

Removing Exponential Backoff from TCP

Amit Mondal
a-mondal@cs.northwestern.edu

Aleksandar Kuzmanovic
akuzma@cs.northwestern.edu

Department of Electrical Engineering and Computer Science
Northwestern University

Evanston, IL 60208, USA

ABSTRACT
The well-accepted wisdom is that TCP’s exponential backoff
mechanism, introduced by Jacobson 20 years ago, is essen-
tial for preserving the stability of the Internet. In this pa-
per, we show that removing exponential backoff from TCP
altogether can be done without inducing any stability side-
effects. We introduce the implicit packet conservation prin-
ciple and show that as long as the endpoints uphold this
principle, they can only improve their end-to-end perfor-
mance relative to the exponential backoff case.

By conducting large-scale simulations, modeling, and net-
work experiments in Emulab and the Internet using a kernel-
level FreeBSD TCP implementation, realistic traffic distri-
butions, and complex network topologies, we demonstrate
that TCP’s binary exponential backoff mechanism can be
safely removed. Moreover, we show that insuitability of
TCP’s exponential backoff is fundamental, i.e., independent
from the currently-dominant Internet traffic properties or
bottleneck capacities. Surprisingly, our results indicate that
a path to incrementally deploying the change does exist.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
TCP, exponential backoff algorithm, congestion collapse, im-
plicit packet conservation principle

1. INTRODUCTION
One of the main goals of a congestion control algorithm

is to protect the network against congestion collapse (e.g.,
[16,26,36]) — an armageddonic scenario in which endpoints
send packets at a high rate into the network, majority of
which gets dropped never reaching the destination. As a
result, the network stays highly congested and useless, since
the effective network throughput converges to zero.

The congestion collapse phenomenon was first introduced
by Nagle in 1984 [36], and one of the first incarnations
of such a scenario was reported in 1986, when the data
throughput from Lawrence Berkeley Laboratory to UC Berke-
ley dropped from 32 kbps to 40 bps [20]. Reacting to the cri-
sis, Jacobson proposed and implemented a set of algorithms
that fundamentally helped resolve the problem. The basic
idea was to make the endpoints more conservative. The key

innovations were slow-start, dynamic window sizing, round-
trip-time variance estimation, and exponential retransmit
timer backoff. These approaches are considered the main
barrier that saved the Internet from the congestion collapse
to date. Consequently, these algorithms are ubiquitously
deployed literally in all TCP variants.

Twenty years have passed since the above events and
the Internet has become a much different place. The pen-
etration of high-speed broadband access technologies and
highly-skewed traffic distributions are example factors that
already significantly impacted a number of end-point and
network protocol designs. Large bottleneck capacities en-
abled more aggressive end-point start-up behavior [5,15] and
control [14, 21, 25, 31]; moderate flow sizes inspired novel
probe-based congestion control protocols [7]; and skewed
flow-size distributions significantly impacted router buffer
sizing [8] and enabled scalable fair queuing algorithms [27].

In this paper, we focus on and challenge the need for
TCP’s binary exponential backoff mechanism that has never
been modified since originally introduced 20 years ago [20].
This is despite the well-known side-effects that this algo-
rithm can cause. For example, web clients can frequently
trigger the algorithm and experience orders of magnitude
response time degradations (e.g., [18,28,29]), even when no
collapse is on its way. Nevertheless, the common wisdom is
that the exponential backoff algorithm is essential for pre-
serving the stability of the Internet [20].1

Protocol implementers and people more closely dealing
with the above problems are well aware of the above trade-
offs. On the one hand, they are tempted to overcome the
above performance degradations; at the same time, they do
not want to be blamed for causing the collapse of the Inter-
net. The result is quite intriguing: the exponential backoff
algorithm is preserved, yet certain TCP implementations
essentially defer entering the algorithm. As an example,
we found that FreeBSD versions 4.0 and above enter the
binary backoff algorithm only after five consecutive TCP
SYN packets get dropped, thus directly violating the be-
havior standardized by RFC 2988 [37].

The key contributions of this paper are as follows. (i) We
effectively ’untangle’ the retransmit timer backoff mecha-
nism from other TCP mechanisms, and systematically eval-
uate this fundamental piece of congestion control in diversi-
fied network scenarios. (ii) We show that removing the ex-
ponential backoff mechanism altogether from TCP could be
done without causing any collapse-like scenarios. We prove
this result for single-bottleneck scenarios, and perform ex-

1“an unstable system (a network subject to random load
shocks and prone to congestive collapse) can be stabilized by
adding some exponential damping (exponential timer back-
off) to its primary excitation (senders, traffic sources)” [20].

ACM SIGCOMM Computer Communication Review 19 Volume 38, Number 5, October 2008

tensive large-scale experiments to show that this holds for
multiple bottlenecks as well. (iii) We demonstrate that re-
moving the exponential backoff algorithm from TCP is an
incrementally deployable two-step task. Most importantly,
(iv) we show that the inappropriateness of TCP’s expo-
nential backoff is fundamental, i.e., independent from the
currently-dominant Internet traffic properties or bottleneck
capacities.

In the broader context, the key implication of our work
is that it opens the doors for evaluating other well-accepted
pieces of TCP congestion control. The growing sense is that
a number of these pieces were introduced in 1986 in a ’rush’
to solve a very pressing problem [31]. Hence, it is viable to
revisit each of these algorithms independently and under-
stand what is really needed and what is not.

2. BACKGROUND AND MOTIVATION
When a packet is sent into the network, there are no guar-

antees it will make it to the destination. An important ques-
tion thus becomes: how long should a TCP endpoint wait
before retransmitting the packet, i.e., how to set retrans-
mission timeouts? Another question is how to behave in
scenarios when a packet must be retransmitted more than
once, i.e., how to set the value of the new retransmission
timeout once the previous one has expired? Below, we pro-
vide a brief background standing behind the current practice
in the Internet, and then motivate our research.

2.1 Retransmission Timeouts and Exponential
Backoff: Origins

2.1.1 Retransmission Timeouts
TCP uses a retransmission timer to ensure data delivery

in the absence of any feedback from the remote receiver.
The duration of this timer is referred to as the retrans-
mission timer (RTO). RFC 2988 [37] specifies that a host
TCP must implement Jacobson’s algorithm [20] and Karn-
Partridge’s algorithm [23] for computing the RTO. Jacob-
son’s algorithm for computing the RTO incorporates a sim-
ple measure of smoothed RTT, SRTT , and RTT variance,
var(RTT), i.e., RTO = SRTT + 4 ∗ var(RTT). Karn-
Partridge’s algorithm for selecting RTT measurements en-
sures that ambiguous round-trip times will not corrupt the
calculation of the smoothed round-trip time.

Allman and Paxson studied the fundamental tradeoff in
setting the RTO value [6]. The more aggressive the value is
the less time a connection spends waiting for needed RTOs.
But, at the same time, it experiences more spurious RTOs.
RFC 2988 [37] recommends a minimum value of one second.
The authors acknowledge that at some future point, research
may show that a smaller RTO is acceptable or superior.
To the best of our knowledge, the current practice in most
operating systems is setting the minimum RTO parameter
to 200 msec [40].

2.1.2 Backoff Mechanisms
Another question is how to help the network during the

period of severe congestion. In particular, how to set the
value of the new retransmission timeout once the previous
one has expired? The original TCP recommendation [2]
simply reuses the existing RTO value without any changes.
Jacobson first introduced a retransmit timer backoff mech-
anism in TCP [20]. The backoff mechanism controls how
the retransmits should be spaced, if a packet has to be re-
transmitted more than once. Jacobson adopted the back-

off mechanism from the classical (shared-medium) Ethernet
protocol of Metcalfe and Boggs [34], justifying the choice
by the observation that an IP gateway has essentially the
same behavior as the ‘ether’ in a shared-medium Ethernet
network.

The Ethernet backoff protocol is called binary exponen-
tial backoff and it is used for the control of a multiple-
access broadcast channel. A single channel allows several
geographically dispersed stations to communicate with each
other by broadcasting packets onto the channel. If two or
more stations simultaneously attempt to broadcast a packet,
then the transmission interferes and each fails. There is no
central control, so the protocol resolves collisions using the
backoff algorithm. A station waits a random time T after
its kth unsuccessful attempt at transmitting a given packet
and then reattempts, where E(T) = 2k time slots.

An extensive theoretical effort stands behind the choice
of using exponential backoff in the Ethernet protocol. In
the queuing model of the backoff algorithm, it is assumed
that there are N users, and user i (1 ≤ i ≤ N) generates
a message independently in each step with probability λi.
The total mean arrival rate λ =

P
λi.

The quality of a backoff protocol is measured by its stabil-
ity and capacity. A backoff protocol is defined to be stable,
for a given arrival rate λ, if the expected number of waiting
messages over time is finite. A protocol is said to achieve
throughput λ if, when it runs with a input rate λ, the av-
erage success rate is λ. The capacity of a protocol is the
maximum throughput it can achieve. Goldberg et al. [17]
prove the upper capacity bound for a shared-medium Eth-
ernet backoff protocol. Kelly [24] shows no collision backoff
slower than exponential guarantees stability on an Ethernet.
Moreover, Aldous [4] shows that with infinite user popula-
tion even exponential backoff will not guarantee stability for
any positive arrival rate.

2.2 Rationale for Revisions
Here, we outline the key reasons motivating us to revisit

the design, and more fundamentally, suitability of the binary
exponential backoff algorithm for TCP.

First, despite a longer-than-a-decade-long research effort
in the area of admission control (e.g., [9]), no such algorithm
is implemented in today’s Internet. Indeed, packets are for-
warded on the best-effort basis, and new flows can enter the
system despite potentially heavy congestion in the network.
Moreover, there is no bound on the number of active flows
sharing a single bottleneck link in the Internet. Thus, for
a transport endpoint embedded in a network of unknown
topology and with an unknown, unknowable and constantly
changing population of competing flows, whatever stability
results exist for the backoff algorithm with bounded arrivals
simply cannot be applied in the Internet.

Second, Jacobson’s observation that an IP gateway has
essentially the same behavior as the ‘ether’ in a classical
Ethernet network [20] is discussable. A classical Ethernet
is a shared medium, where only one node can transmit at
a time. Any simultaneous transmissions result in a colli-
sion and the time slot is wasted, making it possible for the
throughput to drop to zero in overloaded scenarios. This is
not the case with routers in the Internet. Indeed, assume a
router with an outgoing link capacity C;2 even in the most

2We assume that the traffic flow is bottlenecked at an out-
going link. Even if the bottleneck exists elsewhere in the
router, our analysis below still holds. The key point is that
the router bottleneck does not fully starve the traffic flow,

ACM SIGCOMM Computer Communication Review 20 Volume 38, Number 5, October 2008

congested scenarios in which new incoming packets are get-
ting dropped, the throughput does not drop to zero.

Moreover, finite flow sizes, dynamic flow arrivals and de-
partures, skewed traffic distributions, a large number of short
flows and increased bottleneck capacities in today’s Internet
arising due to penetration of high-speed broadband tech-
nologies are all factors that even further challenge the need
for TCP’s exponential backoff algorithm. While there are
still areas in the world where the penetration of high-speed
technologies is not high, we show that insuitability of TCP’s
exponential backoff is fundamental, i.e., independent from
the currently dominant Internet bottleneck capacities.

2.3 Implicit Packet Conservation Principle
Despite the lack of admission control, the mismatch be-

tween shared and non-shared mediums, and potential bene-
fits one would be able to achieve by removing TCP’s expo-
nential backoff, it appears that this mechanism would still
be highly beneficial in highly congested scenarios when traf-
fic arrivals are systematically above an IP gateway’s service
rate. Our key result is that this is not the case.

Consider a single congested gateway. Given that the ser-
vice rate of an outgoing gateway’s link is independent of the
packet loss ratio in such scenarios, the implication is that as
long as RTO>RTT for each of the endpoints, the end-to-end
performance experienced by clients will not degrade even if
we remove the exponential backoff algorithm altogether. If
a copy of a packet is sent into the network only after the
previous copy has been dropped (i.e., RTO>RTT), so that
no unnecessary congestion is induced by the endpoints, the
congested gateway will serve each packet only once, and thus
the end-to-end performance will not suffer.

We call the RTO>RTT condition the implicit packet con-
servation principle. It is implicit because an endpoint has
no feedback from the network that the packet has been lost,
and thus it has to rely upon the RTO value to implicitly de-
termine that the packet has been lost. Indeed, this question
has been explored in depth in [20,23].

Theorem 2.1 In a single-bottleneck scenario where end-
hosts satisfy the implicit packet conservation principle, the
average file response time will not degrade after the removal
of TCP’s exponential backoff mechanism.

Proof: Consider n TCP flows with heterogeneous RTTs
are sharing a single bottleneck link. Denote by RTTi(t) the
round-trip time of the i-th TCP flow at time t, i = 1, ..., n.
Also, denote by RTOi(t), for i = 1, ..., n, their correspond-
ing retransmission timeouts at time t. Assume that for all
t the implicit packet conservation principle holds for each
connection. Thus, by removing the parameter t, it holds
that RTOi = SRTTi + 4 ∗ var(RTTi) > RTTi. Denote by
C the capacity of the bottleneck link (in packets per unit
time). Assume a congested scenario in which the packet
arrival rate exceeds service rate C, i.e., Σn

i=11/RTOi > C,
and endpoints operate in the exponential backoff mode.

If flows do not apply the exponential backoff algorithm,
then the packet loss ratio p at the bottleneck becomes

p =
Σn

i=11/RTOi − C

Σn
i=11/RTOi

. (1)

Thus, a flow of size Li has to send Li/(1 − p) packets on
average to successfully transfer all its Li packets. Hence, its

which can happen in the classical Ethernet scenario.

average response time ri becomes

ri =
Li · RTOi

1 − p
. (2)

Combining Eq. (1) and (2), it follows that

ri =
Li · RTOi · Σn

i=11/RTOi

C
. (3)

Next, assume that flows apply the binary exponential back-
off algorithm to avoid packet losses such that each flow sends
a single packet per 2k ·RTOi seconds. Then k should be such
that

Σn
i=1

1

2k · RTOi
≤ C. (4)

Hence, it follows that

k ≥ log2

„
Σn

i=11/RTOi

C

«
. (5)

Thus, a flow of size Li has the average response time r′i equal
to Li · 2k · RTOi. From Eq. (5) it follows that

r′i ≥ Li · RTOi · Σn
i=11/RTOi

C
. (6)

Finally, from Eq. (3) and (6), it follows that r′i ≥ ri.�
While certainly insightful and illustrative, the theorem

above makes several assumptions which we outline below,
and extensively evaluate further in the paper.

1. All flows in the exponential-backoff state? We assume
a highly congested case in which all endpoints oper-
ate in the exponential backoff mode. The key point is
that if the exponential backoff is unnecessary even in
this extreme scenario (as the theorem implies), then
it is unnecessary in other scenarios in which a subset
of flows operate in the non-exponential-backoff mode.
Nevertheless, the above proof does not formally apply
to such cases. Hence, we extensively evaluate such sce-
narios in a network testbed with state-of-the-art TCP
implementations in Sections 4.1 - 4.5 below.

2. Implicit packet consrvation principle always fullfilled?
The TCP’s RTO estimator RTO = SRTT+4∗var(RTT)
is sufficiently conservative to fullful the implicit packet
conservation principle in most scenarios, i.e., RTO >
RTT . However, it does not guarantee that a given
RTO estimate is always greater than a given RTT sam-
ple. For example, due to flash crowds, it is possible
that RTT dramaticaly increases in a short period of
time such that RTO becomes less than RTT. We ex-
plore such scenarios in Section 4.6 below. We use the
same experiment to explore the performance of the al-
gorithm in extremely congested scenarios, e.g., packet
loss rate at the order of 45%.

3. Multiple-bottlenecks? The theorem above holds for a
single bottleneck scenario. The question is what hap-
pens in multiple-bottlenecked scenarios? We address
this question in depth in Section 5 below.

2.4 How Often Does Exponential Backoff Hap-
pen in the Internet?

While our main objective is to address a fundamental
TCP design issue — should TCP apply the exponential
backoff algorithm or not — the performance repercussions

ACM SIGCOMM Computer Communication Review 21 Volume 38, Number 5, October 2008

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7

R
T

O
 (

se
c)

backoff round

TCP
TCP*(1)
TCP*(∞)

Figure 1: RTO as a function of the backoff round

of the proposed change are not negligible. Here, we explore
how frequently does a TCP connection experience retrans-
mission timeouts and enter the exponential backoff in to-
day’s Internet.

Tbit-like experiments. Ideally, monitoring TCP’s be-
havior at a number of web servers would give a representa-
tive answer to this question. Since we do not have access to
any of the popular servers, we develop a tool that infers time-
out events at the server side from client-side-only measure-
ments. In particular, our tool passively monitors packet ar-
rivals and departures at the client side and estimates a con-
nection’s roundtrip times. Then, it compares inter-packet
arrival times to detect RTO and backoff events3. In our ex-
periment, we select a well-connected machine at a university
campus network as the client. The machine sends requests
for index pages to 75,000 popular web servers around the
world, from the Tbit web server list [33].4

Analyzing the measurement data from the above exper-
iment, we find that approximately 8% of the connections
experience timeout at least once during their entire transfer
time. Furthermore, approximately 52% of the connections
that experience timeout also experience a consecutive time-
out, i.e., TCP’s exponential backoff is invoked. It is impor-
tant to understand that our experiments are conducted from
a well-connected endpoint at a university campus. Also,
to ensure that our experiment does not induce congestion
at the receiver access network, the client connects only to
a single server at a time. Moreover, index pages that we
download are in general short in size. We believe that our
analysis here provides only a lower bound on the percentage
of connections that experience exponential backoff. In sce-
narios where congestion also happens at the receiver side,
e.g., when a client is behind a residential access network, or
when a connection is longer-lived, the exponential backoff
mechanism could be invoked even more frequently.

3. PRELIMINARIES

3.1 “Design” Space
Our key goal to test the hypothesis that we can live with-

out the exponential backoff algorithm. Still, one important
issue, which we explore in more depth in Section 6, is in-
cremental deployability of the proposed change in the cur-
rent TCP stack and its coexistence with the state-of-the
art TCP variants. For that reason, we explore a class of
sub-exponential backoff algorithms which should be easier
to incrementally deploy in today’s Internet, simply because
their deviation from the pure exponential backoff algorithm
is smaller than is the case with the backoff-less algorithm.

3We infer timeout if inter-packet arrival time is greater than
200 ms and 1.2 times the estimated RTT value.
4http://www.icir.org/tbit/URLListFeb2004.txt

In particular, we define a class of TCP*(n) sub exponen-
tial backoff algorithms, where the endpoints do not backoff
the first n consecutive timeouts. For example, as shown in
Figure 1, regular TCP’s backoff pattern is purely exponen-
tial, RTO*(1,2,4,8,16,32,64). On the other hand TCP*(1)
disregards the first consecutive timeout such that its backoff
pattern becomes RTO *(1,1,2,4,8,16,32). Finally, the last al-
gorithm in the chain is TCP*(6), which we call TCP*(∞),
given that there is no backoff anymore. It simply applies
the RTO parameter (computed using Jacobson’s and Karn-
Partridge’s algorithms) consistently as shown in the figure.5

3.2 Experimental Methodology
Testbed. The experimental testbed consists of a cluster

of 64-bit Intel Xeon machines running FreeBSD 6.1 kernel.
We modify the TCP implementation in the FreeBSD kernel
to realize TCP*(n) stack. The single-bottleneck scenario is
a dumbell-shaped topology with a pool of Apache servers at
one side, and a pool of clients connected on the other side
of the bottleneck link. We use dummynet to distribute the
RTT between the clients and the servers in the range from
10ms to 200ms on a per-flow basis in order to emulate a
wide-area network environment. We limit the bandwidth of
the bottleneck link to 50 Mbps, which represents an uncon-
gested scenario, and 10 Mbps, which represents a congested
scenario. The bottleneck router is equipped with a RED
queue by default; we also evaluate DropTail queues later in
the paper. We use TCP Sack for all our experiments unless
otherwise specified. We set the queue size to two times the
bandwidth-delay product.

In the experiments, we first limit the network capacity
between the client and server pools to 50 Mbps. Next, we
choose the new connection arrival rate parameter such that
the resulting average network throughput, in the direction
from servers to clients, becomes between 10 Mbps and 15
Mbps. Finally, we limit the rate between the two pools to
10 Mbps, which enables us to explore congested network
scenarios. The key performance measure of interest is flow
completion time [13].

Workloads. For our experimental workload generation,
we leverage the traffic model developed in [10]. It pro-
totypes synthetic HTTP traffic based on recent Internet
traffic measurements. While certainly representing traffic
patterns characteristic for web-based activities in today’s
Internet, HTTP has become widely used for other appli-
cations as well, including popular peer-to-peer file-sharing
systems [22]. As a result, the traces we deal with are not
web-limited. Moreover, we enrich the traffic characteristic
even further by changing the given traffic distribution as we
explain in detail below.

The model generates synthetic traffic based on the em-
pirical heavy-tailed distribution reported in [29]. While the
majority of the flows are very short (the mean file size is
around 7 kBytes), GByte-long file sizes are also generated.
Next, to generate a trace dominated by short flows, we trun-
cate each file-size sample that is larger than 10 kB, to 10
kB, thus moving the average flow size towards smaller val-
ues. Likewise, to skew the distribution towards longer-flow
sizes, we increase the percent of long-lived flows as follows.
Starting from the baseline distribution [29], whenever a gen-
erated flow-size sample is less than 5 kB, we randomly (with
probability 0.01) alternate this value to a longer flow size,

5The RTO parameter stops doubling when a connection ex-
periences seven or more consecutive timeouts [37].

ACM SIGCOMM Computer Communication Review 22 Volume 38, Number 5, October 2008

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

Response time (sec)

TCP
TCP*(3)
TCP*(∞)

Uncongested Network

(a) Trace-I

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

Response time (sec)

TCP
TCP*(3)
TCP*(∞)

Uncongested Network

(b) Trace-II

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

Response time (sec)

TCP
TCP*(3)
TCP*(∞)

Uncongested Network

(c) Trace-III

Figure 2: CCDF of response times with different backoff mechanisms (minRTO=1.0s, initRTO=3.0s)

according to the exponential distribution of the long-term
average of 10 MB. Henceforth, we denote by Trace-I the flow
size distribution skewed towards short file sizes, by Trace-II
the baseline distribution of [29], and by Trace-III the one
skewed towards longer file sizes. For the scenarios where
generating Emulab-based experiments is either highly non-
trivial or infeasible, we conduct ns-2 based simulations.

4. EVALUATION

4.1 No Admission Control
Here, we explore the problem of the lack of admission con-

trol in the Internet, which has important implications on sys-
tem performance. As discussed above, stability in the theo-
retical sense can be guaranteed only in scenarios where the
number of arriving flows can be controlled. While no such
mechanism explicitly exists in today’s Internet, we explore
whether the fact that most operating systems adopt a policy
where a TCP connection is aborted if it experiences three
(or five for Fedora/Linux) consecutive SYN packet drops
may be considered as a way of implicit admission control.
Below, we explore if, and under which circumstances, does
this implicit admission control becomes functional.

Denote by p the packet loss probability at a congested
router. Then, assuming connection abortions after three
consecutive SYN drops, the probability that the connection
will be implicitly rejected becomes p3. For example, if the
packet loss rate is as high as 10%, the probability to im-
plicitly reject the connection is 0.001. Nevertheless, we run
simulation experiments in a single bottleneck scenario to un-
derstand how the offered load on the congested link and a
queuing algorithm at a router (e.g., FIFO or RED) affects
the probability a connection will be rejected from the sys-
tem. Our findings are the following.

In both RED and FIFO routers operating in the Byte
mode we were unable to log the case where a connection was
rejected due to triple SYN drop, despite extremely heavy
load placed on the congested routers. This is not a surprise.
Because SYN packets are small in size (40 Bytes), they
are almost certainly admitted and served by a Byte-based
router. For the packet-based routers, our experiments con-
firm the above modeling results. Indeed, even under close-to
catastrophic congestion levels at a router (e.g., p=0.5) where
each second packet gets dropped, the probability to implic-
itly reject a connection is slightly above 10% for kernels that
abort a connection after 3 SYN attempts, and about 3% for
those that abort a connection after 5 consecutive tries.

4.2 Sub-Exponential Backoff
Here, we explore the performance of a class of sub-exponential

backoff algorithms (including the backoff-less one, termed
TCP*(∞)) explained in Section 3.1 above. We set the re-
transmission timers following the recommendation from RFC
2988 [37], i.e., minRTO is 1 sec, and initRTO is 3 sec. Later

in the paper, we explore other minRTO values (i.e., 200 ms)
as well. Figures 2(a), 2(b), and 2(c) depict the CCDF func-
tions of response times for three traffic traces. Trace-I is
dominated by short flows, Trace-II is the baseline distribu-
tion of [29], and Trace-III is skewed towards longer file sizes.

Figure 2(a) indicates that the tail of the backoff-less algo-
rithm reduces relative to other backoff schemes. This is be-
cause the backoff-less algorithm manages to utilize all poten-
tial “gaps” in service that arise due to highly bursty arrivals,
despite the fact the average arrival rate is above the service
rate. By being more aggressive, the backoff free scheme
manages to utilize the link more efficiently, and reduce the
CCDF tail.

Figures 2(b) and 2(c) show that almost no service gaps
exist when the bottleneck is exposed to Traces-II and -III
at a high rate. As the flow-size distribution becomes more
and more heavy tailed, the response times necessarily in-
crease relative to the Trace-I scenario. Likewise, as the
number of long-lived TCP connections increases, the num-
ber of competing active connections present in the network
becomes large, which in turn reduces the gain of using sub-
exponential backoff schemes. We will later show other less-
congested scenarios in which the gain can be as high as an
order of magnitude.

Key observation. However, no matter how monotonic
Figures 2(a), 2(b), and 2(c) may appear, they convey the
most important message of this paper: the end-to-end per-
formance does not degrade when removing the exponential
backoff algorithm from TCP. Indeed, as long as the end-
points uphold the implicit packet conservation principle, the
end-to-end performance will not suffer. This is particularly
the case in this scenario when relatively conservative min-
RTO (1 sec) and initRTO (3 sec) values of RFC 2988 are
applied.

One other important implication of the implicit packet
conservation principle is that the aggregate goodput (defined
as the number of “unique” packets served at the congested
router) does not degrade in this scenario, despite increased
packet loss ratio.

While RFC 2988 [37] recommends setting the minRTO to
1 sec, the current practice is setting minRTO to 0.2 sec [40].
Hence, we repeat the experiment with minRTO 0.2 sec and
initRTO 3.0 sec, and we obtain results consistent to those
shown in Figure 2. The experiments show that our findings
are independent from RTO parameter setups. In the fol-
lowing experiments, we stick with these currently dominant
parameters, i.e., minRTT 0.2 sec and initRTO 3.0 sec.

4.3 Bottleneck Capacity
In all experiments thus far, we experimented with a 10Mbps

bottleneck link. Here, we change the bottleneck capacity to
50 Mbps. Our intention is to understand how the response-
time profiles change relative to the 10 Mbps case. We ex-
periment with TCP and TCP*(∞) stacks, and the working
trace is again Trace-I. While the file-size distribution is un-

ACM SIGCOMM Computer Communication Review 23 Volume 38, Number 5, October 2008

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response time (sec)

10Mbps, TCP
TCP*(∞)

50Mbps, TCP
TCP*(∞)

Figure 3: Impact of bottleneck capacity

 1

 2

 3

 4

 5

 6

 7

 8

2s1s200ms100ms50ms

R
es

po
ns

e
tim

e
(s

ec
)

Time-scale

TCP, Avg.
TCP*(∞), Avg.
TCP, Perc 99

TCP*(∞), Perc 99

Figure 4: Average and 99th percentile of response
times

changed, we scale the arrival rate so that the effective load
placed in both cases is equivalent.

Figure 3 shows the CCDF response-time profiles for the
two bottleneck capacities. The key point is that the TCP*(∞)
outperforms the classical TCP stack dramatically, indepen-
dent of the capacity change. Likewise, for Traces-II and -III
(not shown), the gain slightly changes for these overloaded
scenarios, yet it is more moderate than in the Trace-I case.

4.4 Dynamic Environments
Here, we explore how the backoff-less algorithm performs

in much more dynamic environments, characterized by bursty
traffic arrivals. In particular, we keep the overall long-term
average load constant, but vary the duration of on and off
arrival periods. Connections are arriving only during on pe-
riods. To keep the overall load high, we double the arrival
rate during on periods. While not representative of an ac-
tual or realistic scenario, our goal here is to understand the
impact that inter-burst arrival time scales, which we vary
from 50 ms to 2 s, have on the response times.

Figure 4 depicts average as well as 99th percentile of re-
sponse times for TCP and TCP*(∞) stacks as a function of
on (burst) and off (no burst) time scales for Trace-I. Expect-
edly, the difference between 99th percentile of response times
(tails of CCDF distributions) is much larger than it is the
case with averages. This is because during periods of persis-
tent congestion many TCP flows enter long backoff periods.
As a result, new flows are being admitted into the system
while already admitted ones are not served. On the other
hand, the backoff-less TCP*(∞) stack effectively serves ad-
mitted flows without wasting time in unnecessary backoffs,
thus reducing the number of active flows in the system. Ex-
actly because of this, the tail of the CCDF curve for TCP
is approximately twice as larger than it is for TCP*(∞).

Both average and 99th percentile of response times show
an increasing trend as the burst time-scales increase. This
is because the opportunities (and gains) of being more ag-
gressive decrease with longer bursts than TCP.

4.5 TCP Variants and Queuing Disciplines
In this section, we evaluate other TCP variants, i.e., TCP

Reno and Tahoe, as well as their backoff-less variants, and

compare them to TCP Sack which we used thus far. In
addition, we explore the performance of these stacks on RED
and DropTail routers. Figure 5(a) depicts the CCDF of
response times for RED for Trace-I. While the figure again
shows that the backoff-less variants improve the response-
time profiles over their original stacks for all TCP versions,
the most interesting detail in the figure is that there is no
significant difference among various TCP stacks. This is
despite the fact that all these TCP versions differ in their loss
recovery phase: Reno improves Tahoe by less conservatively
reacting to loss events; Sack further improves Reno in its
fast recovery phase when multiple packets are dropped from
a single window.

While TCP Sack slightly outperforms the other two ver-
sions, the difference is not so dramatic. This is not a sur-
prise. Given that a congestion window remains small due to
persistent congestion, selective acknowledgement has very
little impact on individual response times and goodput of
the bottleneck link. Because windows are small, all versions
in a way operate in an almost single-packet “selective ac-
knowledgement” mode, and hence there is no big difference.
Figure 5(b) depicts similar results for the DropTail queue.

4.6 Flash Crowds
The retransmission timer can expire spuriously and cause

unnecessary retransmissions when no segments have been
lost [41]. This can happen due to a temporary delay spike or
a more permanent but sudden delay increase due to a flash
crowd in the TCP data or ACK path. Below we explore
the impact of removing exponential backoff from TCP on
end-to-end performance in such scenarios.

In our experiments, the bottleneck router capacity is set to
10 Mbps, and it uses a DropTail queue. In order to explore
the worst-case scenario, we experiment with Trace-I which is
dominated by short flows. We then create (in two separate
experiments) both TCP and UDP flash crowds to evaluate
their impact on end-to-end performance. In both cases, we
set the link utilization to around 80% of the bottleneck ca-
pacity in absence of the flash crowd. Then, we create pareto
ON/OFF flash crowd traffic with average burst period of
16.0 sec and idle period of 8.0 sec. During ON periods new
TCP flows arrive at a high rate (200 connections a second
for TCP flash crowd) creating a permanent packet loss rate
of about 25%; in the UDP case, the burst suddenly congests
the bottleneck router and creates permanent packet loss rate
of about 45% during ON periods.

Figure 6(a) and 6(b) show the flow response times in pres-
ence of UDP and TCP flash crowds. We indeed confirm
that TCP’s RTO estimator may lag behind RTT in such ex-
treme scenarios, i.e., RTO < RTT . This is particularly the
case at a flash crowd’s early stage when the RTT quickly
jumps. Still, Figures 6(a) and 6(b) show no negative im-
pact on response times relative to the TCP case. Indeed,
as soon as new RTT samples are obtained, the RTO suc-
cessfully adjusts to the new environment, despite extremely
heavy congestion. Moreover, due to more aggressive behav-
ior, TCP(∞) substantially outperforms TCP in such cases.

5. MULTIPLE BOTTLENECKS AND COM-
PLEX TOPOLOGIES

Independent of where a flow may be bottlenecked on an
end-to-end path, i.e., upstream or downstream, we showed
that as long as there exists a single bottleneck on an end-to-

ACM SIGCOMM Computer Communication Review 24 Volume 38, Number 5, October 2008

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response time (sec)

Tahoe
Reno
Sack

Tahoe*(∞)
Reno*(∞)
Sack*(∞)

(a) RED

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response time (sec)

Tahoe
Reno
Sack

Tahoe*(∞)
Reno*(∞)
Sack*(∞)

(b) DropTail

Figure 5: Effect of queuing disciplines and TCP variants on response time distributions

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response Time (sec)

TCP
TCP(∞)

(a) UDP, Ploss=45% during flash crowds

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response Time (sec)

TCP
TCP(∞)

(b) TCP, Ploss=25% during flash crowds

Figure 6: Effect of flash crowd

end path, the backoff-less approach can only improve end-
to-end performance, irrespective of the TCP versions and
queuing disciplines.

Dead packets. One concern is that when a bottleneck is
located downstream, i.e., closer to the destination, a more
aggressive endpoint can generate a larger number of so-
called “dead packets;” e.g., those that exhaust network re-
sources upstream, but are then dropped downstream.

There are two issues with respect to this problem. First,
even if an upstream router’s bandwidth is wasted by “dead
packets,” this does not necessarily mean that this bandwidth
would have otherwise been used by other flows. Indeed, as
long as there exists a single bottleneck and endpoints adhere
to the implicit packet conservation principle, no other flow in
the network will suffer due to the dead packet issue. Second,
if there exist multiple bottlenecks on an end-to-end path,
then there is indeed a chance that dead packets impact the
performance of flows sharing the upstream bottleneck. We
explore such scenarios in depth below.

5.1 The Impact of Dead Packets on Network
Efficiency

Here, we develop a simple model to understand the impact
of dead packets on network efficiency in multiple bottleneck
scenarios. For simplicity, we stick with a two-bottleneck
topology (Figure 7). Still, our analysis is extensible to sce-
narios involving an arbitrary number of bottlenecks.

Denote by p1 and p2 the packet drop ratios at the bottle-
neck links R1 − R2 and R3 − R4, respectively. Denote by
L0 the load at link R1−R2 generated by the S0−C0 flows.
Similarly, denote by L1 and L2 loads at links R1 − R2 and
R3 − R4 generated by S1 − C1 and S2 − C2 flows, respec-
tively. Denote by α the fraction of R1 − R2 link capacity
occupied by dead packets belonging to S0 − C0 flows. As-
suming random drops, it could be shown that

α =

„
L0

L0 + L1

«
(1 − p1)p2. (7)

Eq. (7) shows that the fraction of dead packets is a function

R1 R2 R3 R4S0 C0

S1

C1

S2

C2

L0

L1 L2

Figure 7: A typical two-bottleneck scenario

of packet loss ratios at the two bottlenecks, and a function
of L0/(L0 + L1), which represents the fraction of flows ex-
periencing multiple bottlenecks on their end-to-end paths.

Figure 8 plots α as a function of L0/(L0 + L1) with (p1,
p2) as parameters. We show three scenarios: (i) (1%, 1%),
which represents a lightly congested scenario at both bottle-
necks; (ii) (5%, 5%), which is a highly congested scenario;
and (iii) (1%, 5%), in which packet loss rate at the down-
stream bottleneck (5%) is higher than the one at the up-
stream bottleneck (1%). Expectedly, Figure 8 shows that
dead packets have the maximum impact in scenarios when
the downstream bottleneck is heavily congested. The fig-
ure also shows that the percent of dead packets increases as
the fraction of multiple-bottlenecked flows, L0/(L0+L1), in-
creases. Thus, to realistically understand the impact of dead
packets, it is necessary to have an estimate of the fraction
of multiple-bottlenecked flows in today’s Internet. Because
this question is beyond the direct scope of our work here,
we rely upon existing research results.

Measurements studies have shown that bottlenecks typi-
cally reside at Internet edges, either at access networks [12]
or at lower-tier ASes [3, 19]. A recent study indicates that
less than 5% of flows experience multiple bottlenecks on an
end-to-end path at time-scales of minutes [11]. Projecting
this result to our analysis (point 0.05 on the x-axis in Figure
8), it follows that the percent of dead packets that can im-
pact upstream flows is indeed marginal in today’s Internet.
As an example, even in the worst-case scenario from Figure
8, the fraction of such packets is very small, 0.002475.

ACM SIGCOMM Computer Communication Review 25 Volume 38, Number 5, October 2008

 0

 0.01

 0.02

 0.03

 0.04

 0.05

10.10.050.01

A
lp

ha

L0/(L0+L1)

(P1=1%, P2=1%)
(P1=5%, P2=5%)
(P1=1%, P2=5%)

Figure 8: Fraction of dead packets as a function of
the fraction of multiple-bottlenecked flows

5.2 The Impact of Dead Packets on End-to-
end Performance

Here, we answer the following two questions. First, what
would happen if the percent of multiple-bottlenecked flows
would increase dramatically above the level measured in to-
day’s Internet? And second, what would be the impact of
the backoff-less TCP approach on end-to-end performance
in such scenarios? To answer these two questions, we rely
upon Emulab experiments in which we increase the percent
of multiple-bottlenecked flows.

We create a topology equivalent to the one shown in Fig-
ure 7. Clients C0, C1, and C2 send HTTP requests to
servers S0, S1, and S2, respectively. The bandwidth of
the bottleneck links (R1 − R2 and R3 − R4) are set to
10 Mbps and all other links have the capacity of 50 Mbps.
As indicated above, we distribute the load such that the
L0/(L0 + L1) ratio becomes 0.25, five times above the level
in today’s Internet.

Figure 9 (a), (b), and (c) plot the response times distri-
bution of multiple bottlenecked S0 − C0 flows, as well as
S1−C1 flows. S1−C1 flows share the upstream bottleneck
with S0−C0 flows and hence could be negatively impacted
when backoff-less TCP is applied.

Figure 9 (a) shows that removing the exponential backoff
altogether improves the response times distributions of both
S0 − C0 and S1 − C1 flows for Trace-I. This is because in
such an environment, which is entirely dominated by short
flows, long pauses due to exponential backoff only degrade
these flows’ response times. With Trace-II, the S0−C0 flows
improve their response times, while the S1−C1 backoff-less
flows only marginally degrade relative to the TCP case. In
particular, many long flows along with the short flows in
Trace-II also become aggressive, which increases the compe-
tition at the upstream link, and affects the overall perfor-
mance of S1 − C1 flows.

The result is similar for Trace-III. In particular, the frac-
tion of flows that complete their transfers in less than 100
seconds increases with backoff-less TCP stack for both S0−
C0 and S1 − C1 flows. One interesting detail is that the
CCDF curve for TCP S0−C0 flows (marked by TCP/0) is
shorter than for other stacks. This is because the number of
long flows which finish their transfers during the experiment
is negligible compared to the backoff-less case.

In summary, the results show that even in environments
with a large percent of multiple-bottlenecked flows, such
flows improve their overall response times. More impor-
tantly, this is achieved without causing any catastrophic ef-
fects on other flows in the network.

5.3 Realistic Network Topologies
Here, we conduct a large-scale simulation experiment to

understand the overall effects of removing TCP’s exponen-

Figure 10: An Orbis-scaled HOT topology

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response time (sec)

HTTP, TCP
TCP*(∞)

HTTP+P2P, TCP
TCP*(∞)

Figure 11: Impact of topology and traffic matrix

tial backoff mechanism in a more complex network envi-
ronment. In particular, we simulate a scaled, yet realistic,
network topology and explore the impact of heterogeneous
access bandwidths. We also consider a more complex traffic
matrix, which includes both HTTP and p2p-like traffic.

We start from the HOT model [30] to generate a realistic
network topology. Next, we use the Orbis approach [32] to
scale down the network size while still preserving the original
structure. Figure 10 shows a scaled topology which consists
of 67 nodes. We randomly select 10% of the edge nodes to
be server nodes and the remaining 90% become client nodes.
We then augment the core links with 10Gbps bandwidth,
server-side edge links with 100 Mbps, and we randomly dis-
tribute the client-side edge links in the 1-10Mbps range.
The delay of all links is set to 10 ms. The routers use RED
with the targeted delay parameter set to 5ms.

To generate traffic between clients and servers, we use
the synthetic traffic generator from [1]. Next, to add p2p
(BitTorrent-like) traffic in the network, we proceed as fol-
lows. Each client downloads an infinite-size file from five
randomly chosen peers (from the client set) in the network,
thus increasing the load in the network.

Figure 11 plots the results. We aggregate the response
times at the clients (for the client-server communication)
and plot the results. The insights are the following. First,
in absence of p2p traffic, the response times distribution im-
proves significantly. As an example, the maximum response
time decreases by five times (200 sec for the ’HTTP,TCP’
case, and 40 sec for the corresponding TCP*(∞) case). Sec-
ond, in presence of p2p traffic, the response times further
increase. The maximum response time improves by an order
of magnitude after the removal of the exponential backoff in
this scenario. When p2p traffic is present, short TCP flows
experience more timeouts and run into backoff as the client-
access links are always congested due to long-lived p2p flows.
On the contrary, TCP*(∞) flows avoid such long backoffs.

6. INCREMENTAL DEPLOYEMENT
Here, we explore the potential for deploying these changes

in the Internet. Figures 12(a), 12(b), and 12(c), show the
response times for different TCP variants, i.e., TCP*(∞)
(0.2, 3) and TCP (0.2, 3), when they multiplex together.

ACM SIGCOMM Computer Communication Review 26 Volume 38, Number 5, October 2008

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

Response time (sec)

TCP/0
TCP*(∞)/0

TCP/1
TCP*(∞)/1

(a) Trace-I

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

Response time (sec)

TCP/0
TCP*(∞)/0

TCP/1
TCP*(∞)/1

(b) Trace-II

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

Response time (sec)

TCP/0
TCP*(∞)/0

TCP/1
TCP*(∞)/1

(c) Trace-III
Figure 9: Effect of dead packets on end-to-end performance

We show the results for RED, and confirm that results are
consistent with Droptail. We change the percent of each
protocol from 10% to 90% as indicated in the figure, and
show the CCDF profiles for all the traces. All figures show
that as the percent of TCP*(∞) flows increases, the CCDF
curves shift towards right, i.e., longer response times. Given
that the bottleneck bandwidth is fixed, an increased number
of backoff-less flows results in a firmer competition among
such flows, shifting the CCDF curve towards right.

Next, an increased number of TCP*(∞) flows in the sys-
tem necessarily degrades the performance of TCP flows. Un-
fortunately, in some cases by a non-negligible amount, which
may sometimes cause TCP flows to starve. In particular,
when TCP*(∞) contributes 90% among all flows in the sys-
tem, TCP flows suffer the most, particularly in Trace-I and
-II scenarios. As an example, the mean response time dou-
bles relative to the scenario when there are no TCP*(∞)
flows for Trace-II.

Our additional results indicate that a two-step incremen-
tal deployment process is much more feasible. We repeat the
same experiments as above, only this time we multiplex (a)
TCP and TCP*(3) flows in the first case, and (b) TCP*(3)
and TCP*(∞) in the second case. Our results reveal that
choosing TCP*(3) as an intermediate stack smoothens the
incremental-deployability process significantly. The ratio
between average response times is reduced to 1.2 between
corresponding TCP scenarios when TCP*(3) is applied for
the most critical Trace-II scenario; likewise, the average re-
sponse time increases by a factor of 1.4 for the TCP*(3)
stack when TCP*(∞) is introduced in the system, again
for Trace-II. We conclude that deploying the change, i.e.,
removing the exponential backoff algorithm in two steps is
feasible. Still, if the above increase in response times for
legacy TCP versions becomes a concern, this can be ad-
dressed by applying a larger number of incremental steps.

7. DISCUSSION AND RELATED WORK
TCP behavior with many flows. Morris [35] and Qiu

et al. [38] explored the performance of TCP in scenarios
when the number of active flows exceed the bandwidth-delay
product. While our findings here are orthogonal to theirs,
our work differs in the sense that we fundamentally chal-
lenge the need for exponential backoff in the TCP protocol,
while they evaluate TCP’s performance in scenarios with a
large number of flows. Such evaluations are performed in
moderate bandwidth-delay-product environments and with
long-lived TCP flows. As we showed in this paper, skewed
flow-size distributions and dynamic flow arrivals shed new
light on system’s performance.

DDoS defense by offense. Our work closely relates to
the work of Walfish et al. [42], which addresses the prob-
lem of application-level distributed denial-of-service attacks
against Internet servers. The authors propose a victimized
server to encourage all clients to automatically send higher

volumes of traffic, thus out-crowding bad clients and cap-
turing a much larger fraction of the server’s resources. The
authors show that as long as the endpoints uphold the prin-
ciple of request conservation, i.e., the client retries only in
response to a message from the server, and the server sends
the message when it receives a request, the server resources
will be fully utilized across all clients, despite a high re-
quest rate. We show that a similar idea is applicable to the
network bandwidth. As long as clients uphold the implicit
packet conservation principle (Section 2.3), the bandwidth
resources will be fully utilized and the end-to-end perfor-
mance will not suffer, despite potentially heavy congestion.

Decongestion control. Our work closely relates to the
recent work of Raghavan and Snoeron [39]. Placing their ef-
forts in the context of the future Internet design, the authors
argue that a protocol that relies upon greedy, high-speed
transmission of data, endpoint erasure data coding, and fair
packet dropping at routes, has the potential to outperform
current TCP performance. The commonality between de-
congestion control and our work lies in promoting a more
aggressive endpoint behavior, much more aggressive in the
decongestion control scenario, and bounded by the implicit
conservation principle in our case. The key difference is that
we do not place our efforts in the context of the future Inter-
net design, but rather attempt to improve Internet’s perfor-
mance “right here, right now.” Unlike decongestion control,
our approach can be incrementally deployed at endpoints,
and it requires no additional functionality at routers.

8. CONCLUSIONS
In this paper, we developed an improved understanding

of the TCP’s exponential backoff algorithm, a fundamental
piece of congestion control as it has been instantiated in the
Internet over the last 20 years. Our key contribution is not in
bringing massive performance improvements, but rather in
radically increasing our knowledge about congestion control
fundamentals. In particular, (i) we made the case for remov-
ing the exponential backoff algorithm from TCP and opened
the doors for re-evaluating other well-accepted pieces of this
congestion control algorithm. (ii) We introduced the im-
plicit packet conservation principle and showed that end-to-
end performance can only improve as long as the endpoints
uphold the principle. (iii) We demonstrated that this re-
sult holds for all explored TCP variants, bottleneck rates,
queuing disciplines, and traffic distributions, with gains be-
ing particularly emphasized for distributions dominated by
short flows. (iv) We showed that the proposed backoff-less
TCP approach can improve end-to-end performance even in
multiple bottleneck scenarios, and increase network utiliza-
tion for general network topologies. (v) Finally, we showed
that abandoning TCP’s exponential backoff algorithm is an
incrementally-deployable two-step task.

ACM SIGCOMM Computer Communication Review 27 Volume 38, Number 5, October 2008

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response time (sec)

TCP, 90%
50%
10%

TCP*(∞), 10%
50%
90%

(a) Trace-I

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response time (sec)

TCP, 90%
50%
10%

TCP*(∞), 10%
50%
90%

(b) Trace-II

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100

C
C

D
F

Response time (sec)

TCP, 90%
50%
10%

TCP*(∞), 10%
50%
90%

(c) Trace-III

Figure 12: Incremental deployability

Acknowledgements
We would like to thank Mark Allman, Craig Partridge, and
Sally Floyd for their critical comments about this paper.

9. REFERENCES
[1] Packmime: Statistical modeling of connection request

variables. http:
//stat.bell-labs.com/InternetTraffic/packmime.html.

[2] Transmission control protocol. RFC 793.
[3] A. Akella, S. Seshan, and A. Shaikh. An Empirical

Evaluation of Wide-Area Internet Bottlenecks. In ACM
SIGMETRICS ’03.

[4] D. Aldous. Ultimate instability of exponential back-off
protocol for acknowledgement based transmission control of
random aceess communication channels. IEEE
Transactions of Information Theory, IT-33(2), Mar. 1987.

[5] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s
initial window. RFC 3390.

[6] M. Allman and V. Paxson. On estimating end-to-end
network path properties. In ACM SIGCOMM ’99.

[7] T. Anderson, A. Collins, A. Krishnamurthy, and
J. Zahorjan. PCP: Efficient endpoint congestion control. In
ACM NSDI ’06.

[8] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In ACM SIGCOMM ’04.

[9] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and
H. Zhang. Endpoint admission control: Architectural issues
and performance. In ACM SIGCOMM ’00.

[10] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith, and
M. Weigle. Stochastic models for generating synthetic
HTTP source traffic. In IEEE INFOCOM ’04.

[11] L. Deng and A. Kuzmanovic. Pong: Diagnosing
spatio-temporal Internet congestion properties. In ACM
SIGMETRICS ’07.

[12] M. Dischinger, A. Haeberlen, K. Gummadi, and S. Saroiu.
Characterizing residential broadband networks. In ACM
IMC ’07.

[13] N. Dukkipati and N. McKeown. Why flow-completion time
is the right metric for congestion control. ACM CCR,
36(1):59–62, 2006.

[14] S. Floyd. Highspeed TCP for large congestion windows,
Dec. 2003. Internet RFC 3649.

[15] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-start
for TCP and IP, Oct. 2007. Internet-draft.

[16] S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM ToN,
7(4):458–472, Aug. 1999.

[17] L. Goldberg, M. Jerrum, S. Kannan, and M. Paterson. A
bound on the capacity of backoff and
acknowledgement-based protocol. TR 365, Dept. of
Computer Science, University of Warwick, UK, Jan. 2000.

[18] L. Guo and I. Matta. The war between mice and elephants.
In IEEE ICNP ’01.

[19] N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. Locating
Internet bottlenecks: Algorithms, measurements, and
implications. In ACM SIGCOMM ’04.

[20] V. Jacobson. Congestion avoidance and control. ACM
CCR, 18(4):314–329, August 1988.

[21] C. Jin, D. Wei, and S. Low. FAST TCP: Motivation,
architecture, algorithms, performance. In IEEE INFOCOM
’04.

[22] T. Karagiannis, A. Broido, N. Brownlee, k. claffy, and
M. Faloutsos. Is p2p dying or just hiding? In IEEE
GLOBECOM ’04.

[23] P. Karn and C. Partridge. Improving round-trip time
estimates in reliable transport protocols. ACM ToCS,
9(4):364–373, Nov. 1991.

[24] F. Kelly. Stochastic models of computer comminication
systems. Journal of Royal Statistical Society, B
47(3):379–395, 1985.

[25] T. Kelly. Scalable TCP: Improving performance in
highspeed wide area networks. ACM CCR, 32(2), Apr.
2003.

[26] T. Kelly, S. Floyd, and S. Shenker. Patterns of congestion
collapse, 2003.
http://www.icir.org/floyd/papers/patterns.pdf.

[27] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts.
Evaluating the number of active flows in a scheduler
realizing fair statistical bandwidth sharing. In ACM
SIGMETRICS ’05.

[28] A. Kuzmanovic. The power of explicit congestion
notification. In ACM SIGCOMM ’05.

[29] L. Le, J. Aikat, K. Jeffay, and F. Smith. The effects of
active queue management on Web performance. In ACM
SIGCOMM ’03.

[30] L. Li, D. Alderson, W. Willinger, and J. Doyle. A
first-principles approach to understanding the Internet’s
router-level topology. In ACM SIGCOMM ’04.

[31] D. Liu, M. Allman, S. Jin, and L. Wang. Congestion
control without a startup phase. In PFLDnet ’07.

[32] P. Mahadevan, C. Hubble, D. Krioukov, B. Huffaker, and
A. Vahdat. Orbis: Rescaling Degree Correlations to
Generate Annotated Internet Topologies. In ACM
SIGCOMM ’07.

[33] A. Medina, M. Allman, and S. Floyd. Measuring the
evolution of transport protocols in the internet. ACM CCR,
35(2):37–52, 2005.

[34] R. Metcalfe and D. Boggs. Ethernet: Distributed packet
switching for local computer networks. ACM
Communication, 19(7):395–404, July 1976.

[35] R. Morris. TCP behavior with many flows. In IEEE ICNP
’97.

[36] J. Nagle. Congestion control in IP/TCP internetworks.
ACM CCR, 14(4):11–17, 1984.

[37] V. Paxson and M. Allman. Computing TCP’s
retransmission timer. RFC 2988.

[38] L. Qiu, Y. Zhang, and S. Keshav. On individual and
aggregate TCP performance. In IEEE ICNP ’99.

[39] B. Raghavan and A. Snoeron. Decongestion control. In
ACM HotNets-V ’06.

[40] S. Rewaskar, J. Kaur, and F. D. Smith. A performance
study of loss detection/recovery in real-world TCP
implementations. In IEEE ICNP ’07.

[41] P. Sarolahti and M. Kojo. Forward RTO-Recovery
(F-RTO): An Algorithm for Detecting Spurious
Retransmission Timeouts with TCP and the Stream
Control Transmission Protocol (SCTP), Aug. 2005.
Internet RFC 4138.

[42] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and
S. Shenker. DDoS defense by offense. In ACM SIGCOMM
’06.

ACM SIGCOMM Computer Communication Review 28 Volume 38, Number 5, October 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

