e
−α2

2σ2
a − e

−β2

2σ2
a

e
−a2

2σ2
a

x
√

2πσ2
n

e
−(ax)2

2σ2
n da

(25)

=
1

e
−α2

2σ2
a − e

−β2

2σ2
a

[

Φ

(

αx

σn

)

e
−α2

2σ2
a − Φ

(

βx

σn

)

e
−β2

2σ2
a

+

∫ β

α

x
√

2πσ2
n

e
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2


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

σaσn√
σ2
n+x2σ2

a







2

da

]

(26)

B. PDF of v with Truncation

The PDF of truncated fv(x) again follows from the deriva-
tive of the CDF. For manageability during the calculation of
its derivative, separate Fv(x) into sections J , K(x), and L(x),
such that Fv(x) = J(K(x) + L(x)), as follows,

J ≡ 1

e
−α2

2σ2
a − e

−β2

2σ2
a

(27)

K(x) ≡ Φ

(

αx

σn

)

e
−α2

2σ2
a − Φ

(

βx

σn

)

e
−β2

2σ2
a (28)

L(x) ≡
∫ β

α

x
√

2πσ2
n

e
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2







σaσn√
σ2
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a







2

da (29)

Then fv(x) =
d
dx
J(K(x)+L(x)) = J( d

dx
K(x)+ d

dx
L(x)).

This allows us to focus on each smaller component of the
whole, starting with d

dx
K(x) (note J requires no differentia-

tion as it is not a function of x).
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where σ ≡ σaσn√
σ2
n+x2σ2

a

for compactness . Now continuing

with d
dx
L(x), substituting σ ≡ σaσn√

σ2
n+x2σ2

a

, and invoking

Leibniz’s Rule for differentiation inside an integral [11], we
have,

d
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Recombining J( d
dx
K(x)+ d

dx
L(x)), collecting coefficients,

and restoring σaσn√
σ2
n+x2σ2

a

≡ σ where simplifications are possi-

ble gives the final PDF of the truncated RnG random variable.
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C. PDF of v2 with Truncation

With Y = v2, find P (Y ≤ y), or FY (y). Since v2 is non-
negative, FY (y) = 0, for y < 0. FY (y) = P (Y ≤ y) =
P (−√

y ≤ v ≤ √
y) = Fv(

√
y)− Fv(−

√
y), for y > 0.
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Substituting fv(x) from Eq. 36,
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(40)

Restoring v2, x, and gathering terms results in the PDF of
v2 with truncation.
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