
Computer Networks 56 (2012) 598–614
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Extracting user web browsing patterns from non-content network traces:
The online advertising case study q

Gabriel Maciá-Fernández a,⇑, Yong Wang b, Rafael A. Rodrı́guez-Gómez a,
Aleksandar Kuzmanovic c

a University of Granada, Dept. Signal Theory, Telematics and Communications, CITIC, Spain
b University of Electronic Science and Technology of China, Chengdu, China
c Northwestern University, Evanston, Illinois, USA
a r t i c l e i n f o

Article history:
Received 9 February 2011
Received in revised form 12 May 2011
Accepted 21 October 2011
Available online 29 October 2011

Keywords:
Online advertising
Web navigation
Web fingerprinting
1389-1286/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.comnet.2011.10.012

q A preliminary version of this work appeared in
Infocom 2010.
⇑ Corresponding author. Address: Dept. of Signa

and Communications. E.T.S. Computer and Teleco
neering, University of Granada, c/ Daniel Saucedo
Granada, Spain. Tel.: +34 958241000 (20048); fax:

E-mail addresses: gmacia@ugr.es (G. Maciá-Fern
c.edu.cn (Y. Wang), rodgom@correo.ugr.es (R.A
akuzma@cs.northwestern.edu (A. Kuzmanovic).
a b s t r a c t

Online advertising is a rapidly growing industry currently dominated by the search engine
’giant’ Google. In an attempt to tap into this huge market, Internet Service Providers (ISPs)
started deploying deep packet inspection techniques to track and collect user browsing
behavior. However, these providers have the fear that such techniques violate wiretap laws
that explicitly prevent intercepting the contents of communication without gaining con-
sent from consumers. In this paper, we explore how it is possible for ISPs to extract user
browsing patterns without inspecting contents of communication.

Our contributions are threefold. First, we develop a methodology and implement a sys-
tem that is capable of extracting web browsing features from stored non-content based
network traces, which could be legally shared. When such browsing features are correlated
with information collected by independently crawling the Web, it becomes possible to
recover the actual web pages accessed by clients. Second, we evaluate our system on the
Internet and check that it can successfully recover user browsing patterns with high
accuracy.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Online advertising is a $20 billion industry that is grow-
ing rapidly [1]. Examples of online advertising include con-
textual ads on search engine results pages, banner ads, rich
media ads, social network advertising, online classified
advertising, advertising networks, and e-mail marketing.
Google [2], who originally controlled 35% of the ad server
. All rights reserved.

Proceedings of IEEE

l Theory, Telematics
mmunications Engi-

Aranda, s/n, 18071
+34 958 24 08 31.
ández), ywang@uest-
. Rodrı́guez-Gómez),
market, finally acquired DoubleClick [3], a 34% market
share holder, giving the combined online ad firm more
than 69% of the market [4].

Internet Service Providers (ISPs) have for years looked
on jealousy as Google has grown rich on their subscribers’
web browsing, while the ISPs have been reduced to ‘‘dumb
pipes,’’ ferrying internet traffic for subscribers but unable
to win their online spending [1]. In an attempt to reverse
this trend, some ISPs started cooperating with companies
such as Phorm [5], NebuAd [6], and FrontPorch [7]. These
companies use deep packet inspection techniques, i.e.,
inspect packets payload to intercept web page requests
and responses generated by ISPs’ subscribers as they roam
the net. Then, they extract information related to users
web navigation, and sell it to advertisers, allowing them
to apply so-called behavioral ad targeting, i.e., the ads sent
to users are wisely chosen depending on the previous nav-
igation patterns and preferences of these users.

http://dx.doi.org/10.1016/j.comnet.2011.10.012
mailto:gmacia@ugr.es
mailto:ywang@uestc.edu.cn
mailto:ywang@uestc.edu.cn
mailto:rodgom@correo.ugr.es
mailto:akuzma@cs.northwestern.edu
http://dx.doi.org/10.1016/j.comnet.2011.10.012
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 599
A major problem in the above arrangement between
ISPs and companies that deploy deep packet inspection
based data collection systems is a legal one1: unlike Google
(not a broadband provider), ISPs that provide broadband ser-
vices are not exempt from ‘‘the Federal Wiretap Act, origi-
nally enacted in 1968 to protect against phone wiretapping
and amended in 1986 to cover computer network communi-
cations. It states a simple prohibition: thou shalt not intercept
the contents of communications (see 18 U.S.C Section 2411(1))
[9]. Violations can result in civil and criminal penalties.’’ (ex-
tracted from [8]). Indeed, this prohibition has clearly been
violated by deep packet inspection techniques [10]. The
law predicts several exceptions, e.g., security reasons (see
18 U.S.C. Section 2511(2)(a)(i) [9]) or user consent (see 18
U.S.C. Section 2511(2)(d) [9]) but behavioral advertising is
certainly nowhere on the exception list.

Pressed by the legal constraints on one side, and by
huge market opportunities on the other, ISPs (e.g.,
[11,12]) started addressing the legal issue by altering their
customer-service agreements to permit monitoring by
describing it as ‘‘performance advertising services’’ [1].
Each company allows users to opt out of the ad targeting,
though that permission is buried in customer service doc-
uments’ footnotes. Other providers, such as AT& T and
Verizon have pledged to refrain from tracking customer
Web behavior unless they receive explicit ‘‘opt in’’ permis-
sion to do so [13]. Still, there is a strong concern that these
approaches opt the user out of targeted ads, but not the on-
line data collection. Hence, there is a fear that ISP-enabled
ad targeting with deep packet inspection techniques is
highly vulnerable to lawsuits [14], which is why many ISPs
are reluctant to deploy this technology.

The main idea in this paper lies in abandoning contro-
versial deep packet inspection techniques and try to reverse
engineering user browsing patterns using alternative
methods. We refer to the Electronic Communications Pri-
vacy Act [15–17] which defines the sharing of particular
types of stored records of online activities. It states that
any provider can hand-over non-content records to anyone
except the government (see 18. U.S.C. Section 2702(c)(6)
[16]). Consequently, sharing non-content-based stored
headers – such as TCP headers – with anyone except a gov-
ernment body is legal [8].

The key challenge and the main research question we
attempt to address then become if it is possible, and how
accurately and scalably, to recover user browsing access
patterns based solely on fairly limited information pro-
vided in TCP headers? We show that web browsing pat-
terns stay highly visible at the TCP layer, and we design
a method to automatically extract such features. Next,
we profile the websites, building a fingerprint of every
hosted web page by extracting relevant features such as
object size, cacheability, location, link information, trans-
fer modes, etc.. Finally, we design an algorithm that corre-
lates the two sources of data to detect the pages accessed
by clients.
1 In this paper, we focus on the U.S. Federal Law. Still, many international
laws are similar to the U.S. Federal law [8].
We have evaluated our algorithm and show that it
achieves high detection rates, i.e., 86%, with false positive
rates below 5%. The fundamental reason for such perfor-
mance is its ability to extract and exploit significant statisti-
cal page diversity available at all sites we explored.
Furthermore, we demonstrate that the algorithm is resilient
to data staleness, i.e., when either network traces or web
profiles are outdated. While the page properties necessarily
change over time, we show that a subset of unique proper-
ties remain, making the detection resilient with time.

We further show that the approach is resistant to differ-
ent browsing scenarios including pipelining, caching, NAT-
level flow multiplexing, and various browser versions. We
also demonstrate that the algorithm scales to entire web-
sites while preserving high detection performance. Finally,
we evaluate our approach in the ’wild’ and successfully
recover browsing patterns based on real traces collected
from a group of 17 volunteers.

This paper is structured as follows. We summarize the
general framework of our approach in Section 2. We then
extensively describe the details of our approach in Section
3. In particular, we provide the key ideas, the methodology
and solutions. In Section 4 we present the results on the
evaluation of the proposed approach in a controlled envi-
ronment, while Section 5 presents the evaluation in a non-
controlled environment. Next, we provide related work in
Section 6. Finally, we discuss the results in Section 7 and
conclude in Section 8.
2. The online advertising framework

In this section we provide an insight of the general
framework in which our approach is applied, i.e., a behav-
ioral ad targeting business model where an ISP is willing to
participate.

An example behavioral ad targeting scenario is as fol-
lows. Consider the Los Angeles Lakers web site. Based on
its content, it posts ads for products a Lakers fan might be
interested in: NBA store, Adidas, a Los Angeles hotel, etc.
With information about users’ navigation patterns, adver-
tisers might consider that a person surfing at Lakers site is
also a potential car customer because he recently accessed
an article about car prices at the New York Times web site.
This means that car companies might be interested in dis-
playing an ad to that user at the Lakers site, too.

Here, three roles are distinguished. First, advertisers are
those companies interested in advertising their products
online. Second, publishers, which own web sites (in our
example Los Angeles Lakers web site), participate in the
business by publishing ads in their web pages. Finally,
commissioners are intermediate companies that connect
both advertisers and publishers and provide the technol-
ogy to make it possible the ad distribution to the publish-
ers’ web sites.

A typical online advertising process is as follows. A client
downloads a web page from a publishers’ site. This page
contains a pointer to a commissioner’s server (typically a
javascript code), which makes the client ask for an ad. Here,
the commissioner is responsible for selecting an appropri-
ate ad for that client and sending it. In the selection of an

600 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
ad, a commissioner typically follows two possible strate-
gies: (i) it takes into account information related to the con-
tents of the web page solicited by the client (contextual
advertising), and/or (ii) it considers the profile of the client
(behavioral targeting), e.g., navigation history, preferences,
interests, etc.

In the context of behavioral targeting, certain companies
offering end services, e.g., Google, Amazon, are able to ob-
tain useful information about client profiles through the
information obtained from the own offered service. As an
example, Google obtain navigation history of users by using
click-through [18] when they search in the Google’s search-
engine; social networks are able to obtain client profiles
when they share interests with their online social environ-
ment. For these ‘‘end-services companies’’, the availability
of this information is practically straightforward and,
therefore, they can potentially become a commissioner.

In this model, our approach would allow ISPs to partici-
pate in the online ad business model by obtaining such
information from network traces and without having to
use deep packet inspection techniques, in case they are
reluctant to do this because of legal implications. Once the
information about users navigation patterns is obtained,
an ISP could either sell this ‘‘product’’ to current commis-
sioners or it could even play the commissioner role. Now,
we discuss how this information could be acquired by an
ISP and the limitations of this information for being sold as
user navigation patterns.
3. Recovering web browsing patterns from stored TCP
headers

In this section, we introduce a methodology for recover-
ing web browsing patterns from the information available
in TCP headers. A web browsing pattern for a user is a list
of web pages visited by that user. Here, we identify an user
by his IP address, and a web page by its URL. Although the
identification of user-IP address has some limitations, we
discuss how it is still useful to have this information for
the purposes of behavioral ad targeting.

An ISP which applies the methodology explained in
what follows is expected to obtain a list of web pages
(URIs) visited from different IPs. This information is the
‘‘product’’ to be sold or shared with commissioners in the
online ad market.

Now, we present the necessary background on the to-
pic. Next, we describe our approach and the corresponding
algorithm. Finally, we discuss a method for handling sev-
eral possible sources of error.
Fig. 1. Model for a web page structure. Pages are composed of a page file
and objects. Page files contain references to objects and links to other
pages.
3.1. Background

Here, we present the necessary background on web
browsing. Although the material presented here is com-
mon knowledge, we present it to define and clarify the ter-
minology used in advance.

Web browsing is a process that relies on the client server
paradigm. Using the Hypertext Transfer Protocol (HTTP)
[19], a client (also termed as browser) sends an HTTP
request to a web server soliciting a web page. Different
resources in the web server are specified by different and
unique Uniform Resource Identifiers (URIs) [20].

A web page typically consists of a page file and corre-
sponding object files [21]. A page file is uniquely deter-
mined by a URI, this URI normally being that reached
after a user either type it in the browser or follows a link
in other page that points to it. We could say that the page
file is really the container of the web page. A page file ref-
erences other object files, called objects, that are inserted in
the web page. For example, the page file identified by URI1

in Fig. 1 references two objects, which could be images,
media resources, or even scripts. Each object is also identi-
fied by an unique URI, e.g., URI11 and URI12 in Fig. 1.

Independently from the HTTP protocol version, when
accessing a web page, the corresponding page file is always
downloaded first. Once a page file is downloaded, the brow-
ser parses its contents (typically HTML code or scripts) and
extracts a list of URIs corresponding to the objects that
should be downloaded to render the given page. Depending
on the protocol version (e.g., HTTP 1.0 vs. 1.1), these objects
could be downloaded using one or more TCP connections,
as we explain in detail below.

Objects referenced from a web page could reside at the
same server as the page file. However, for reasons such as
content distribution (e.g., [22]), they could be hosted at
other servers as well. If an object resides at the same server
(determined by a unique IP address in our approach) as the
page file, we term the object as internal. Otherwise, it is
third-party [23].

In addition to referencing objects, a page file typically
hosts links (pointers) to other web pages as well. They en-
able clients to access other web pages ‘‘by clicking’’ them at
a given web page. Like objects, links could be third-party
and internal depending on the location of the correspond-
ing page file’s URIs.

In our approach, given that both page files and objects
are really referenced by URIs, we establish the following
criterion to decide if a URI is a page file or not: a given
URI corresponds to a page file if and only if there exists a link
on the given website pointing to that URI. Note that a URI
could be pointed by a link from a third-party website,
not being linked from the internal web pages. In this case,
we simplify our approach considering only those URIs
pointed within the website. Furthermore, note that a web
page does not always consist of multiple objects, and it
does not necessarily point to other web pages. Indeed, a

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 601
web page can be a simple HTML file or an image. Then, it
may occur that a page file (identified by URIR) concurrently
references and points (links) to a given URI, say URIx. As a
result, we consider that URIx is an object from URIR per-
spective, but also corresponds to a page file, because there
exists a link on this website that points to URIx.

3.2. Methodology

The problem we aim to solve is the following: ‘‘Given a
packet-header network trace (without payloads), recover
the web pages visited by users.’’ The key idea is as follows:
(i) Extract the Web-level communication features from the
network-level information available in TCP headers; (ii)
Profile Internet websites visited by users represented in
the trace, i.e., independently crawl the given websites and
collect statistics about web pages, e.g., object size, cache-
ability, locality, links among pages, etc.; and finally, (iii) cor-
relate the information from the two sources to detect web
pages actually accessed by clients.

3.2.1. Website profiling
To accurately and comprehensively profile a website,

we extend the wget tool to build a web crawler. Contrary
to the common web crawler application, i.e., building a
comprehensive and up-to-date replica of the content avail-
able on the Web for the sake of mining information from it
(e.g., [2]), our goal is different. We aim to extract character-
istics about the web pages at a website that will later be
used to recover actual user access patterns at that site. In
particular, our crawler is capable of extracting the follow-
ing information about each of the discovered URIs at a
website.

� Size. A page file or an object corresponding to a given
URI could be downloaded in either plain or compressed
modes, depending on the browser and server settings.
Our goal is to obtain the corresponding file size (in
bytes) in both modes. Hence, the crawler makes two
separate download attempts for each URI. First, with
the Accept-Encoding=’gzip.deflate’ field set in
the HTTP request, indicating a compressed mode; and
second, without this feature, indicating the plain for-
mat. If the server does not support compressed down-
loads, the two sizes will be identical. It is important to
understand that the estimated size accounts for the
sum of the given object size and the corresponding
HTTP header.
� Cacheability. Caching is an important web-related

mechanism. It allows retrieving web page objects from
intermediate repositories such as proxies, shared
caches, or browsers. The browser and the server have
mechanisms to decide if a given object should be
cached or not [19]. Hence, objects in a web page could
be cacheable or non-cacheable.
In our approach, it is important to distinguish if an
object is cacheable or not, mainly due to the fact that,
if a cacheable object is inserted in a web page, the
download of that page does not always imply the down-
load of the object.
The HTTP response header obtained from the server for
a given URI allows the crawler to estimate if a page file
or an object is cacheable or not. In particular, whenever
the field Cache-Control:no-cache or the field Prag-

ma:no-cache is present in the response header, this
implies that the file specified by the given URI is non
cacheable. Likewise, if none of the fields Cache-Con-

trol:max-age, Expires, and Last-Modified appear
in the header, the given page file or object is considered
as non cacheable [19].
� Locality. The crawler records the location of each page

file and its corresponding objects. The location could
be internal, i.e., the page file or the object is hosted at
the same server (same IP address) as the website.
Otherwise, the location is third-party.
� References. A page file pointed to by a URI could contain

references to other URIs, corresponding to objects refer-
enced by this page file. The crawler parses this page file
and extracts a list containing these references.
� Links. A page file pointed to by a URI could contain links

to other URIs. The crawler parses this page file and
extracts a list containing these links. It further crawls
URIs corresponding to internal links, i.e., page files.

3.2.2. Extracting web browsing features from network traces
Here, our goal is to extract the Web-level browsing fea-

tures from network traces; in particular, the number of web
pages accessed by a client and the size and location of page
files and objects corresponding to these web pages. When
combined with the information obtained via web profiling
(Section 3.2.1), these features will enable recovering user
web browsing patterns (Section 3.2.3). We refrain from
mining packets payloads to obtain URIs accessed by clients
or content generated by servers since both approaches vio-
late the Federal Wiretap Act [8]. Indeed, we constrain our-
selves to recording and later inspecting TCP headers only.

One-way TCP header collection. Our approach is tailored
towards access ISPs, and it requires an ISP to record TCP
packet headers at a tapping point in the network. While
it is generally possible to obtain data in both (client–server
and server-client) directions in access networks, that is
typically not the case in non-access networks due to path
asymmetry [24]. Still, our approach is applicable even in
such scenarios because it requires collecting TCP headers
in the single direction only, i.e., from clients to servers, as
we explain in detail below. To extract HTTP level commu-
nication from the trace, we filter out traffic on port 80 and
create per source IP subtraces.

Web page-based trace slicing. Our next goal is to further
separate each of the user subtraces into separate slices;
each slice should ideally consist of packets that correspond
to a single page accessed by a client. To achieve this goal,
we exploit the well-known web-user behavior. In particu-
lar, it has been shown experimentally that either a ma-
chine [25] or a Web user [26] requires at least one
second to process and react to the display of a new page.
(We experimentally verify this result ourselves in Section
5 by evaluating a representative user browsing data set
we collected.) As a result, each user ’click’ at a link on a
website is followed by a period of activity corresponding
to a web page download, and a period of inactivity corre-
sponding to the page processing. Hence, we use these
moments of user inactivity to separate the user traces into

Fig. 2. Model of the trace. Time intervals higher than 1s divide the trace in slices. The elements contained in a slice are separated by packets with TCP PUSH
flag set within a TCP connection.

602 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
slices. Even when this is not the case that more than one
page can end up in a slice, our algorithm can handle this
case as well, as we demonstrate below. Thus, in our model
of the trace, slices are composed of several elements, each
one containing the request for the download of either a
page file or an object for a certain web page (see Fig. 2(a)).

Extracting web page features. Our next goal is to extract
the number of elements (page file and objects) within a gi-
ven slice, and their size and position (internal vs. third-
party). This information will later be used, among other
features, to detect the actual web pages accessed by clients
in the trace (Section 3.2.3). To recover the number of ele-
ments and their size and position, we inspect the TCP pack-
et headers.

The overall model of a trace slice is shown in Fig. 2(b).
Here, three issues are considered for our objective. First,
as indicated above, when accessing a web page, the corre-
sponding page file is always requested and downloaded
first. This means that the first element detected in the trace
would correspond to the page file. The rest of elements are
considered objects referenced by that page file. Second,
each HTTP request for any of the web page objects is re-
quested in a separate TCP packet (except when pipelining
is enabled. See Section 3.3.2 for this case). Third, in the vast
majority of scenarios, TCP packets carrying HTTP requests
have the TCP PUSH flag set.2

The TCP PUSH flag [27] exists to ensure that the data is
given the priority. In particular, when either a sending or
receiving TCP receives a TCP packet with TCP PUSH flag
set, they must immediately act: send a TCP packet to the
2 Even when TCP PUSH flag is not set in the TCP header, HTTP requests
could be distinguished based on the TCP packet size, which is greater than
the TCP ACK size.
other end in the sender case, or pass the data to the receiv-
ing process in the receiver case [27]. This particular flag is
used quite frequently at the beginning and end of a data
transfer, affecting the way that the data is handled at both
ends. In the HTTP context, Web browsers set TCP PUSH
flags when sending HTTP requests, both for page files and
objects.

Next, to estimate the size of elements within a trace
slice, we proceed as follows. We consider that the TCP
packets corresponding to an element are those belonging
to the same TCP connection and are delimited by two con-
secutive TCP PUSH enabled packets. Once the page file and
different objects contained in every slice have been identi-
fied, we extract their sizes from the sequence numbers
available in TCP ACK packets. Finally, we determine the ob-
ject location, i.e., internal vs. third-party, in a straightfor-
ward way.

Several issues, including the ability to estimate object
boundaries (e.g., due to pipelining) and the file size estima-
tion accuracy (e.g., due to variable HTTP header size), exist.
We analyze these issues in depth in later parts of the paper
(Sections 3.3 and 4.5). Below, we present an algorithm
capable of using information extracted from TCP-level net-
work traces to recover the actual web pages accessed by
clients.

3.2.3. Detection algorithm
Here, we present an algorithm that correlates informa-

tion obtained via website profiling (Section 3.2.1) and
features independently extracted from TCP headers (Section
3.2.2) with the goal of detecting actual web pages accessed
by clients in the trace. The algorithm is independently exe-
cuted on each slice of the trace. To avoid confusion, we will
refer in advance to page files and objects for the data

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 603
obtained from the website profiling phase, while the objects
downloaded in the trace will be termed as elements.

Denote by E = {E1,E2, . . . ,El} the set of l elements identi-
fied in a trace slice. Next, denote by P = {P1,P2, . . . ,Pn} the
set of n web pages identified at the given website in the
web profiling phase. Further, denote by PF = {PF1,PF2, . . . ,
PFn} the set of n page files associated with the identified
web pages. Also, denote by Oi = {Oi1,Oi2, . . . ,Oim} the set of
m different objects contained in page Pi. As we explained
above, each page file PFi or object Oij can be downloaded in
either plain or compressed mode. Then, while the size (in
bytes) of an element is denoted by S(Ei), for a given PFi or
Oij, generically X, we denote by S1(X) its size in the plain
mode, and by S2(X) its size in the compressed mode. While
the sizes S1(X) and S2(X) are obtained in the website profiling
phase, S(Ei) is calculated during the trace features extraction
phase.

The algorithm is executed in the following three phases,
also summarized in Fig. 3 and detailed in Table 1:

Filtering phase. A subset of the pages from the set P
could be eliminated in a straightforward manner. Indeed,
if the number of non-cacheable objects at a given page Pi

is greater than the number of elements in the slice, l, then
the page Pi is eliminated from the set.

Tagging phase. During this phase, for each element EK

from the set of identified elements E, we compare the size
S(Ek) and the location L(Ek) (internal/third-party) of the
elements in the trace slice separately with the size and
location of all page files and then objects in the website
profile. This allows us to identify possible candidate web
pages to be selected as downloaded. Each page file or
Fig. 3. Overview of the steps in the detection algorithm for a single
object whose size and location corresponds to that of one
of the elements is tagged as identified (Table 1, tagging
phase, steps 1(a) and 1(c)). Moreover, if Ek is identified
with a single page file or a single object in their respective
comparisons, it is also tagged as unique (Table 1, tagging
phase, steps 1(b) and 1(d)). Because a unique object/page
file is present in only one page of the website, its identifi-
cation makes this page a good candidate to have been
downloaded. Finally, in this phase, all the pages with iden-
tified page files are compiled in a set PPF and those with
identified objects in a set PO.

Selection phase. The selection phase takes the set of
pages PPF and PO as input data and aims to decide which
pages are downloaded in the trace, and hence should be in-
cluded in PD (initially empty, Table 1, selection phase, step
1). We distinguish two different cases: (i) if unique page
files and objects have been identified in the slice, all the
pages that contain them are selected (Table 1, selection
phase, step 2). Indeed, because multiple web pages might
be present in the slice (Section 3.2.2), selecting pages with
unique characteristics leads to high detection rates in such
scenarios, as we will demonstrate in Section 4.5.3 below.
(ii) However, in case that no unique page files or objects
are identified, we make a best effort to minimize false pos-
itives (pages detected by the algorithm which have not
been really downloaded); hence, in this case our goal is
to identify a single page in the slice.

We apply the following strategy. First, we consider only
those pages, if any, that are present in both PPF and PO; that
is, PPF \ PO. Indeed, if there is an overlap between the
two sets, it is likely that a page from the overlap has been
element El. Filtering phase has been omitted for its simplicity.

Table 1
Summary of the steps in the detection algorithm.

Filtering phase
1. Eliminate all pages from set P for which the number of non-cacheable objects is greater than the number of elements in the slice
Tagging phase
1. For all Ek 2 E:

(a) For all PFi 2 PF, check if S(Ek) = Sm(PFi) and L(Ek) = L(PFi):
i If true ? PFi= identified

(b) If only one PFi= identified?PFi = unique
(c) For all Oij, check if S(Ek) = Sm(Oij) and L(Ek) = L(Oij):

i If true ? Oij= identified
(d) If only one Oij= identified ? Oij = unique

2. Build sets PPF and PO with pages with identified page files/ objects respectively.
Selection phase
1. Initial set of detected pages: PD = ;
2. If pages in PPF [PO contain any unique page files/objects, PD= pages in PPF [PO with any unique page files/objects. End of algorithm
3. P0D ¼ PPF \ PO . If P0D ¼ ; ! P0D ¼ PPF [PO.

(a) If SðP0DÞ ¼ 1; PD ¼ P0D . End of algorithm
4. Obtain P00D selecting from P0Dthose pages with highest percentage of identified objects

(a) If SðP00DÞ ¼ 1; PD ¼ P00D . End of algorithm
5. Obtain P000D filtering P00D with link information

(a) If SðP000D Þ ¼ 1; PD ¼ P000D . End of algorithm

PO: Pages with identified objects, PPF: pages with identified page files, E: set of all elements in the trace, Ek: element k in trace, PF: set of all page files in the
website, PFi: page file i, Oij: object j in page i, Sm(X): size type m of page file/object X, S(�): size operator, L(�): location (internal/third-party) operator, ;:empty set.

604 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
accessed. However, if there is no overlap, we are unable to
reduce the set, and hence we consider all the pages in both
sets PPF [PO. The resulting set is P0D (Table 1, selection
phase, step 3). If more than a single page still remain, we
filter P0D and extract only page (s) with the highest percent-
age of identified objects in the considered slice, i.e., set P00D
(Table 1, selection phase, step 4).

If several candidates still remain, we consider the user
navigation pattern. In particular, we use the simple heuristic
that if a user accesses more than a single page at a website, it
is likely that there exist links from one page (hence one slice)
to the next page (hence next slice) accessed by the client.
Thus, among the remaining candidates in ith slice, we only
choose those that are linked from the pages in the PD set ob-
tained for the previous (i � 1)th slice. The resulting set is P000D ,
(Table 1, selection phase, step 5). During steps 3–5, if any set
P0D; P

00
D or P000D contains only one page, it is selected as the final

decision PD (Table 1, selection phase, steps 3(a), 4(a), and
5(a)). Otherwise, if several candidates still remain, they are
all discarded in order to minimize the false positives.

3.3. Dealing with sources of errors

Errors are inevitable part of a detection process. In par-
ticular, the algorithm can incorrectly identify as accessed
web pages that have not really been downloaded by clients
in the trace (false positives), or fail to detect the pages
actually accessed by clients (false negatives). Below, we
emphasize the key factors responsible for false detection.
First, we summarize the key elements that lead to inaccu-
racies in a web object size estimation. Then, we outline
other factors that can impact detection accuracy. We eval-
uate all these factors and their impact on the detection
accuracy in Section 4.

3.3.1. Object size estimation
The estimate of an object (or a page file) size obtained

(i) via website profiling (Section 3.2.1) and (ii) via TCP-level
headers (Section 3.2.2) can be different. Whenever such a
difference occurs, the probability that the algorithm will
make a false decision increases. The key factor contributing
to the difference in the estimated object size is the poten-
tial variability in the HTTP header size. We provide several
examples below.

First, an HTTP request may include a cookie. Although
the size of a cookie is usually constant, in some cases its
length depends on a seed used for its generation, which
might involve parameters such as nonces, timestamps, or
source IPs. In order to reduce the amount of false positives
due to cookies, our crawler considers two different sizes
for those pages that return a cookie: one taking into ac-
count the cookie size and another without it. Moreover,
when cookies are used, they are typically inserted in a page
file, which is sufficient to identify a user. Because the trans-
fer of subsequent objects is most likely cookie-free, the
impact of cookies is limited.

Second, an object might be downloaded using the
chunking transfer mode [19]. Indeed, when a server does
not know in advance the final size of the content that it
is sending, the sender breaks the message body into
chunks of arbitrary length, and each chunk is sent with
its length prepended [19]. Hence, the complete size of
the object depends on the number of chunks used and their
own size. As a result, it can happen that subsequent
requests to the same non-cacheable objects on the same
site can generate different HTTP header sizes.

Third, the HTTP header size (and hence the entire web
object size estimate) depends on both the server and the
client setup. As an example, the use of persistent TCP con-
nections [19] depends not only on the server, but on the
browser configuration as well. As a result, given fields in
the HTTP header may appear or not, e.g., ’Connection:
keep-alive’ field. Finally, even if a given header field
exists in two HTTP responses, the values present in the
header fields might be different. For example, ’Timeout:
99’ and ’Timeout: 100’ headers differ in one byte. We
explore the effects of all the above factors on false positive
and negative rates in Section 4.

Table 2
Experimental websites.

Websites

NYtimes (http://www.nytimes.com)
FC Barcelona (http://www.fcbarcelona.com)
IKEA (http://www.ikea.com)
Toyota (http://www.toyota.com)
Univ1 (http://www.northwestern.edu)
Univ2 (http://ceres.ugr.es)

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 605
3.3.2. Other sources of error
Here, we outline other factors that can lead to detection

inaccuracies. We evaluate each of these issues separately
in the next section.

Dynamic website behavior. Websites can change over
time. For example, a site administrator can change the con-
tent of a given page. The relevant question thus becomes:
How frequently do page files or objects at a website
change, and how does that affect the ability of the algo-
rithm to detect such pages? We explore this issue in depth
in Section 4.4 below.

Pipelining. HTTP1.1 proposes pipelining, i.e., send subse-
quent HTTP requests within a single TCP connection with-
out waiting for the corresponding HTTP responses. This
approach blurs the visibility of object boundaries at the
TCP level and complicates the corresponding web object
size estimation. While pipelining is not widely spread in
the Internet, as we explore later in the paper, a relevant
question is how our algorithm performs when pipelining
is enabled. We explore this issue in Section 4.5.1.

Caching. All objects belonging to a page are not always
downloaded from the server. While we explicitly address
this issue in the algorithm, the question is how does this
mechanism affect the accuracy of the algorithm. We ex-
plore this issue in Section 4.5.2.

Overlapping page downloads. Several factors can gener-
ate so-called overlapping page downloads to appear in a
single trace slice. First, inter-click estimation might not al-
ways be fully accurate. Hence, it can happen that two or
more web page downloads from the same website can
end up in the same trace slice. Second, when Network Ad-
dress Translation (NAT) boxes are used, a number of clients
behind the NAT will have the same source IP address visi-
ble at the tapping point. While accurate per-client trace
slicing is still feasible using destination (server) IP ad-
dresses, it is possible that at given time intervals, one or
more clients behind the NAT concurrently access the same
website. Third, a single user can (nearly) concurrently ac-
cess several pages at a single website. All these issues lead
to the overlapping page downloads effect. We explore our
algorithm’s performance in such scenarios in Section 4.5.3.

Spurious requests. During the navigation process, certain
spurious HTTP requests that do not correspond with a page
download can be generated. These are mainly caused by
client web-based applications, e.g., google toolbar, live
search toolbar, or by AJAX scripts embedded in web pages.
In some cases, these requests can be filtered by considering
the usual destination IP addresses, e.g., google server. AJAX
scripts, on the other hand, are a well-known challenge
even for the latest commercial crawlers. Hence, these re-
quests will interfere with the detection process generating
false positives.

4. Evaluation

Here, we evaluate our approach in a number of chal-
lenging, yet realistic scenarios. In particular, we explore
the resilience of our algorithm when either a web profile
or a network trace is outdated. Then, we explore the issues
of pipelining, caching, overlapping page downloads, and
the browser diversity.
4.1. Experimental setup

Before presenting the performance evaluation, we first
explain how we obtained two necessary datasets – crawled
website logs and TCP-level traces. To emulate a realistic
setup, in which the two datasets are typically obtained
from two different points in the network, (i.e., TCP-level
traces collected from an ISP network, and crawled logs by
a different set of machines), we proceed as follows. We col-
lect the two datasets from two different parts of the world,
one in Europe and the other one in USA. In all scenarios, we
use a crawling spider we designed to profile the websites;
we generate network traces using the Firefox 3.0.5

browser, with default parameters, i.e., caching enabled
and pipelining disabled. We explore other browsers and
parameter settings in Section 4.5.4 below.

Website profiling. We select six different websites shown
in Table 2. The sites range from newspapers, sports, com-
mercial, and educational sites. While this is certainly a
small fraction of the Web, our key goal is to understand
in-depth performance of our algorithm in diverse scenar-
ios. In the next section, we perform experiments in the
’wild’ and evaluate our algorithm by crawling a larger
number of websites. Still, the selected sets represent a
fairly diverse set of websites in terms of their dynamic
properties, i.e., how frequently do they change, and static
characteristics, i.e., what are the page files and objects fea-
tures with respect to locality, uniqueness, etc..

In each of the sites, we crawl a subset of pages, i.e.,
2,000 web pages (except for Univ2 which has less than
2,000 pages). We select this threshold because it enables
us to crawl all six websites within a 24 hours interval. This
helps us to understand how our algorithm performs when
either a web profile or a network trace is outdated, an issue
we explore in depth in Section 4.4 below. Finally, in order
to understand how the size of a website impacts the
results, we crawl one of the websites in full in Section 4.6.

TCP-level traces. To obtain TCP-level traces (using the
Wireshark tool [28]), we emulate user behavior by creating
quasi-random walks over 100 out of the 2,000 pages at a
website; we call these 100 pages test pages. In particular,
we at random select a page out of the 2,000 pages; then,
we randomly select the next page from the set of pages
that the given page links to. When no links exist from a
given page, we randomly select another page from the
set, and continue the quasi-random walk until we collect
100 pages. Finally, we compute detection statistics as we
explain in Section 4.3 below. For all experiments, we col-
lect ten independent test sets, and show averages. We
move beyond emulation in Section 5 and deal with real
user browsing traces.

http://www.nytimes.com
http://www.fcbarcelona.com
http://www.ikea.com
http://www.toyota.com
http://www.northwestern.edu
http://ceres.ugr.es

606 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
4.2. Site uniqueness

Here, we show the statistics for unique-size page file
and object in the six websites. Such files are invaluable in
the detection process since their presence in a trace un-
iquely identify a web page.

Fig. 4 shows the percentage of pages with unique ob-
jects, unique page files, and with either unique objects or
unique page files. The figure shows that the percentage
of pages with unique objects is high, except for the two
universities. This is because commercial or news websites
are usually rich with pictures and other objects, which dra-
matically increase the page diversity. For example, in the
IKEA website, many pages have a unique picture showing
different products.

The figure shows that the percentage of pages with un-
ique page files is high in all web sites. Indeed, even when
the web pages share the same template, they still have dif-
ferent text resulting in different page file sizes. Moreover,
the percentage of pages that either have unique size objects
or unique page files is necessarily even higher. These high
percentages indicate that the use of unique-size objects or
page files is a powerful feature.

We use these statistics to explain the basic performance
of our algorithm. In particular, from the statistical point of
view, the percent of pages with unique objects could be
considered as the (loose) lower bound of the expected suc-
cess rate, and the percentage of pages with unique size ob-
jects or unique page files is considered as the (loose) upper
bound.
4.3. Basic performance

Here, we explore the performance of our algorithm for
the six websites. We apply the methodology explained in
Section 4.1 above, i.e., use 100-page long test sets to com-
pute the success rate, false positives and negatives. In the
figures here and in the rest of the paper we show the suc-
cess rate and false positives. (False negatives could be com-
puted as 100% – success rate (%)).
Fig. 4. Evaluation of the uniqueness of page files
Fig. 5 shows the results. We make several observations.
First, the success rate is around 86% on average over the
websites, and false positives are below 5%. In all cases,
the success rate is above the lower expected bound, as
we predicted above. Moreover, in certain scenarios (IKEA,
Toyota, Univ1, and Univ2), the performance is even above
the upper expected bound. This is because we made expec-
tations only based on the site uniqueness. Still, other is-
sues, such as the use of link information, can further
improve the results even in scenarios when no unique
items are detected at a website.

The performance for Barcelona and NYtimes is approxi-
mately between upper and lower bounds. In both cases
the reason for not reaching the upper-bound performance
is due to effects explained in Section 3.3.1. In particular,
we experienced increased chunking-mode transfers in the
NYtimes case for page files. Nevertheless, other factors, such
as unique objects, the percent of identified objects and link
relationships, keep the performance above the lower ex-
pected bound. More concretely, in the NYtimes case, success
rate of 84% (Fig. 5) surpasses the lower expected bound of
71% (Fig. 4).
4.4. The role of time scales

Both network traces and web profiles could be outdated
for a number of reasons. For example, several days might
pass until an ISP ships its traces to an advertising company.
Likewise, crawling the Web is an exhaustive process.
Hence, several days or more can pass until a crawler revis-
its a site and updates its profile. Here, we evaluate how
these issues impact the accuracy of our algorithm.

Methodology. We select 100 pages as the preliminary test
set for each website in the first day of the experiment.
Then, we crawl the given sites once a day for one week,
and collect a new 2,000 pages profile each day for each
of the sites. Because some of the websites change over
time, the 2,000 pages that we obtain are not always the
same. As a result, the initial test set also reduces in some
cases. Although the pages crawled on the first day typically
and objects in the experimental websites.

Fig. 5. Basic performance of the algorithm for the experimental websites.

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 607
still exist on the website, our limited crawling process does
not manage to download these pages. Hence, we proceed
in two steps. First, we determine the pages that exist dur-
ing the entire period and consider them as a final test set.
Second, we explore how the pages in the final test set
change over time.

Fig. 6 illustrates that, during the seven day period, the
number of overlapping pages stays the same in Toyota
and universities, suddenly dives a bit in NYtimes and Bar-
celona, and gradually decreases in IKEA. Again, all the web
pages from the first day are typically available on the web
site, the overlap decrease is due to the limited number of
crawled pages and the addition of new pages. More specif-
ically, Toyota’s updates are relatively the slowest as its
products are usually coming out over longer time scales.
On the other side, NYtimes may add many pages in its
website in one day, which leads to a huge shrink in the
overlapping size. IKEA, as an in-between case, slowly up-
dates its website and hence the number of overlapping
pages decreases at the same pace. As a result, for NYtimes,
Barcelona, and IKEA cases, the size of the final test set is 81,
Fig. 6. Evolution of the number of overlappin
76, and 98 pages respectively, while for Toyota and univer-
sities cases, the size is 100 pages.

Finally, we divide the six websites in two categories.
The first one includes sites that have the final test set less
than 100 pages (NYtimes, Barcelona, and IKEA). For this set,
we capture the TCP-level trace at the last day of the exper-
iment (day 7 in Fig. 6). The second set includes sites that
have the final test set equal to 100 pages (Toyota and uni-
versities). For this set, we capture the TCP-level trace at the
first day of the experiment (day 1 in Fig. 6). In the former
scenarios, the website profiles are out of date. In the latter
scenarios, the TCP-level traces are stale. In the experiment,
we compare the TCP-level traces with web profiles taken
during the seven day period.

Performance. Figs. 7(a) and (b) show the success and the
false positive rates (computed over the final test) as a func-
tion of time. The reference point in each figure (day 0) cor-
responds to the time when TCP-level traces are obtained.
As a result, day 0 in Fig. 7(a) corresponds to day 1 in
Fig. 6. Likewise, day 0 in Fig. 7(b) corresponds to day 7 in
Fig. 6.
g pages for the experimental websites.

Fig. 7. Success and false positives rates obtained by the algorithm as a function of time.

608 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
Fig. 7 provides three insights. First, in Toyota and the
universities (Fig. 7(a)), the success rate stays almost con-
stant; in other scenarios (Fig. 7(b)), the success rate changes
marginally. For example, the success rate of Barcelona
drops from 88% to 87%. Second, in all cases, the success
rates reach the peak on the day when the test TCP-level
trace is collected because the properties of page files and
objects in the crawled profiles are more likely to be the
same as those in the TCP-level trace on the same day. Third,
besides the success rates, false positives are also resilient
with time. In Fig. 7(a) the change rate of false positives re-
mains same; In Fig. 7(b) the false positives change
smoothly; for example, in the IKEA case, the minimum is
5% and the maximum is 6%.

Change rates. To understand the causes of the above obser-
vations, we explore the change rates of page files and objects
size. In the experiment, we compare the page files and objects
size of pages in the final test set with web profiles taken
during the seven day period. We define the change rates as
the percentage of inconsistency of page files or objects size
between the final test set and web profiles. We also consider
the objects that are permanently removed from the given
pages as changed, i.e., their size becomes zero.

Fig. 8 shows the page file and object change rate as a func-
tion of time. The first finding is that the change rate of both
page files and objects is much smaller in Fig. 8(a) than in
Fig. 8(b). This is caused by the same reasons discussed with
respect to Fig. 6 above. For example, in the Toyota case, the
web administrators update their web news if some new
products are available in the market, which typically hap-
pens over longer time scales. On the contrary, the websites
are updated much more frequently for news and other com-
mercial websites such as NYtimes, Barcelona, and IKEA.

Second, the change rate increment is the largest within
one day from when the traces are taken, i.e., day +1 in
Fig. 8(a) and day �1 in Fig. 8(b). After that, there is almost
no change, i.e., for days 2–6 in Fig. 8(a) and days �2–�6 in
Fig. 8(b). This is because a part of pages, like main pages,
updating the top-line news or the latest product promo-
tions at commercial websites is typically updated fre-
quently, not all the pages.

Finally, in all cases, the change rate of page files is higher
than the objects size change rate. For example, In NYtimes
case, the page files change rate of 60% highlights the above
fact that news web pages, particularly the text part, are fre-
quently updated. At the same time, the change rate for ob-
jects is less than 3% at day �6. Thus, despite a highly
dynamic site behavior, our algorithm is capable of accu-
rately detecting the given web pages with high accuracy,
as we demonstrated in Fig. 7. This is because a subset of
web pages’ unique properties remain consistent over time.

4.5. Different browsing scenarios

Here, we explore different browsing scenarios. Thus, we
evaluate how (i) pipelining, (ii) caching, (iii) overlapping

Fig. 8. Change rate of the web pages in the six studied websites.

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 609
page downloads, and (iv) different browsers affect the per-
formance. The first three experiments thus far are con-
ducted using the Firefox 3.0.5 browser with its default
settings, i.e., caching enabled and pipelining disabled by
default. We conduct all experiments on the Toyota server,
using the above methodology. To avoid dynamic effects ex-
plored above, we collect all traces on the same day.
Table 3
Performance evaluation for different browsing
scenarios.

Scenario Success
rates (%)

False positives
(%)

Pipelining disabled 89 4
Pipelining enabled 88 4
Cache disabled 90 4
Cache enabled 89 4
Sequential 89 4
Parallel-two 74 7
Parallel-four 63 8
4.5.1. Pipelining
We first explore how widely pipelining is spread in the

Internet by analyzing a Tier-2 network trace with 153,583
HTTP requests. We identify the existence of several HTTP
requests in the same TCP segment as a pipelining signa-
ture. Our results show that the percentage of pipelined
segments is smaller than 1%, while the percent of users
that use browsers with pipelining enabled is around 2%
of the total number of users (in terms of source IP ad-
dresses). We find these figures reasonable, as the use of
pipelining depends on browser configuration and capabil-
ities. In fact, some of the most widely used browsers have
not activated the pipelining feature by default, e.g. Fire-
fox; others do not support pipelining, e.g. IE7 and Google

Chrome. To the best of our knowledge, Opera is the only
browser that enables pipelining by default.

Despite low usage of pipelining, clients might be temp-
ted to enable this feature in order to prevent ISP-based ad
targeting. We explore whether such an attempt would be
successful. We test our approach when pipelining is used
in a Firefox 3.0.5 browser.

Table 3 shows the results. We can see that there is only
a slight difference in the results, as the success rate de-
grades by 1% only. The reasons are the following. First,
the fact that a browser enables pipelining does not imply
that all HTTP requests will be pipelined (for performance
reasons), but only a subset of them. Indeed, only 12% of
the TCP segments containing HTTP requests are really
pipelined by the browser. As a result, the bulks of the ob-
jects sizes are correctly identified. Second, even if larger
percents of objects would be pipelined, the requests for
page files cannot be pipelined. This is because a browser
does not know in advance which objects to fetch before

3 We compress all inter-access times longer than one minute to one
minute.

610 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
it downloads the page file. Hence, high detection rates are
still feasible.

4.5.2. Caching
In this experiment we evaluate the effects of browser

caching mechanisms. We consider two scenarios: (i) navi-
gation without caching, in which we disable the cache in
the browser and (ii) navigation with caching, in which
we enable the cache in the browser.

Table 3 shows the results for the two scenarios. As ex-
pected, we can see that results when cache is disabled
are better, i.e., the success rate increases to 90%, while false
positives remain unchanged relative to the caching
scenario. The slight improvement in the performance is
due to fact that the existing non-cacheable elements (typ-
ically all page files and a subset of objects) already create a
strong inter-page diversity. Nevertheless, more informa-
tion in the non-caching scenario produces a better result.

4.5.3. Overlapping page downloads
Overlapping page downloads means that more than one

web page might end up in a single trace slice. For example,
this can happen either due to NAT-induced effects or inac-
curate inter-click time estimation. While we show in the
next section that none of the two effects are likely to hap-
pen, we nevertheless explore our algorithm’s performance
in this case. For this, we have emulated the download of a
test set of pages with three different navigation patterns:
(i) pages have been downloaded without overlapping
(sequential browsing), (ii) two different pages are down-
loaded simultaneously (parallel-two browsing), and (iii)
four different pages are downloaded simultaneously (par-
allel-four browsing).

Table 3 shows the results. As expected, the performance
is the best in the sequential case, when there is only a sin-
gle page in a slice. While the success rate necessarily de-
grades when the number of pages increases per slice, it is
still quite reasonable (74% in parallel-two and 63% in par-
allel-four). These results are mainly due to the step 2 of the
selection phase (Table 1), which takes advantage of unique
page files and objects from multiple pages.

4.5.4. Different browsers
We experiment with different browsers. In particular,

we obtain different traces using Firefox 3.0.5, Internet
Explorer 7.0, and Google Chrome. All the browsers dis-
able pipelining and enable caching. We have not found any
differences in the performance of the algorithm when
using the three traces obtained. This implies that our ap-
proach is independent from different browser types.

4.6. Scaling the website profile

To evaluate how our approach behaves with increased
website profile, we crawl the entire Toyota site and down-
load 9,211 pages. Then, we repeat the experiment by
repeating the procedure explained above.

Our results show that the success rate is resilient with
the increase of the website profile. More specifically, the
success rate of Toyota reduces from 89% to 81%. At the
same time, the false positives increase from 4% to 8%. We
investigate this result in more depth, and find that 78% of
pages have either unique size objects or unique page files,
while this percentage was about 88% when the website
profile was 2,000 pages long (Fig. 4). Additionally, each
page in Toyota site has 97.3 links on average which reduces
the ability of our algorithm to sweep out many incorrect
results.
5. Performance in the wild

Here, we further evaluate our approach by using real
user browsing patterns at websites of their own choice.
Our experiment is done in two phases: (i) Collecting
URI-level traces from a group of volunteers during a long
period of time. We evaluate the real behavior of traffic
coming out from users. (ii) Capturing a real trace of re-
quests directed to a real production server. We assess
the behavior of our approach when all the traffic for a ser-
ver is considered.

For the first experiment, we collect URI-level traces from
17 volunteers (with their consent) from USA, Europe and
Asia during 1 month. These traces contain users’ anony-
mized identifications, as well as the visited URIs and their
corresponding timestamps. From this information, we
select 40 different websites with the highest number of re-
quests. The given websites cover a wide range of interests,
from online news to computer hardware, game hardware
and software, cell phones, sports equipment, jewelers, mov-
ies, and online publications. For each website we build its
profile. Then, we choose the list of URIs as the test set in
our experiment. A TCP level trace is obtained by replaying
the user navigation patterns (visited URIs and timestamps)
within these sites.3

As a result we obtain a success rate of 85% and a false
positive ratio of 9%, slightly higher than the result obtained
in the controlled environment. This demonstrates that our
approach works well in the wild with a reduced group of
people and a medium size number of websites.

With our second experiment in the wild we explore the
detection algorithm capabilities in a scenario where we
collect access traffic to a website. We capture the web re-
quests of the server labeled as ’Univ2’ in Table 2 during
13 days. We present the results obtained for this experi-
ment in Fig. 9. Here, the day zero represents the day in
which the crawling of the website is done. This crawling
is used to obtain results from our algorithm during the
six previous days, i.e., days [�6,�1] in Fig. 9(a). Likewise,
we obtain the results for the six subsequent days, i.e., days
[1,6] in Fig. 9(b). We can see that the results are quite sim-
ilar to those shown in Fig. 7. While the false positive ratio is
between 8% and 10%, as in the results from Fig. 7, now the
success rate is inside the range 80–84%, slightly lower than
the obtained in the controlled environment.

In summary, we conclude that results obtained in a real
environment are very similar to those presented in the
controlled experiments. There are slight reductions of
accuracy mainly due to certain effects like the presence

Fig. 9. Success and false positives rates of the algorithm when applied in a real environment to Univ2 server.

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 611
of fast navigation of a certain percentage of users. In
particular, we have detected in our real world traces a per-
centage of requests (3.8%) that have been sent to the ser-
ver, but the user blocked its download and visited
another page before the download of the previous one
was completed.

NAT behavior. To understand NAT-like behavior, we
further explore URI-level traces from ten people from
the same local network. We find that users’ interests are
diverse since they access 9,183 domains in total, while
only 565 of them (6.15%) are accessed by more than
one user. Moreover, only 61 domains (0.66%) are accessed
by five users. We then study the requests sent to the most
popular website (a total of 16,756 requests) to discover
the number of simultaneous accesses based on their time-
stamp. These simultaneous petitions generate what we
have called overlapping pages downloads (Section 4.5.3).
Considering that this happens when more than one user
accesses the most popular site within the same second,
we find that only 0.44% of the accesses are simultaneous.
In summary, the presence of NAT boxes will not degrade
the performance of our detection method since its impact
is small.

Inter-click time. Finally, we verify the inter-click time
statistics in order to validate our choice of 1 s for slicing
the trace (Section 3.2.2). We process 315,444 timestamps
in total and 94.53% of them have the inter-click time larger
than 1 s.
6. Related work

Encrypted Web traffic. Our work relates to the security
research efforts aimed towards analyzing and inferring en-
crypted web browsing traffic [29–33]. The authors of these
papers have demonstrated that it is feasible to reveal the
sources of encrypted web traffic despite encryption. In
light of this finding, they further analyze additional mech-
anisms that can help secure such communication. The key
differences between our work and this thread of papers are
threefold. (i) We have shown that there are incentives to
reveal user browsing patterns even when they are not en-
crypted. As a result, the scope of the problem changes from
the one covering a small fraction of encrypted web pages
on the Web [29–33] to the entire Web ’landscape’. This dra-
matic change of scope in turn fundamentally impacts both
(ii) our methodology and (iii) the range of potential counter
mechanisms, as we elaborate below.

Regarding methodology, our approach differs from the
security-oriented related work in three aspects. First, be-
cause we operate in the ’wild’, unlike previous work, we
consider multiple web features characteristic for ’open’

612 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
web communication. This includes object location, unique-
ness, cacheability, link information, different transfer
modes, distinction between page files and objects, etc., to
characterize web pages. Second, we add mechanisms that
consider possible sources of error that are inevitably
created by the state-of-the art web practices (see Section
3.3). Finally, contrary to previous work (e.g., [33]) that
has severe scalability issues, our approach can effectively
scale. Indeed, we have demonstrated that it is feasible for
an ISP to successfully collect TCP headers (and recover user
browsing behavior) anywhere in the network, even behind
a proxy or a NAT (Section 5). In addition, because the des-
tination IP address is known in the advertising case, we
effectively reduce the scalability problem from the entire
web space to a single web server. Moreover, because we
are capable of statistically characterizing a website in a
more comprehensive way, we effectively scale the detec-
tion process.

Regarding counter-eavesdropping mechanisms, the ap-
proaches proposed in the related security work (e.g., pad-
ding) might not work entirely in the advertising case. This
is primarily due to rich site characteristics (e.g., the use of
CDNs), which still leak page-identifiable information from
the sites. More importantly, websites have no incentives
to apply any countermeasures in the advertising scenario.
Indeed, they are one of the primary beneficiaries that
make money from online advertising [1]. Hence, we argue
that in the case of advertising, a comprehensive legisla-
tive reform is the only realistic way to address this
problem.

Traffic analysis. Karagiannis et al. [34] propose a method
to recover application types without considering any pay-
load and ports information. Felten and Schneider [35]
demonstrate that web servers can use the inter-arrival
time of HTTP requests for objects on a web page to reveal
the presence of items in the browser’s cache. Others also
use timing information and packets sizes to either identify
sources of information in obfuscated flows [31], discover
sensitive security information [36], or classify application
services without looking at payloads [37]. In our work we
go one step beyond, and attempt to detect the exact web
pages accessed in a TCP flow, also without accessing the
payload, even when it is not encrypted.

Coull et al. [38] suggest a technique for obtaining desti-
nation addresses of flows in anonymized traces and even
sensitive information about the routing structure of the
network. This work is similar to ours in the sense that they
get advantage of sources of information other than their
own trace. In their case, they use information extracted
from DNS servers and search engines, while our approach
crawls websites to get additional information.
7. Discussion

Too much crawling? In order to obtain web profiles, our
approach requires large-scale web crawling. Hence, the
question is whether this overhead can hinder the potential
deployment of this approach. There are three issues here.
First, we demonstrate that even when web profiles are
not fully up to date or when they do not fully cover all
pages in a website, the approach is still valid. Second, not
all sites are equally interesting from the advertising per-
spective. As an example, .edu domain might be less inter-
esting than. com domain. Hence, less crawling than in
the search engine case is needed. Third, even within a site,
crawling could be restricted to only the most relevant
pages. This could be done, for example, by selecting only
those pages which have a significant pagerank value [39].

Nevertheless, significant crawling is certainly needed.
Advertising is a $20 billion industry, and any ISP that at-
tempts to enter this market (in a legal way) should be
ready to invest sufficient resources.

Storing URIs from HTTP headers? There is ambiguity on
whether a URI should be treated as a part of content or
not [8]. There are no ambiguities, however, that TCP head-
ers are not the part of the content though [8] and hence
could be legally shared. Still, we have demonstrated that
it is possible to recover the content of communication
(specified by a URI) without directly observing it. This
example again clearly shows not only that a comprehen-
sive legislative reform is needed, but that the Internet’s
development creates novel legal challenges on almost daily
basis.

/24 annonymization is insufficient. Sharing TCP header-
level traces by removing the lower 8 bits from both
source and destination addresses is typically considered
sufficient to preserve user privacy. At the same time, this
approach enables meaningful networking research. Our
initial experiments indicate that such traces could still
be used for ad targeting towards the source/24 address
space. The key issue is that the number of web pages
within a/24 network address block still enables per-page
identifiability with reasonable false positive rates (below
10%) in most cases.

Dynamic IP addresses. Dynamic IP addresses are an
inherent problem for ISP-enabled advertising (including
deep packet inspection), because it blurs the per-source
IP identifiability. There are two issues. First, an access net-
work can still keep the track of individual users since the
access ISP assigns such addresses. Non-access networks
are still able to recover user browsing properties, yet ad
targeting is possible only at aggregate basis.
8. Conclusions and future work

In this paper, we showed how it is possible to recover
user web browsing patterns without inspecting the packet
payload. By extracting HTTP-level ’reflections’ available at
the transport layer, and by profiling web sites in a compre-
hensive way using page files, objects, different transfer
modes, linking information, cacheability, and locality, we
designed an algorithm capable of effectively merging the
two data sources and discovering web pages accessed by cli-
ents. We evaluated our methodology on the Internet using
both emulation and real user browsing patterns.

Our key insights are the following: (i) The development
of the Web in recent years, e.g., rich image mixtures and
the use of CDNs, has created a significant statistical diver-
sity among web pages at a website, making them highly
identifiable. (ii) The page identifiability remains high even

G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614 613
when a trace from an ISP is outdated, or when the web pro-
file is not fresh due to crawling limitations. Even though
the page features can dramatically change over time, we
showed that a sufficient subset of identifiable features does
stay available. (iii) The detection process is resilient to a
number of challenges, including pipelining, caching, NAT-
level multiplexing, different browser types, and it effec-
tively scales. (iv) Endpoint-based countermeasures are
highly limited; not only because it is hard to comprehen-
sively cover rich inter-page diversity, but because websites
have no incentives to apply such countermeasures since
they are one of the primary beneficiaries of the advertising
business.

As shown, the performance of the detection process
presented in this paper depends on a good and extensive
crawling process (see discussion in Section 7). Thus, the
development of an efficient crawler adapted for the needs
of our methodology would constitute an interesting future
work contribution.

An additional future work is related to the need for the
development of a theoretical framework which allows to
relate the functioning of the proposed approach with the
model of a web site profile. This work should model the
different sources of noise for this approach, i.e., caching,
compression, cookies, embedded dynamic code, variable
headers sizes, etc. As a result, it would potentially allow
the estimation of the expected detection rate and false pos-
itives/negatives rates.
Acknowledgments

This work is supported by Spanish MEC project
TEC2008-06663-C03-02 (70% FEDER funds), NSF CAREER
Award No. 0746360, and China Scholarship Council.
References

[1] Washingtonpost.com: Every click you make, <http://www.washing
tonpost.com/wp-dyn/content/article/2008/04/03/
AR2008040304052.html>.

[2] Google, <http://www.google.com/>.
[3] Double click, <http://www.doubleclick.com/>.
[4] Internet marketing news: Doubleclick deal means Google controls

69% of the online ad market, <http://www.browsermedia.co.uk/
2008/04/01/doubleclick-deal-means-google-controls-69/-of-the-
online-ad-market/>.

[5] Phorm, <http://www.phorm.com/>.
[6] NebuAd, <http://www.nebuad.com/>.
[7] Frontporch, <http://www.frontporch.com/>.
[8] P. Ohm, D. Sicker, D. Grunwald, Legal issues surrounding monitoring

during network research (invited paper), in: ACM IMC ’07.
[9] 18 united states code 2511, <http://www4.law.cornell.edu/uscode/

html/uscode18/usc_sec_18_00002511—-000-.html>.
[10] ISP behavioral targeting v. you, <http://www.seoserpent.com/2008-

09/isp-behavioral-targeting/>.
[11] Embarq, <http://www.embarq.com/>.
[12] Wide open west, <http://www1.wowway.com/>.
[13] Washingtonpost.com: AT& T, Verizon to refrain from tracking users

online, <http://www.washingtonpost.com/wp-dyn/content/article/
2008/09/25/AR2008092504135.html?hpid=sec-tech>.

[14] Behavioral advertising could be illegal: NebuAd leaves ISPs
vulnerable to wiretap, privacy laws, <http://www.dslreports.com/
shownews/94578>.
[15] ‘‘18 united states code 2701, <http://www.law.cornell.edu/uscode/
html/uscode18/usc_sec_18_00002701—-000-.html>.

[16] 18 united states code 2702, <http://www.law.cornell.edu/uscode/
html/uscode18/usc_sec_18_00002702—-000-.html>.

[17] ‘‘18 united states code 2703, <http://www.law.cornell.edu/uscode/
html/uscode18/usc_sec_18_00002703—-000-.html>.

[18] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, W. Fan,
Optimizing web search using web click-through data, in: ACM
Proceedings of the CIKM ’04, 2004, pp. 118–126.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, Jun. 1999,
Internet RFC 2616.

[20] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifier
(URI): Generic syntax, Jan. 2005, Internet RFC 3986.

[21] F. Donelson Smith, Félix Hernández Campos, Kevin Jeffay, David Ott.
‘‘What TCP/IP protocol headers can tell us about the web.’’
SIGMETRICS Perform. Eval., Rev. 29, 1, pp. 245–256, June 2001.

[22] Akamai, <http://www.akamai.com/>.
[23] B. Krishnamurthy and C. Wills. Privacy diffusion on the web: a

longitudinal perspective, in: Proceedings of the 18th International
Conference on World wide web (WWW ’09). ACM, New York, NY,
USA, 2009, pp. 541–550.

[24] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A.
Krishnamurthy, A. Venkataramani, iPlane: An Information Plane for
Distributed Services,’’ in OSDI ’06.

[25] M. Crovella, A. Bestavros, Self-similarity in world wide web traffic:
evidence and possible causes, IEEE/ACM Trans. Networking 5 (6)
(1997).

[26] B.A. Mah, An empirical model of HTTP network traffic, in: INFOCOM
’97.

[27] Transmission control protocol, RFC 793.
[28] Wireshark, <http://www.wireshark.org/>.
[29] H. Cheng, R. Avnur, Traffic analysis of SSL encrypted web browsing,

1998.
[30] A. Hintz, Fingerprinting websites using traffic analysis, in: Workshop

on Privacy Enhancing Technologies ’02.
[31] M. Liberatore, B.N. Levine, Inferring the source of encrypted http

connections, in: ACM CCS ’06.
[32] S. Mistry, B. Raman, Quantifying traffic analysis of encrypted web-

browsing, 1998.
[33] Q. Sun, D.R. Simon, Y.-M. Wang, W. Russell, V.N. Padmanabhan, L.

Qiu, Statistical identification of encrypted web browsing traffic, in:
IEEE Computer Society SP ’02.

[34] T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC: Multilevel
traffic classification in the dark, in: ACM SIGCOMM ’05.

[35] E.W. Felten M.A. Schneider, Timing attacks on web privacy, in: ACM
CCS ’00.

[36] D.X. Song, D. Wagner, X. Tian, Timing analysis of keystrokes and
timing attacks on SSH, in: USENIX SSYM ’01.

[37] C.V. Wright, F. Monrose, G.M. Masson, On inferring application
protocol behaviors in encrypted network traffic, J. Mach. Learn. Res.
7 (2006) 2745–2769.

[38] S.E. Coull, C.V. Wright, F. Monrose, M.P. Collins, M.K. Reiter, Playing
devils advocate: inferring sensitive information from anonymized
network traces, in: NDSS ’07.

[39] <http://www.mypagerank.org/>.

Gabriel Maciá–Fernández is an Associate
Professor in the Department of Signal The-
ory,Telematics and Communications of the
University of Granada (Spain). He received a
MS in Telecommunications Engineering from
the University of Seville, Spain, and the Ph.D.
in Telecommunications Engineering from the
University of Granada. In the period 1999–
2005 he worked as a specialist consultant at
‘Vodafone España’. His research interests are
focused on computer and network security,
with special focus on intrusion detection,

reliable protocol design, network information leakage and denial of
service.

http://www.washingtonpost.com/wp-dyn/content/article/2008/04/03/AR2008040304052.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/04/03/AR2008040304052.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/04/03/AR2008040304052.html
http://www.google.com/
http://www.doubleclick.com/
http://www.browsermedia.co.uk/2008/04/01/doubleclick-deal-means-google-controls-69/-of-the-online-ad-market/
http://www.browsermedia.co.uk/2008/04/01/doubleclick-deal-means-google-controls-69/-of-the-online-ad-market/
http://www.browsermedia.co.uk/2008/04/01/doubleclick-deal-means-google-controls-69/-of-the-online-ad-market/
http://www.phorm.com/
http://www.nebuad.com/
http://www.frontporch.com/
http://www4.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002511----000-.html
http://www4.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002511----000-.html
http://www.seoserpent.com/2008-09/isp-behavioral-targeting/
http://www.seoserpent.com/2008-09/isp-behavioral-targeting/
http://www.embarq.com/
http://www1.wowway.com/
http://www.washingtonpost.com/wp-dyn/content/article/2008/09/25/AR2008092504135.html?hpid=sec-tech
http://www.washingtonpost.com/wp-dyn/content/article/2008/09/25/AR2008092504135.html?hpid=sec-tech
http://www.dslreports.com/shownews/94578
http://www.dslreports.com/shownews/94578
http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002701----000-.html
http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002701----000-.html
http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002702----000-.html
http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002702----000-.html
http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002703----000-.html
http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002703----000-.html
http://www.akamai.com/
http://www.wireshark.org/
http://www.mypagerank.org/

614 G. Maciá-Fernández et al. / Computer Networks 56 (2012) 598–614
Yong Wang is a Ph.D. student in School of
Computer Science and Engineering at Uni-
versity of Electronic Science and Technology
of China. He received his BS degree from
Shengda College, Zhengzhou University in
2003 and M.Sc. degree from University of
Surrey in 2004 respectively. His research
topics lie in the area of computer networking
with emphasis on behavioral targeting in Web
advertising field, location-based Web adver-
tising, and the measurement of Web adver-
tising infrastructure.
Rafael A. Rodrı́guez-Gómez is a Ph.D. student
in the Department of Signal Theory, Telemat-
ics and Communications of the University of
Granada (Spain). He received his M.Sc. degree
in Telecommunications from the University of
Granada in 2008. His research interests are
focused on network security and more spe-
cifically on defense against DoS attacks,
security in P2P networks and defenses against
botnets.
Aleksandar Kuzmanovic is an Associate
Professor in the Department of Electrical
Engineering and Computer Science at North-
western University. He received his B.S. and
M.S. degrees from the University of Belgrade,
Serbia, in 1996 and 1999 respectively. He
received the Ph.D. degree from Rice University
in 2004. His research interests are in the area
of computer networking with emphasis on
design, measurements, analysis, denial-of-
service resiliency, and prototype implemen-
tation of protocols and algorithms for the

Internet. He received the National Science Foundation CAREER Award in
2008.

	Extracting user web browsing patterns from non-content network traces: The online advertising case study
	1 Introduction
	2 The online advertising framework
	3 Recovering web browsing patterns from stored TCP headers
	3.1 Background
	3.2 Methodology
	3.2.1 Website profiling
	3.2.2 Extracting web browsing features from network traces
	3.2.3 Detection algorithm

	3.3 Dealing with sources of errors
	3.3.1 Object size estimation
	3.3.2 Other sources of error

	4 Evaluation
	4.1 Experimental setup
	4.2 Site uniqueness
	4.3 Basic performance
	4.4 The role of time scales
	4.5 Different browsing scenarios
	4.5.1 Pipelining
	4.5.2 Caching
	4.5.3 Overlapping page downloads
	4.5.4 Different browsers

	4.6 Scaling the website profile

	5 Performance in the wild
	6 Related work
	7 Discussion
	8 Conclusions and future work
	Acknowledgments
	References

