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ABSTRACT
Currently, the attempt to choose the “best" content replica
server for a client is carried out solely by CDNs. While CDNs
have a decent view of load distribution and content place-
ment, they receive little input from the clients themselves.
We propose a hybrid solution, subnet assimilation, where the
client participates in the server selection process while still
leaving the final say to the CDN. Subnet assimilation allows
clients to declare their own “network location," different from
the actual one, which in turn drives a CDN towards mak-
ing better decisions. To demonstrate, we introduce Drongo,
a client-side system, readily deployable on existing clients
without any changes to the CDNs, that employs subnet as-
similation to dramatically improve replica server selection.
We implemented and extensively evaluated Drongo on a



set of 429 clients spread across 177 countries and 6 major
CDNs. We show that Drongo affects 69.93% of all clients,
prompting better CDN replica choices which reduce the la-
tency of affected requests by up to an order of magnitude
and by 24.89% on average across six major providers, with
Google’s performance improving by 50% in the median case.
Our results indicate that client participation holds great op-
portunities for the advancement of CDN performance.



CCS CONCEPTS
• Networks → Application layer protocols; Naming and ad-
dressing; Location based services;
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1 INTRODUCTION
Latency between clients and servers on the Internet is a
key measure that fundamentally affects users’ perception of
the Internet speed. It directly impacts end-to-end page load
time, which in turn affects user experience and business rev-
enues [50]. Amazon has reported that every 100 ms increase
in page load time costs them 1% in sales [18]. Client-server la-
tency is essential for other killer apps such as web search [9]
and video streaming [37]. Reduced latency directly improves
throughput, which has been shown both theoretically [43]
and empirically [47]. It is thus no exaggeration to say that
literally every single millisecond of reduced client-server
latency on the Internet counts.
Significant efforts have been invested in an attempt to



move servers closer to the clients via Content Distribution
Networks (CDNs), which distribute content via hundreds
of thousands of servers worldwide [1, 11]. Additionally, to
minimize the client-server latency, such systems perform
extensive network and server measurements and use them to
redirect clients to different servers. While this significantly
improves performance, it is no secret that CDNs do not al-
ways direct clients to the CDN replica that is closest in the
network sense [47]. This happens for several reasons: (i)
CDNs’ mapping of the Internet isn’t perfect, particularly for
regions that are more distant from the core CDN infrastruc-
ture [19, 38, 47], (ii) CDNs aim to balance the traffic load or
deploy other policies, which may conflict with minimizing
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the client-server latency, and (iii) comprehensively measur-
ing the Internet to capture latency variations between CDN
replicas and the rest of the IP space over short timescales is
challenging.



In this paper, we demonstrate that client-server latency is
far from optimal. We embrace a hybrid approach that enables
clients to join CDNs in addressing the above challenges as
follows: (i) Clients help with CDN replica mapping; indeed,
it is far easier for a single client to find a subnet that is con-
sistently suggested well-performing replicas, with respect
to the client, than for a CDN to evaluate the entire IP space.
(ii) Our approach respects load balancing and other CDN
policies: CDNs still make all the replica selection decisions
and clients respect those decisions. (iii) CDNs’ measurement
burden is shared with clients who measure CDNs and help
them come upwith better, more fine-grained, decisions. Most
importantly, all of this is readily available today, with only
minor client-side upgrades, without any changes to CDNs
or to existing protocols, and without the need for broad
adoption of our system.
We devise a simple heuristic and a lightweight method



that helps clients realize when they are not served by a
nearby CDN replica. After obtaining a replica selection from
a CDN, the client traceroutes the path towards that replica,
and explores if the upstream hops on the path are potentially
directed to different replicas. This is done by utilizing EDNS0
client subnet extension (ECS) [32] to issue DNS requests
on behalf of hops. If hops are indeed directed to different
replicas, then it is possible that the latency between the
client and a replica recommended to a hop is smaller than
the latency between the client and the replica recommended
to the client.1 We refer to such a scenario as a latency valley.
Our goal is not to find lower-latency replicas – we aim to find
subnets to which lower-latency replicas, relative to the client,
are consistently suggested. By ultimately leaving the decision
and access systems entirely up to the CDN, we ensure that
any additional policies a CDN may have (such as network
access restrictions and load balancing) are unaffected.
By conducting experiments on six major content pro-



viders, we show that latency valleys are common phenomena,
and demonstrate that they systematically speed up object
downloads. In particular, latency valleys can be found across
all the CDNs we have tested: 26%–76% of routes towards
CDN replicas discover at least one latency valley. Our key
practical contribution lies in showing that valley-prone sub-
nets that lead to these lower-latency replicas are easily found
from the client, are simple to identify, incur negligible mea-
surement overhead, and are persistently valley-prone over



1 We emphasize that all of our measurements are performed between the
client and a CDN replica; no measurements are performed directly from
upstream nodes.



timescales of days. Most importantly, we show that we can
effectively leverage latency valleys via valley-prone subnets
with subnet assimilation, an approach in which clients use
ECS to improve CDN replica-mapping.



We implement and evaluate Drongo, a client-side system
that leverages upstream subnets to consistently receive lower-
latency replicas than what the client would ordinarily have
been recommended. Our measurements show that Drongo
can improve requests’ latency by up to an order of mag-
nitude. Moreover, we evaluate the optimal parameters to
capture these latency gains, and find that 5 measurements
on the timescale of days are the only requirement to maxi-
mize Drongo’s gains. Using the optimal parameters, Drongo
affects the replica selection of 69.93% of clients, and affected
requests experience a 24.89% reduction in latency in the me-
dian case. Moreover, Drongo’s significant impact on these
requests translates into an overall improvement in client-
perceived aggregate CDN performance.



We make the following contributions:
• We introduce the first approach to enable clients to
actively measure CDNs and effectively improve their
selection decisions, while requiring no changes to the
CDNs, and while respecting CDNs’ policies.



• We extensively analyze client-side CDNmeasurements
and determine critical time-scales and key parameters
that empower clients to leverage their advanced views
of CDNs.



• We introduce Drongo, a client-side CDN measurement
crowd-sourcing system and demonstrate its ability to
substantially improve CDNs’ performance in the wild.



2 PREMISE
2.1 Background
CDNs attempt to improve web and streaming performance
by delivering content to end users from multiple, geographi-
cally distributed servers typically located at the edge of the
network [1, 4, 11, 21]. Since most major CDNs have replicas
in ISP points-of-presence, clients’ requests can be dynami-
cally forwarded to close-by CDN servers. Historically, one of
the key reasons for systematic CDN imperfections was the
distance between clients and their local DNS (LDNS) servers
[23, 35, 39, 45]. This issue was further dramatically amplified
in recent years (see [28]) with the proliferation of public DNS
resolvers, e.g., [5, 10, 12, 15, 20, 22].
In an attempt to remedy poor server selection resulting



from LDNS servers, there has been a recent push, spear-
headed by public DNS providers, to adopt the EDNS0 client
subnet option (ECS) [42]. With ECS, the client’s IP address
(truncated to a /24 or /20 subnet for privacy) is passed through
the recursive steps of DNS resolution as opposed to passing
the LDNS server’s address.
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However, even when the actual client’s network location
is accurate, numerous factors prevent CDNs from providing
optimal CDN replica selection [38]. First, creating accurate
network mapping for the Internet is a non-trivial task given
that routing can inflate both end-to-end latency and latency
variance, e.g., [44]. As a result, CDN selections could be heav-
ily under-performing (see [38] for a thorough analysis). The
underlying causes are diverse, including lack of peering,
routing misconfigurations, side-effects of traffic engineering,
and systematic diversions from destination-based forward-
ing [33]. Second, CDN measurements are necessarily coarse
grained – measuring each and every client (each individual
IP address) from a CDN is impossible for scalability reasons
and because the actual source IP address isn’t available due
to ECS truncation. On top of this, CDNs often have other
optimization goals, e.g., load balancing, which can divert
clients further away from close-by replicas.



Our key idea is to enable clients to join CDNs in addressing
the above challenges. In particular, it is far easier for a single
client to find a subnet that is consistently recommended well-
performing replicas than it is for a CDN to evaluate the entire
IP space. Not only does the client-supported approach scale,
it enables far better CDN replica selection decisions. In sum-
mary, in our approach, (i) clients conduct measurements to
find other subnets that lead to potentially lower-latency CDN
replicas, (ii) they evaluate the performance of such subnets
and associated replicas via light, infrequent measurements
over long time-scales, and (iii) finally, they utilize these sub-
nets to drive CDNs’ decisions towards lower-latency replicas.



2.2 Respecting CDN Policies and
Incentives for Adoption



As stated above, CDNs can sometimes deploy policies that can
prevent them from serving clients nearby replicas. In princi-
pal, there are two such scenarios. First, on longer timescales,
a CDN may have a business logic where it wants a certain
IP subnet, and no one else, to be able to use a certain CDN
cluster or server. For example, an ISP may allow a CDN to
deploy a CDN server inside its network, but on the condi-
tion that only IP addresses owned by the ISP may benefit
from that server. Our approach is completely compatible
with such arrangements because such a policy can be easily
enforced via access network-level firewalls, which forces
our system to avoid such CDN replicas. Second, on shorter
timescales, CDNs may deploy load-balancing policies that
distribute the traffic load such that clients are not always
directed to the closest replica server. Our system respects
such load-balancing policies because it always selects the
first CDN replica from a recommended set, i.e., does not
opportunistically select the “best" replica from the set.



Clients have clear incentives to adopt our approach since it
directly improves their performance. While it is certainly the
case that CDNs share the same incentives for our system’s
adoption, this is evenmore true with the proliferation ofCDN
brokers, e.g., [8]. CDN brokers actively measure performance
to multiple CDNs and they can redirect a client to a different
CDN on the fly in case the QoE isn’t satisfactory [40]. It has
been demonstrated that this particularly hurts large CDNs,
which often have better replicas in the vicinity of the clients,
which the broker is unfortunately unaware of; this leads to
the loss of clients and revenues for CDNs [40]. Thus, utiliz-
ing clients’ help in selecting the best CDN replicas in their
vicinity directly benefits CDNs.



We thus argue that an unrestricted adoption of the ECS
option, which is the key mechanism that enables the subnet
assimilation used by our system (Section 2.3), is in the best
interest of every CDN. In particular, the unrestricted ECS
option enables a client to use the ECS field to specify a subnet
different from the client’s to change the way a CDNmaps the
client to its replicas. While most CDNs do enable ECS in its
unrestricted form, e.g., Google and EdgeCast among others,
Akamai does so only via OpenDNS [16] and GoogleDNS [13]
public DNS services, using the actual IP address of the re-
quester. As such, Akamai’s CDN is currently not directly
usable by our system, as our system requires sending ECS
requests on behalf of hop IPs. One possible reason for such a
restriction imposed by Akamai might be the ability of third-
parties to accurately reverse-engineer a CDN’s scale and
coverage without significant infrastructural resources, e.g.,
[26, 46]. However, that even without unrestricted ECS, Aka-
mai’s network has been quite comprehensively analyzed in
the past, e.g., [36, 47, 48]. One of our main contributions lies
in showing that the benefits achievable by letting clients
help improve CDNs’ decisions far outweigh the potential
drawbacks of unrestricted ECS adoption.



2.3 Subnet Assimilation
Subnet assimilation is the deliberate use of the ECS field to
specify a subnet different from the client’s to change the
way a CDN maps the client to its replicas. In this paper we
show that the assimilation of subnets found along the path
between the client and its “default" replica may allow the
client to “reposition" itself in the CDN’s mapping scheme,
such that the client will consistently receive lower-latency
replica recommendations from the CDN. Subnet assimilation
is a key mechanism used both to detect and utilize lower-
latency CDN replicas.



Latency valley. Figure 1 illustrates the key heuristic that
helps clients realize when they are not optimally served by a
CDN. Consider a client C , redirected to a CDN server S1, as
illustrated in the figure. If a hop on the path is not redirected
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Figure 1: Illustration of a latency valley.



to the same server S1, then it is possible that a lower-latency
replica, e.g., S2, has been observed, such that the latency
between C and S2 is smaller than the latency between C and
S1. We refer to such a scenario as a latency valley.



For the remainder of this paper, we refer to the set of
replicas suggested to the client’s actual subnet as the client
replica set (CR-set), and a replica from the CR-set as a client
replica (CR). We refer to the routers along the presumed
path from the client to any given CR as hops. Next, we refer
to the set of replicas suggested to a hop, discoverable via
subnet assimilation, as a hop replica set (HR-set). We denote
a measurement from the client to a CR as a client replica
measurement (CRM). Likewise, we denote a replica from
the HR-set as a hop replica (HR) and a measurement to that
replica from the client as a hop replica measurement (HRM).
Finally, we define a latency valley to be any occurrence of the
following inequality: HRM/CRM < vt ≤ 1. We take vt = 1
until we optimize our parameter selection in Section 5.1.
It is imperative to note that our goal is not to find lower-



latency replicas, perhaps included in an HR-set. Instead, we
aim to find subnets to which lower-latency replicas are con-
sistently suggested; in other words, subnets that are prone
to valley-occurrences in replica sets obtained at any time.



2.4 Identifying Latency Valleys
In order to identify latency valleys, we first identify the
hops along the path, which we achieve using traceroute. We
are using the upstream path for simplicity; the downstream



path, which may be assymetric, could yield different results,
but would require more overhead or control of the CDN
for execution. We then identify the corresponding HR-set
for each hop, using ECS queries which assimilate the hops’
subnets. Lastly, we must compare the HRMs to the CRM .
Unless otherwise noted, we calculate HRMs and CRMs us-
ing ping RTTs (obtained by averaging the results of three
back-to-back pings), and we refer to these values as laten-
cies. Throughout this paper, latency units are milliseconds.
For simplicity, we refer to the ratio HRM/CRM , used in our
latency valley definition, as the latency ratio. A latency ratio
below 1 indicates that the HR has outperformed the CR, a
latency ratio above one indicates the CR has outperformed
the HR, and finally, a latency ratio equal to 1 indicates that
the CR and HR performed equally (which, in general, only
happens when CR and HR refer to the same replica).



The above operation cannot be executed on-the-fly, as the
time consumed by this process will outweigh any latency
gains achieved. Moreover, multiple measurements might be
required. Fortunately, our experiments in Section 3 show
that a small number of measurements per hop — less than
10 — are required, and that the measurement results remain
applicable on timescales of days. Because we can rely onmea-
surements obtained in idle time, real-time measurements are
not necessary for our system. Thus, our proposed technique
will use past measurements to predictively choose a good
subnet for future assimilation.



3 EXPLORING VALLEYS
In this section we establish that latency valleys are common
phenomena in the wild, and that they offer substantial perfor-
mance gains. In addition, we lay the groundwork for finding
valleys, a prerequisite to harnessing their performance gains
via subnet assimilation.



3.1 Testing for Valleys
We perform our preliminary tests using PlanetLab nodes,
a platform which offers a large number of vantage points
from around the globe, primarily deployed in academic in-
stitutions [31]. We further investigate latency valleys as ex-
perienced by a large variety of clients using the RIPE Atlas
platform [17], as detailed in Section 5. While PlanetLab lacks
the scale and variety offered by RIPE Atlas, the flexibility
and freedom it provides made it a prime choice for our pre-
liminary analysis. Our PlanetLab experiments use 95 nodes
spread across 51 test locations, andwe obtain the IP addresses
of hops between nodes and CDN replicas via traceroute.
While latency valleys are a common occurrence, as we



demonstrate below, many hops between the clients and the
provider’s servers can be discarded when searching for val-
leys. One category of such hops is of those which reside
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within the same local network as the client, which will be
suggested the same replicas as the client. Another disposable
category — hops with private IP addresses — will not be
recognized by the EDNS server and will yield generic replica
choices, regardless of the hops’ locations. To ensure that a
hop is indeed usable, a hop must (i) belong to a different /16
subnet than the client, (ii) have a different domain than the
client, and (iii) belong to a different ASN than the client. We
only filter hops that fail these conditions at the beginning of
the route; once a hop is observed that meets the above three
constraints, we stop filtering for the remainder of the route.



3.1.1 Provider Selection. While ECS is gaining momen-
tum among CDNs, as it allows them to better estimate their
clients’ location, it is important to note that ECS was only
recently deployed, and its implementation varies among the
different providers. “A Faster Internet," an initiative headed
by Google and OpenDNS, is drawing together a growing
number of large CDNs and content providers to adopt and
promote the adoption of ECS [42]. In order to attain a set of
CDNs for our tests, we have selected those providers which
implement an unrestricted form of ECS, as described in Sec-
tion 2.2.
In order to best select the CDNs for our tests we scraped



URLs from over 3000 sites arbitrarily selected from the Alexa
Top 1M list [2]. Then, we reduced our set of URLs to those
that ended in a known file type, in order to ensure our abil-
ity to perform download tests on the selected URLs. When
applicable, we resolved CNAME domains to their respective
CDN domains. We then performed multiple DNS queries for
each URL to determine if unrestricted ECS is implemented.
From the remaining URLs we have extracted the 6 CDN
domains which have appeared most frequently, along with
their respective URLs.



Before we can begin seeking subnets with better mapping-
groups, it is first necessary to prove that subnets with dif-
ferent mapping-groups exist and are easy to find. We define
usable route length as the number of hops along the path that
fulfill the above filtering. Next, we define divergence as the
fraction of usable hops along the path which were recom-
mended at least one replica that was not recommended to
the client.
Figure 2 depicts usable route length and divergence for



different CDNs. The figure shows that, for example, when re-
questing replicas from Google, each client had an average us-
able route length of 7.8 and the divergence is approximately
92%. It is evident from Figure 2 that hops are indeed sug-
gested different replicas than their client. As we encounter a
wider variety of recommendations, we increase our number
of opportunities to find latency valleys. The high divergence
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Figure 2: Average divergence and average usable route
length per CDN



shown in Figure 2 indicates that other, and possibly lower-
latency, replicas can be mapped to clients if they were to
assimilate their hops’ IP addresses.



For the remainder of this paper, we use the following set of
providers: Google, Amazon CloudFront, Alibaba, ChinaNet-
Center, CDNetworks, and CubeCDN, a set which is both
diverse and comprehensive. Google’s CDN infrastructure
is massive and dispersed: as of 2013, around 30000 CDN IP
addresses spread across over 700 ASes were observable in
one day [25]. As of this writing, Amazon CloudFront offered
over 50 points-of-presence, spread throughout the world
[6]. CDNetworks offers over 200 points-of-presence, also
globally dispersed, and heavily employing anycast for server
selection. Alibaba and ChinaNetCenter offer over 500 CDN
node locations, each, within China where they are centered,
in addition to a growing number of service locations outside
of China, [3, 30]. Finally, CubeCDN is a smaller CDN with
locations spread primarily across Turkey [14].



3.1.2 Test Execution. In order to assert the existence of
latency valleys in the wild, we have executed a series of trials
using the aforementioned URLs, and the PlanetLab nodes as
clients. Each trial consists of the following steps:



(1) We randomly select a URL
(2) Client retrieves CR-set for the selected URL’s domain
(3) For each CR, client uses traceroute to identify hops
(4) Using subnet assimilation, client retrieves the HR-set



for each hop
(5) Client measures CRMs for every CR in its CR-set and



HRMs for every HR it has seen (across all HR-sets
obtained in that trial)
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Figure 3: Scatter plot of HRMs and minimum CRMs.
The area below the diagonal is the valley region.



We have performed a series of 45 trials per PlanetLab
node, executed between one and two hours apart. For the
remainder of this Section, we refer to this dataset.



3.2 Valley Prevalence
In order to establish the prevalence and significance of la-
tency valleys, we now compare HRMs to their respective
CRMs. It is important to note that it is possible that a client
has multipleCRs, and hence, multipleCRMs, and in practice
a client can only choose one replica. Therefore, we compare
all HRMs to the minimum CRM obtained in their trial, thus
establishing a lower bound for our expected performance
gain, and allowing us to easily assert any gains or losses
provided by the alternative replica choices (the HRs).
With our PlanetLab dataset, we compared each HRM to



the minimum CRM , i.e, the best client replica, obtained in
the same respective trial. Figure 3 shows the results of this
assessment. We plot HRM on the y axis and minimum CRM
on the x axis, thus creating a visual representation of the
latency ratio. We distinguish between the CDNs using differ-
ent colors. To better explain the results we draw the equality
line where HRM = minimum CRM . Every data point along
this line represents a hop’s subnet which is being suggested
a replica that performs on a par with the replicas suggested



to the client’s subnet. More importantly, every data point
below the equality line represents a valley occurrence, as the
alternative replica’s HRM is smaller than the CRM . The per-
centage of valleys, by provider, ranges from 14.02% (Cloud-
Front) to 38.58% (CubeCDN), with an average of 22% across
all providers. Table 1 shows the results, i.e., Column 2 (%
Valleys Overall) lists these percentages for each CDN.



Now that we have established that valleys exist, we wish
to determine where we can expect to find valleys. We con-
tinue using the minimum CRM from each trial, for reasons
described above. However, in order to better reflect prac-
tical scenarios where only one of a given set of replicas is
used, we now also begin choosing an individual replica from
an HR-set. Instead of choosing the minimum HRM for a
given hop, we conservatively choose the median. Each hop’s
chosen HRM is the median of its HR-set for that trial. We
continue this pattern (choosing the client’s best CRM from
the trial and a hop’s median HRM) for the remainder of our
PlanetLab data analysis. Our PlanetLab data thus represents
a lower bound on valleys and their performance implications;
we compare the median performance of our proposed proce-
dure to the absolute best the existing methods have to offer.
In Section 5, using our RIPE Atlas testbed, we remove this
constraint to demonstrate the real-world performance of our
system.
We further wish to consider how common valleys are



within a given route from the client to the provider. Column 3
(Average % of Valleys per Route) of Table 1 shows, given some
route in one trial, the average percent of usable hops that
incur valleys.We see for Alibaba that, on average, over a third
of the usable hops in a given route are likely to incur valleys,
and for CDNetworks, nearly a fourth of the route. Meanwhile,
for CloudFront, we see that on average, valleys occur for only
a small portion of hops in a given route. Column 4 (% Routes
with a Valley) details the percentage of all observed routes
that contained at least one valley in the trial in which they
were observed. For Alibaba and CDNetworks, around 75%
of the observed routes contain valleys, while more than 50%
for Google.



3.2.1 Do Valleys Persist? Next we assess whether subnets
are persistently valley-prone. For some number of trials,
how often can the client expect a valley to occur from some
particular hop? To answer this, we need to be able to describe
how frequently valleys occurred for some hop subnet in a
given set of trials.



Valley frequency We define a new simple metric, the
valley frequency, as follows: if we look at a hop-client pair
across a set of N trials, and v trials are valleys, the valley
frequency, vf , is



vf =
v



N
.
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Table 1: Detailed findings for each provider, based on PlanetLab data



Provider % Valley
Overall



Avg %Valleys
per Route



% Routes
with Valley



% Hop-Client Pairs
w/ Valley Freq. >0.5



Google 20.24% 16.41% 53.30% 10.98%
Amazon CloudFront 14.02% 8.72% 25.82% 10.00%
Alibaba 33.68% 35.94% 75.83% 30.97%
CDNetworks 15.61% 24.41% 73.08% 14.09%
ChinaNetCenter 27.42% 14.26% 38.10% 16.74%
CubeCDN 38.58% 17.95% 25.49% 26.32%
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(b) total download time
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(c) total post-caching download time



Figure 4: CDFs of clients by valley frequency. In 4a, the subnet-response measurements are ping times averaged
from bursts of 3 back to back pings. In 4b, the subnet-response measurements are total download times on first
attempts, while in 4c the subnet-response measurements are total download times on consecutive attempts (re-
peated downloads that take place immediately after first attempt to account for the potential impact of caching).
Downloads were performed by using curl, where we set an IP as a destination and set the domain as the HOST
attribute. Measurements for 4b and 4c were performed back-to-back so that 4c reflects download times with pre-
sumably primed caches.



A frequency of 0.5 would imply that in half the trials per-
formed, a valley was found in said hop. For each provider,
we plot the valley frequency for each hop-client pair across
our PlanetLab dataset.



Figure 4 shows the results. Note that Figures 4b and 4c use
the total download time and the post-caching total download
time, respectively, for the subnet measurements as opposed
to pings.2 We further note that their results closely follow those
obtained using pings, as in Figure 4a. For simplicity, and due
to download limitations of our RIPE testbed, we revert to
only using pings for the remainder of this paper.
Figure 4 shows that approximately 5%-20% of hop-client



pairs resulted in valleys 100% of the time (see y-axis in the
figures for x=1.0) for every trial across the entire three day
test period. Such hops will be easy to find given a large
enough dataset. However, of more interest to us are hop-
client pairs that inconsistently incur valleys. For example,
perhaps if valleys can be found 50% of the time for some hop-
client pair — i.e., a valley frequency of 0.5 — that hop may be
a sufficiently persistent producer of valleys for us to reliably
expect good replica choices. This would provide our system
2We fetched .png and .js files, 1kB – 1MB large, hosted at the CDNs.



with more opportunities to employ subnet assimilation and,
ideally, improve performance. Column 5 (% Hop-Client Pairs
with Valley Frequency > 0.5) of Table 1 shows the percentage
of hop-client pairs that have valley frequencies (calculated
across all 45 trials), greater than 0.5, i.e., hop-client pairs that
incurred valleys in the majority of their trials.



3.2.2 Can We Predict Valleys? While valley frequency
can tell us how often valleys occurred on a past dataset, the
metric makes no strong implications about what we can
expect to see for a future dataset. To answer this, let us con-
sider how the latency ratio changes as we increase the time
passed between the trials we compare. In addition, per our
reasoning in the vf metric, we may want to compare a set of
consecutive trials — a window — to another consecutive set
of the same size, rather than only comparing individual trials
(which is essentially comparing windows of size 1). Given a
set of trials, we take a window of size N and compare it to
all other windows of size N , including those that overlap, by
taking the difference in their latency ratios (HRM/CRM). If
we plot this against the time distance between the windows,
we can observe the trend in latency ratios as the distance in
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(a) All client-hop pairs
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(b) Valley at least once



Figure 5: In both figures, we compare the change in latency ratio between two trial windows to the distance in
time between the two windows. In figure a, we use all hop client pairs. In figure b, we restrict our set to pairs that
experience at least one valley in at least one of their 45 trials.



time between windows increases. An upward slope would
imply that the latency ratio is drifting farther apart as the
time gap increases, while a horizontal line would imply that
the change in latency ratio is not varying with time (i.e., win-
dows an hour apart are as similar to each other as windows
days apart). A jagged or wildly varying line would indicate
that future behavior is unpredictable.



Figure 5 plots the latency ratio versus distance in time for
several window sizes, ranging from 1 to 15. In these plots, we
use the windows’ median latency ratio values for compari-
son. In particular, in Figure 5a, we use our entire dataset, i.e.,
consider all hop-client pairs, independently of if they ever in-
cur latency valleys or not, and plot latency ratio differences
over time. For example, assume that for a client-hop pair
HRM = 80 ms at one measurement point, while it rises to
120 ms at another measurement point. Meanwhile, assume
thatCRM remains 100 ms at both measurement points. Thus,
the latency ratioHRM/CRM changes from 80/100 to 120/100,
i.e., from 0.8 to 1.2. The latency ratio difference is 0.4. Fig-
ure 5a shows that the latency ratio difference values both
increase and vary wildly as windows become more distant.
This shows that hop-subnet performance, overall, is likely
extremely unpredictable. We hypothesize this results from
unmapped subnets receiving generic answers, as observed
in [47]. However, subnet assimilation requires that we have
some idea of how a subnet will perform in advance.



Since valley-prone subnets are of particular interest to us,
in Figure 5b, we reduce our dataset to only include client-hop
pairs that have at least one valley occurrence across all 45 of
its trials combined. The plot’s behavior becomes dramatically
more stable after applying this simple, minor constraint. The
effects of the window size also become apparent in Figure
5b. Even with a window of size 1, the slope is very small and
the line is nearly flat; after over 50 hours, two windows are



only 10% to 20% more dissimilar than two windows a single
hour apart. For window sizes greater than 5, latency ratios
are often within 5% of each other, regardless of their distance
in time. Going from a window size of 1 to 5 shows drastic
improvement, while each following increase in window size
shows a smaller impact. The results clearly show that a client
can effectively identify valley-prone subnets and predict
valleys with a sufficiently long window size.



3.2.3 Valley Utility Analysis. Figure 6 shows the distribu-
tion of the lower bound latency ratios seen by the set of all
valley occurrences for each provider. The latency ratio rep-
resents a lower bound because we use the minimum latency
measure for replicas recommended to the client. For example,
if the minimum CRM is 100 ms and HRM is 80 ms, then the
latency ratio is 0.8. Thus, the closer to 0 the latency ratios
are, the larger the gain from subnet assimilation. The red line
shows median, the box bounds the 25th and 75th percentiles,
and the whiskers extend up to data points 1.5 times the
interquartile-range (75th percentile - 25th percentile) above
the 75th percentile and below the 25th percentile. Data points
beyond the whiskers, if they exist, are considered outliers
and not shown.
Figure 6 shows that most of the providers show oppor-



tunities for significant latency reduction. From this plot, it
appears that Amazon CloudFront and ChinaNetCenter offer
the greatest potential for gains. With the exception of CD-
Networks, we see all of our providers have 25th percentiles
near or below a latency ratio of 0.8, a 20% performance gain.
We also observe the diversity of valley “depth". For exam-
ple, we see in Figure 6 that ChinaNetCenter’s interquartile
range spans over 40% of the possible value space (between 0
and 1). With such a wide variety of gains for 50% of its val-
leys, it opens the door to being more selective. Rather than
simply chasing all valleys, we could set strict requirements,
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Figure 6: Lower bound of latency ratio of all valley oc-
currences.



tightening our definition of what’s “good enough" for subnet
assimilation, as we evaluate in Section 5.1.



CDNetworks’ performance is more tightly bounded, as its
interquartile range covers less than 10% of the value space
and sits very near to 1. This implies CDNetworks probably
offers very little opportunity for our technique to improve its
replica selection. We hypothesize that this is a byproduct of
CDNetworks anycast implementation; for replica selection,
anycast depends more on routing and network properties
than DNS and IP selection [27]. In addition, Google’s median
and 75th percentile latency ratios sit very near 1.0. However,
by being more selective as described above, we may be able
to pursue better valleys in the lower quartiles, below the
median. We could potentially improve our system’s valley-
prone hop selection by filtering out “shallow" valleys from
our consideration. We demonstrate and discuss the effects
of different levels of selectiveness in Section 5.1.



4 DRONGO SYSTEM OVERVIEW
We introduce Drongo, a client-side system that employs sub-
net assimilation to speed up CDNs. Drongo sits on top of a
client’s DNS system. In a full deployment, Drongo will be
installed as a LDNS proxy on the client machine, where it
would have easy access to the ECS option and DNS responses
it needs to perform trials. Drongo is set by the client as its
default local DNS resolver, and acts as a middle party, re-
shaping outgoing DNS messages via subnet assimilation and
storing data from incoming DNS responses. In our current
implementation, Drongo uses Google’s public DNS service
at 8.8.8.8 to complete DNS queries.
Upon reception of an outgoing query from the client,



Drongo must decide whether to use the client’s own subnet
or to perform subnet assimilation with some known, alterna-
tive subnet. If Drongo has sufficient data for that subnet in
combination with that domain, it makes a decision whether
or not to use that subnet for the name resolution. If Drongo
lacks sufficient data, it issues an ordinary query (using the
client’s own subnet for ECS).



4.1 Window Size
We now face the question: What is a sufficient amount of
data needed by Drongo to ensure quality subnet assimila-
tion decisions? We choose to measure the data “quantity"
by the number of trials for some subnet, where the subnet
is obtained via traceroutes performed during times when
the client’s network was idle. A sufficient quantity must be
enough trials to fill some predetermined window size. As we
observed in Section 3.2.1, the marginal benefit of increasing
the window size decreases with each additional trial. To keep
storage needs low, while also obtaining most of the benefit
of a larger window, we set Drongo’s window size at 5.



4.2 Data Collection
Drongo must execute trials, defined in Section 3.1.2, in order
to fill its window and collect sufficient data. As demonstrated
in Figure 5b, when these trials occur is of little to no signifi-
cance. In our experiments, we perform our trials at randomly
sampled intervals; our trial spacing varies from minutes to
days, with a tendency toward being near an hour apart. This
sporadic spacing parallels the variety of timings we expect to
happen on a real client: the client may be online at random,
unpredictable times, for unpredictable lengths of time.



4.3 Decision Making
Here we detail Drongo’s logic, assuming it has sufficient data
(a full window) with which to make a decision about a partic-
ular subnet. For some domain, Drongo must decide whether
a subnet is sufficiently valley-prone for subnet assimilation.
If so, Drongo will use that subnet for the DNS query; if not,
Drongo will use the client’s own subnet. From Figure 5b, we
know we can anticipate that future behavior will resemble
what Drongo sees in its current window if Drongo has seen
at least one valley occurrence for the domain of interest from
the subnet under consideration. However, in Figure 6, we
see that many valleys offer negligible performance gains,
which might not outweigh the performance risk imposed
by subnet assimilation. To avoid these potentially high risk
hops, Drongo may benefit from a more selective system that
requires a high valley frequency in the training window to
allow subnet assimilation. We explore the effects of changing
the vf parameter in Section 5.



It is possible that for a single domain, multiple hop subnets
may qualify as sufficiently valley-prone for subnet assimi-
lation. When this occurs, Drongo must attempt to choose
the best performing from the set of the qualified hops. To
do this, Drongo selects the hop subnet with the highest val-
ley frequency in its training window; in the event of a tie,
Drongo chooses randomly.
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Figure 7: Average latency ratio of overall system as we
vary vf and vt



5 DRONGO EVALUATION
Here, we evaluate Drongo’s ability to intelligently choose
well-mapped hop subnets for subnet assimilation, and the
performance gains imposed on clients where subnet assimi-
lation is applied.
Using the RIPE Atlas platform [17], we collect a trace of



429 probes spread across 177 countries for 1 month. In our
experiments, we use the first portion of a client’s trials as a
training window. Following the completion of the training
window, we use the remaining trials to test Drongo’s ability
to select good hops for real time subnet assimilation. Each
client performed 10 trials per provider: trials 0 through 4
to form its training window, and trials 5 through 9 to test
the quality of Drongo’s decisions. In our evaluation, Drongo
always selects the first CR from a CR-set and the first HR
from a HR-set, mirroring real world client behavior — no
real-time on-the-fly measurements are conducted, and all
decisions are based on the existing window.



5.1 Parameter Selection
Figure 7 shows the effects of Drongo on our entire RIPE
trace’s average latency ratio, i.e., we consider all requests
generated by clients, including those that aren’t affected by
Drongo. The figure plots average latency ratio (shown on
the y axis) as a function of the valley threshold, vt , shown
on the x axis. The valley threshold, introduced in Section 2.3,
determines maximum latency ratio a hop-client pair must
have to classify as a valley occurrence. For example, when
the threshold equals 1.0, all latency valleys are considered;
on the other hand, when vt is 0.6, Drongo triggers client
assimilation only for latency valleys that have promise to
improve performance by more than 40%, i.e., latency ratio
smaller than 0.6. The figure shows 5 curves, each represent-
ing a different valley frequency parameter, varied between
0.2 and 1.0.



Figure 7 shows the average results, across all tested clients.
We make several insights. If the valley frequency is small,



0.2 0.4 0.6 0.8 1.0
valley threshold



0.5



1.0



1.5



2.0



2.5



3.0



3.5



la
te



nc
y



ra
tio



vf≥0.2 vf≥0.4 vf≥0.6 vf≥0.8 vf≥1.0



Figure 8: Average latency ratio of cases where subnet
assimilation was performed



e.g., 0.2, Drongo will unselectively trigger subnet assimila-
tion for all valleys that have frequency equal to or larger
than 0.2, which requires only one valley occurrence for our
window size of 5. Conversely, as the minimum vf parame-
ter increases, overall system performance improves — the
latency ratio drops below 1.0. Thus, the valley frequency is
a strong indicator of valley-proneness, further supporting
our prior findings from Figure 5b.



Meanwhile, two more characteristics stand out as we vary
vt . First, the valley frequency parameter can completely al-
ter the slope of the latency ratio plotted against vt . This
behavior echoes the observation we made in the previous
paragraph: with extremely loose requirements, Drongo does
not sufficiently filter out poor-performing subnets from its
set of candidates. Intersetingly, with a strictvf (closer to 1.0),
the slope changes, and the average latency ratio decreases
as we raise the valley threshold. This is because if Drongo
is too strict, it filters out too many potential candidates for
subnet assimilation. Second, we see that the curve eventually
bends upward with high vt values, indicating that even the
vt can be too lenient. The results show that the minimum
average latency ratio of 0.9482 (y-axis) is achieved for the
valley threshold of 0.95 (x-axis). Thus, with vf == 1.0 and
vt == 0.95, Drongo produces its maximum performance
gains, averaging 5.18% (1.0 - 0.9482) across all of our tested
clients. By balancing these parameters, Drongo filters out
subnets that offer the least benefit: subnets where valleys
seldom occur and subnets where valleys tend to be shallow.



Figure 8 plots the average latency ratio in the samemanner
as Figure 7, yet only for queries where Drongo applied sub-
net assimilation. First, the figure again confirms that lower
valley frequency parameters degrade Drongo’s performance.
Second, paired with our knowledge of Figure 7, it becomes
clear that as valley threshold decreases, the number of la-
tency valleys shrinks while the quality of the remaining
valleys becomes more potent. This is why the latency ratio
decreases as vt decreases. However, if the threshold is too











Drongo CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea



0.2 0.4 0.6 0.8 1.0
valley threshold



0.0



0.2



0.4



0.6



0.8



fra
ct



io
n



cl
ie



nt
s



af
fe



ct
ed



vf≥0.2 vf≥0.4 vf≥0.6 vf≥0.8 vf≥1.0



Figure 9: Percentage of clients where subnet assimila-
tion was performed
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Figure 10: Per-provider system performance for all
queries. Optimal vf is set for each provider and noted
in parentheses



small, the number of available valleys becomes so small that
the performance becomes unpredictable, i.e., outlier behavior
can dominate, causing the spike in average latency ratios for
valley thresholds under 0.2.



Finally, Figure 9 plots the percent of clients for which
Drongo performed subnet assimilation for at least one provider.
Necessarily, the less strict the frequency constraint is (vf ≥



0.2 is the least strict constraint), the more frequently Drongo
acts. As shown in Figure 9, 69.93% of our clients were affected
by Drongo with vf and vt set at the the peak aggregate per-
formance values (1.0 and 0.95, respectively) found above.



Summary: In this section, we selected parameters:vf = 1
and vt = 0.95, where Drongo reaches its peak aggregate
performance gains of 5.18%.



5.2 Per-Provider Performance
In the previous subsection, we used a constant parameter set
across all six providers in our analysis. In this section, we
analyze Drongo on a per-provider basis. By choosing an op-
timal parameter for each provider, as we do below, Drongo’s
aggregate performance gains increases to 5.85%. In Figure 10,
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Figure 11: Per-provider system performance for
queries where subnet assimilation was applied. Paren-
theses contain optimal values for each respective
provider, formatted (vf , vt )



we show how Drongo impacts the average performance of
each provider, while setting valley frequency to each individ-
ual provider’s respective optimal value (noted in parentheses
under each provider name). Note that, for most providers,
the individual optimal valley frequency lies near the value
obtained in Section 5.1 (1.0). While the intricacies of each
provider’s behavior clearly hinge on opaque characteristics
of their respective networks, we offer several explanations for
the observed performance. CDNetworks, which sees small
gains across all valley threshold values, further validates the
hypothesis proposed in Section 3.2.3 regarding anycast net-
works. Meanwhile, Google, the largest provider of our set
on a global scale, also experienced the second highest peak
average gains from Drongo. is not well served by Google, it
is likely that there exist nearby subnets being directed to dif-
ferent replicas. In other words, Drongo has great opportunity
for improving CDNs that use fine grained subnet mapping.



Finally, Figure 11 showsDrongo’s performance, per-provider,
exclusively in scenarios when it applies subnet assimilation.
Comparing to the results shown in Figure 6 for the Planet
Lab experiments, we observe significant differences. Most no-
tably, the latency valley ratios are much smaller in Figure 11
than in Figure 6. For example, the Google’s median latency
ratio is close to 1.0 in Figure 6, indicating insigificant gains.
On the contrary, Figure 11 Google’s median latency ratio is
around 0.5, implying gains of 50% (1.0 − 0.5) and up to an
order of magnitude in edge cases. Considering all providers,
Drongo-influenced replica selections are, on average, 24.89%
better performing than Drongo-free selections.
There are three reasons for this behavior. First, Figure 6



shows the lower-bound system performance for PlanetLab, as
the best CR is always used for comparison. Such a restriction
is not imposed in the the RIPE Atlas scenario. Second, the
RIPE set is more diverse and includes widely distributed end-
points, thus allowing CDNs greater opportunity for subnet
mapping error. Third, contrary to the Planet Lab scenario
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where we used all the valleys under the valley threshold of
1.0, here we use optimal vt values, such that Drongo suc-
cessfully filters out most “shallow" valleys that would dilute
performance gains.



6 RELATEDWORK
Given a large number of CDNs, with vastly different deploy-
ment and performance in different territories, CDN brokering
has emerged as a way to improve user-perceived CDNs’ per-
formance, e.g., [7, 34]. By monitoring the performance of
multiple CDNs, brokers are capable of determining which
particular CDN works better for a particular client at a point
in time. Necessarily, this approach requires content providers
to contract with multiple CDNs to host and distribute their
content. Contrary to CDN brokering, Drongo manages to
improve performance of each individual CDN. Still, it works
completely independently from CDNs and it is readily de-
ployable on the clients. Moreover, Drongo is completely
compatible with CDN brokering since it in principle has
the capacity to improve the performance of whichever CDN
is selected by a broker.



There has been tremendous effort expended in the ongoing
battle to make web pages load faster, improve streaming
performance, etc. As a result, many advanced client-based
protocols and systems have emerged from both industry
(e.g., QUIC, SPDY, and HTTP/2) and academia [24, 41, 50] in
the Web domain, and likewise in streaming, e.g., [37]. While
Drongo is also a client-based system, it is generic and helps
speed-up all CDN-hosted content. By reducing the CDN
latency experienced by end users, it systematically improves
all the above systems and protocols, which in turn helps all
associated applications.
Recent work has demonstrated that injecting fake infor-



mation can help protocols achieve better performance. One
example is routing [49], where fake nodes and links are intro-
duced into an underlying linkstate routing protocol, so that
routers compute their own forwarding tables based on the
augmented topology. Similar ideas are shown useful in the
context of traffic engineering [29], where robust and efficient
network utilization is accomplished via carefully dissemi-
nated bogus information (“lies"). While similar in spirit to
these approaches, Drongo operates in a completely different
domain, aiming to address the CDN pitfalls. In addition to
using “fake" (source subnet) information in order to improve
CDN decisions, Drongo also invests efforts in discovering
valley-prone subnets and determining conditions when using
them is beneficial.



7 DISCUSSION
A mass deployment of Drongo is non-trivial and carries
with it some complexities that deserve careful consideration.



There is some concern that maintainence of CDN allocation
policies may still be compromised, despite our efforts to re-
spect their mechanisms in Drongo’s design. We propose that
a broadly deployed form of Drongo could be carefully tuned
to effect only the most extreme cases. Figure 11 shows that
subnet assimilation carries some risk of a loss in performance,
so it is in clients’ best interests to apply it conservatively.
First, we know from Figure 9 that the number of clients us-
ing assimilated subnets can be significantly throttled with
strict parameteres. Further, in today’s Internet, many clients
are already free to choose arbitrary LDNS servers ([25, 36]).
Many of these servers do not make use of the client subnet
option at all, thus rendering the nature of their side-effects —
potentially disrupting policies enforced only in DNS — equiv-
alent to that of Drongo. It is difficult to say whether or not
Drongo’s ultimate impact on CDN policies would be any
more sigificant than the presence of such clients.



Mass adoption also raises scalability concerns, particularly
regarding the amount of measurement traffic being sent into
the network. To keep the number of measurements small
while ensuring their freshness, a distributed, peer-to-peer
component, where clients in the same subnet share trial data,
could be incorporated into Drongo’s design. We leave this
modification for future work.



8 CONCLUSIONS
In this paper, we proposed the first approach that enables
clients to actively measure CDNs and effectively improve
their replica selection decisions, without requiring any changes
to the CDNs and while respecting CDNs’ policies. We have
introduced and explored latency valleys, scenarios where
replicas suggested to upstream subnets outperform those
provided to a client’s own subnet. We have asserted that
latency valleys are common phenomena, and we have found
them across all the CDNs we have tested in 26-76% of routes.
We showed that valley-prone upstream subnets are easily
found from the client, are simple to identify with few and
infrequent measurements, and once found, are persistent
over timescales of days.
We have introduced Drongo, a client-side system that



leverages the performance gains of latency valleys by iden-
tifying valley-prone subnets. Our measurements show that
Drongo can improve requests’ latency by up to an order
of magnitude. Moreover, Drongo achieves this with excep-
tionally low overhead: a mere 5 measurements suffice for
timescales of days. Using experimentally derived parame-
ters, Drongo affects the replica selection of requests made by
69.93% of clients, improving their latency by 24.89% in the
median case. Drongo’s significant impact on these requests
translates into an overall improvement in client-perceived
aggregate CDN performance.
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