

DNS-sly: Avoiding Censorship through Network Complexity


Qurat-Ul-Ann Danyal Akbar
Northwestern University


Marcel Flores
Northwestern University


Aleksandar Kuzmanovic
Northwestern University


Abstract


We design DNS-sly, a counter-censorship system which
enables a covert channel between a DNS client and
server. To achieve covertness and deniability in the up-
stream direction, DNS-sly applies user personalization,
adapting to individual behaviors. In the downstream di-
rection, it utilizes CDN-related DNS responses to em-
bed data, while retaining statistical covertness. We show
DNS-sly achieves downstream throughput of up to 600
Bytes of raw hidden data per click on a regular Web
page, making it a practical system in the context of a
covert Web proxy service. We implement DNS-sly and
evaluate it in a known censorship environment, demon-
strating its real-world usability.


1 Introduction


Online censorship is thriving on the Internet [11]. Ex-
ample scenarios range from governments blocking tens
of thousands of Web sites [26], passing laws that make
it illegal to digitally distribute content that opposes the
government [26], openly denying service to targeted Web
sites [8], to running large-scale firewalls that effectively
isolate a country’s Internet from the rest of the world [7].


To hide the content from a censor, users are often re-
lying on encryption-based protocols and systems, e.g.,
[2, 5, 9, 14, 15, 16, 19, 25, 29, 30]. Unfortunately, such
systems fail to provide covertness and deniability for
users. As a result, such attempts are easily discovered
and blocked. For example, it has been reported that a
censor is periodically resetting all encrypted connections
automatically [26]. Hence, designing systems and proto-
cols capable of enabling censorship-free communication
on the Internet is a vitally important task.


We explore the potential of using the Domain Name
System (DNS), the core Internet service [23], to build
a large-scale counter-censorship system with strong
covertness and deniability properties. The key premise


of our work is that the significant network complexity in
today’s Internet, reflected in DNS, is an extremely use-
ful asset in avoiding censorship. In particular, trillions
of DNS requests are flooding the Internet every day [13].
Hence, any attempt to inspect, let alone analyze and con-
trol DNS traffic, is challenging. Next, the significant
proliferation of public DNS services in recent years has
largely blurred the notion of local DNS servers, forcing
significant amounts of DNS traffic to flow through the In-
ternet, crossing administrative country borders [13]. Fi-
nally, the substantial variability in user requests, accom-
panied by the diversity in DNS responses caused by the
use of content delivery mechanisms, opens the door to
significant information hiding opportunities.


Our system, called DNS-sly, illustrated in Figure 1,
consists of requesters and responders communicating via
DNS. A requester, running on a user’s computer as a
modified DNS client, and responder, running as a mod-
ified DNS server, communicate as a regular DNS client
and a server. The DNS-sly responder provides a covert
Web proxy service to the DNS-sly requester. To effec-
tively circumvent censorship, it is essential that the DNS-
sly presence at the client and the server is statistically
undetectable. Our key design goals are the following:


• Deniability for any DNS-sly requester. It should be
impossible to confirm that anyone is intentionally
downloading information using DNS-sly, or to de-
termine what that information is.
• Statistical deniability. A DNS-sly user’s DNS re-


quest patterns should be statistically indistinguish-
able from those of regular DNS clients.
• Responder covertness. It should not be possible


to detect that a DNS server is running DNS-sly by
watching its behavior.
• Resilience to attacks. The DNS-sly system should


be robust in the presence of censorship activities de-
signed to interfere with DNS-sly communication.
• Performance. Despite all the above constraints, the







Figure 1: System Model.


system should enable performance useful in real-
world censored environments.


To accomplish these goals, the DNS-sly responder first
learns the DNS client properties, in terms of accessed
domains and associated semantic topics, that the client is
interested in. The system also collects the IP addresses
related to requested domains, which are again user spe-
cific. Such knowledge about the user is then utilized by
the requester and responder to effectively communicate
while retaining covertness and deniability both for the
DNS client and the server.


In the upstream direction, the DNS-sly requester crafts
DNS requests (shown as a black arrow in Figure 1 on the
left), which semantically overlap with the regular DNS
requests, to ask for content from the responder. Upon
receiving the request, the responder retrieves the con-
tent from the Web. Then, in the downstream direction,
the DNS-sly responder encodes the desired content us-
ing DNS responses to regular, non-DNS-sly-requester-
generated, DNS requests. This is done by encoding con-
tent in the choice of A records from the IP addresses
of hosts associated with requested domains. We show
that this approach not only enables communication in
the downstream direction, but is also statistically indis-
tinguishable from the regular DNS responses.


We make the following contributions:


• We demonstrate that network complexity, arising
due to the significant variability in user behavior and
the inherent inconsistency introduced by content de-
livery systems (reflected in DNS traffic), creates a
rich content-hiding environment.
• We design DNS-sly, a system that utilizes network


complexity to enable a counter-censorship service
while providing strong covertness and deniability
guarantees to participating users.
• We present a prototype which shows practical


hidden-data throughput rates of up to 600 Bytes per
click on a regular Web page.


This paper is structured as follows. Section 3 describes
DNS-sly’s design. Section 4 delivers DNS-sly’s security
and peformance evaluation. Section 5 discusses related


issues. Section 6 mentions related work and Section 7
concludes.


2 Exploring Network Complexity


2.1 DNS Request Variability
Modern Web pages are typically fragmented, i.e., pieces
of content are often hosted at a number of different do-
mains. Thus, requesting a single Web page means ac-
cessing numerous additional domains. This opens sig-
nificant opportunities for DNS-sly. In the upstream di-
rection, the large number of requests means that adding
a small number of DNS-sly requests could be accom-
plished while retaining statistical deniability. In the
downstream direction, the larger number of DNS re-
sponses increases the probability of DNS responses
which are suitable for data hiding. We carried out an
experiment using the Alexa Top 500 [1] and our findings
show that the median is above 50 DNS resolutions per
site, while around 20% of domains generated more than
100 resolutions.


2.2 DNS Response Variability
Here, we explore the number of IP addresses at which a
domain is hosted. The larger the set, the greater poten-
tial for encoding our downstream data. We first explore
the number of IP addresses at which a domain is hosted
globally. This number provides an upper bound for the
size of entries that we can use to design completely com-
pliant DNS responses, i.e., a count of responses in which
each IP address actually points to a server which hosts
the queried domain.


To estimate this value, we query the Alexa Top 500
domains, as well as all included domains on each page
from 300 globally-distributed open DNS resolvers. Here,
25% of domains are served by a substantial number of
IPs, likely due to the proliferation of CDNs. In particular,
the median is at around 2,000 IPs, while the maximum is
at nearly 16,000 IPs.


Although, DNS-sly can use the global set of IPs ob-
tained to achieve reasonable downstream throughput,


2







this set doesn’t provide the desired deniability. There-
fore, we explore the number of IP addresses to which a
domain resolves from a single DNS resolver. We refer
to such sets of IP addresses per domain as local. These
sets provide strong deniability properties, as they reflect
addresses naturally seen at that location.


Our experimental results from 30 randomly-selected
resolvers show that for the top 25% of domains the aver-
age number of IP addresses is smaller in comparison to
the global set. The largest number of IP addresses per do-
main is approximately 850, about 19 times smaller than
in the global case.


In addition to the IP set size, the number of A records
in a DNS response further determines how much data can
be embedded. We found that for the top 25% of domains,
approximately one third of responses have more than 8 A
records, and around 15% of responses have as many as
15 A records. This shows significant utility in the context
of information embedding.


Timescales of DNS Response Changes If a DNS-sly
server updates A records in DNS responses for a domain
at the same rate at which they naturally change, it will
blend accordingly. We first explain the simple metric we
use to quantify a change in A records. Then, we measure
this value in the real world.


We define similarity between two different DNS re-
sponses as the fraction of A records that have exactly
the same IP addresses in the same position. Then, we
define change as 1 - similarity. For example, consider
three DNS responses: (IP1, IP2, IP3), (IP1, IP3, IP2),
and (IP4, IP5, IP6). The change between the first and the
second set of A records is 1− 1


3 = 2
3 . The change be-


tween the first and the third set of A records is 1− 0
3 = 1.


Given the change value between two DNS responses, we
can consider the timescales at which they occur.


We query each of the top 25% of domains from the
previous experiment once every 30 minutes and compute
the change value between consecutive DNS responses.
About 70% of domains completely change the location
of their responses. It is well known that many CDN-
hosted domains change such mappings, i.e., at the order
of tens of seconds [27]. This result clearly shows that the
natural change in A records is high, enabling frequent
reusability of the same domains to embed hidden data.


3 DNS-sly Design


Here, we present a detailed design of DNS-sly. The key
segments of the DNS-sly protocol are: (i) end-point pro-
filing, (ii) DNS-sly protocol bootsrapping, and (iii) com-
munication


3.1 Endpoint Profiling


To retain covertness and deniability, DNS-sly adjusts
its behavior relative to each individual DNS client. To
achieve such personalization, the DNS-sly responder first
profiles the clients DNS behavior. In the endpoint profil-
ing phase, the DNS-sly responder records the DNS do-
mains requested by the client. Furthermore, the DNS-sly
responder collects unique IP addresses generated by an
upstream DNS server for each domain.


The profiling phase is essential for covertness and de-
niability. In the upstream direction, the scope and di-
versity of the domains accessed by the client determine
the properties of the upstream communication. Specif-
ically, a set of requests carrying upstream communica-
tion are constructed from the endpoint profile to seman-
tically overlap with the domains resolved in the profiling
phase, maintaining covertness. In the downstream direc-
tion, the IP addresses associated with particular content
replicas can often depend on the user’s location in the
network. This is due to the proliferation of the EDNS0
client-subnet extension [13]. The client-subnet allows a
host issuing DNS requests to label requests with a sub-
net, indicating the origin of the request aiding in DNS-
based replica selection, and in particular to address chal-
lenges which arise from clients being far away from their
LDNS server. Hence, to retain covertness and deniabil-
ity, it is necessary to log replica IP addresses selected for
the client. At the end of the profiling phase, the responder
creates a profile map of domains and corresponding IPs
that it collected from quering an upstream DNS server.


3.2 DNS-sly Protocol Bootstrapping


Upon the creation of the user profile map, the DNS-sly
responder needs a secure one-time out-of-band mecha-
nism for distributing the map to the requester. As dis-
cussed in [12, 18], there are a number of ways to conduct
one-time distribution without the knowledge of the cen-
sor, e.g., clients could receive the profile map via postal
mail or person-to-person exchange. Once the client re-
ceives the information, it can utilize DNS-sly’s Web
proxy services without any constraints.


3.3 Communication


Upstream communication comprises of DNS requests
constructed using the user profile map. The content
flows in the reverse direction, i.e., from the DNS respon-
der to the requester, embedded in regular, non-DNS-sly-
initiated, DNS responses.


As ordinary DNS requests arrive from the requester,
the responder watches for the occurrence of any domains
which are contained in the profile map. When such a


3







domain arrives, the responder examines its entry in the
map, noting how many IP addresses have been associated
with it, i.e., the size of its set of valid responses, which
is denoted s and how many A records are in a typical
DNS response for that domain, denoted c. Using this
information, the responder is then able to compute the
number of bits that can be encoded in this response. In
particular, it computes the number of bits b as:


b = blog2
s!


(s− c)!
c.


That is, a choice of c A records from a potential pool of s
IP addresses, can encode b bits. For implementation con-
venience, we then round this to the nearest byte, making
our final message size B =


⌊ b
8


⌋
.


The responder then takes the first B bytes of the cur-
rent page to send, denoted G1. It then converts the inte-
ger value of the bytes of G1 to their base-s equivalent. By
controlling the length of G1 above, we ensure that its rep-
resentation would consume exactly c digits in its base-s
representation. DNS-sly then considers the set of s IPs
for that domain as an ordered list, allowing us to map
each base-s digit to an IP address. The IPs correspond-
ing to the digits of G1 in base-s are then placed into the
response in order and sent as a fully valid DNS response
to the requester.


Upon receiving the DNS response, the requester first
examines the entry in the user profile map that corre-
sponds with the requested domain, determining the val-
ues of s and c. Using the IPs which appear in the A
records, and their corresponding position in the ordered
list of IPs for this domain, it is able to convert them to
a representation in base-s, which is then converted back
into their original binary representation. This data is then
collected in a buffer until the entire message is received,
with each chunk Gi sent in the response to each DNS re-
quest sent for a domain in the user profile map among
the requester’s organic traffic. Once complete, the mes-
sage is decoded and delivered to the application. The
requester and responder will not reuse the same domain
to encode data until the Time-To-Live (TTL) from the
authoritative server has expired. Since many of the do-
mains in the user profile map are from CDNs, these TTLs
may be as short as a few tens of seconds.


4 Evaluation


4.1 Security Evaluation
Discovery Attacks Joining DNS-sly, either as a re-
quester or a responder, is challenging. Indeed, because
the communication setup happens out-of-band, it as-
sumes a level of trust between the requester and respon-
der, upon which DNS-sly builds upon. While such an


1 2 3 4 5 DNS-sly
 Resolver 


0.0
0.2
0.4
0.6
0.8
1.0
1.2


Ch
an


ge
 in


 D
NS


 R
es
po


ns
es


Figure 2: Change in DNS responses for DNS-sly responder
compared to 5 other resolvers


approach necessarily affects DNS-sly’s scale, we opt for
this approach because we give strict priority to deniabil-
ity and covertness over scalability.


Passive Attacks An adversary may try to discover po-
tential DNS-sly participants or target a suspected DNS-
sly requester by analyzing DNS traffic or inspecting an
individual’s request patterns respectively. However, all
the DNS headers in DNS-sly are fully legitimate. More-
over, requests and responses by DNS-sly are indistin-
guishable from any other DNS packets in terms of packet
sizes, entropy of hostnames, and record types. Upstream
communication is hidden in regular user request pat-
terns in terms of volume, frequency, and semantics. The
covertness and deniability fundamentally arise from the
profiling phase which enables a mapping personalized
to each user. Thus, discovering DNS-sly is challenging
even when DNS traffic is comprehensively examined.


Probing Attacks A censor can mount active discov-
ery attacks, which we call probing attacks. In particular,
an adversary can try to automatically detect a potential
DNS-sly requester by probing other DNS servers, using
the same or similar IP address as a suspected DNS-sly
requester, at the same time.


We evaluate the probing attack as follows. For ev-
ery response from a DNS-sly responder, the client also
queries five other DNS resolvers for the same domain,
thus emulating censor’s probing attack. We conduct the
experiment by querying all the domains we queried pre-
viously in Section 2 and compute the mean and variance
of the change between each of the DNS resolvers and
the other non-DNS-sly resolvers. The results in Figure 2
show exactly the same behavior of all the resolvers, land-
ing well within the boundaries of a standard deviation.


Moreover, an attacker could attempt to force the DNS-
sly responder to reveal itself by sending different DNS
responses to the same DNS requests from the same DNS-
sly requester over short time scales. DNS-sly protects
against such attacks by explicitly prohibiting a DNS-sly
responder from embedding information in a DNS re-
sponse that has been issued within the TTL. Moreover,
because the same DNS requests from the same user are
not likely to happen in the real world, the performance


4







penalty for deploying this protection is minimal.
Filtering A censor may block access to certain con-


tent on the Internet. DNS-sly uses “regular” domains on
the Internet that are hosted on many servers. If a cen-
sor sought to filter all such domains, it would effectively
mean unplugging the Internet in a given area. While this
is possible, e.g., [3], the collateral damage of blocking all
traffic is often too high [26]. A censor might further try to
filter out DNS servers that support DNS-sly. To accom-
plish this, the censor would first have to discover them,
which is challenging, as discussed above. In particular,
the challenge comes from the out-of-band communica-
tion and the trust that exists between the requester and
the responder.


DNS Tampering A censor might decide to tamper
with the DNS responses by changing the order of IPs
within DNS responses. However, without knowing the
DNS-sly requesters and responders, it is hard to effec-
tively scale this attack. As an example, Akamai’s CDN
serves trillions of client requests per day, controlling tens
of terabits per second of content traffic served to clients
world-wide [13]. Hence, inspecting and manipulating
such a large volume of traffic is untenable.


Session Tampering A censor could serve a requester’s
visible DNS request from its own cache rather than for-
warding this request to the DNS-sly responder. Such
attacks are necessarily visible from the requester side.
Moreover, without the ability to detect DNS-sly re-
questers and responders, the adversary would have to
mount such an attack for all DNS requests, quickly
reaching scalability limits.


4.2 Performance Evaluation


We built a prototype of DNS-sly in Python. The re-
quester and responder are built to act as a DNS client and
server. Compressed with bz2, the bootstrapping pack-
age, including the user profile map is 2.3MB. The re-
quester can execute a series of DNS requests and decode
messages which occur in a predefined user profile map.
Since our client is designed for experimental purposes,
rather than for use by live users, the upstream commu-
nications are hard-coded. While our implementation is a
modest start at various levels, it allows us to evaluate the
most important part of DNS-sly: its ability to push data
in a censored environment.


Performance Here, we consider the downstream per-
formance of the the system. In particular, we use a met-
ric known as bytes per click. We define a single click to
mean the loading of a page, including associated DNS
lookups for both the original domain and all subsequent
domains included on the page. Such a measure captures
real user behavior, as the resolution of such names will
always occur with regular user browsing.


0 100 200 300 400 500 600
Bytes per Click


0.0


0.2


0.4


0.6


0.8


1.0


CD
F


Local
Global


Figure 3: CDF of the downstream throughput from the global
dictionary


Figure 3 shows a CDF of the number of bytes-per-
click achieved for the local and global IP maps con-
structed with the top 15% of the Alexa Top 500 as de-
scribed in Section 2. We see that the median page click
with global provides DNS-sly with over 100 bytes of
covert data and the local 75 bytes, only a 25% differ-
ence. The similarity of the local and global performance,
despite their vastly different IP sets, is a function of the
greater importance of the number of A-records, which
is constant between the two maps. Furthermore, 30% of
clicks offered over 150 bytes of data with the global map,
with the largest observed site offering 600 bytes of data.


These findings place DNS-sly at the upper end of
covert communication bandwidths. Indeed, measuring
the size of DNS responses observed during this exper-
iment, most responses feature of median size of 100
bytes, with 90% of responses under 200 bytes. Given
such values, DNS-sly is comparable to other covert com-
munication mechanisms [12].


We also carried out an actual 4KB file transfer, to ob-
serve bytes-per-click achieved. Our clicks were gener-
ated by selecting randomly from sites in the Alexa Top
500. We saw that, some clicks encode more information
than others, still DNS-sly is able to take advantage of
all of them. In total, the file completes its transfer in 30
clicks with the global profile map, and 64 with the local.


Behind a Firewall We further deploy DNS-sly in a
known-censored environment. Specifically, the DNS-sly
responder is run on a machine at our institution, and the
requester is located in a country with known and active
censorship. DNS-sly is able to successfully transfer a
copy of a known-censored website, which we have re-
duced to text. It achieves the same rates observed in
Figure 3 without a single packet loss, despite significant
distance and delay between the requester and responder.
The particular censorship environment is known to pro-
hibit connections to censored sites, but in our experi-
ments appeared to not interfere with DNS traffic at all.


5







5 Discussion


Unreliable Transport DNS-sly exists on top of the un-
reliable UDP protocol. While building a reliable com-
munication on top of unreliable service is certainly pos-
sible [22], this potential design approach contradicts our
key design goals, i.e., covertness and deniability. Indeed,
given that reliable protocols can exhibit deterministic and
predictable behavior, they may make the presence of en-
coded content more obvious. Still, simple techniques, in-
cluding the use of checksums and automatic re-transmits,
could mitigate potential losses.


Impact on Regular Web Performance Given that
DNS-sly encodes data by updating the A records orig-
inally set by content providers, one concern might be
the effect that this could have on clients’ perceived per-
formance when accessing “regular” content. However,
DNS-sly utilizes A records associated with servers that
were recommended by the providers themselves, for
a particular user. Hence, performance experienced by
users when accessing such servers should still be good.
DNS-sly could further minimize its effect on the perfor-
mance for regular content by never changing the leading
A record, used by default by most clients, but only the
remaining ones.


DNS Caching DNS response caching is one of the
primary services enabled by the DNS infrastructure, in-
cluding the LDNS servers. The question is how DNS-sly
interoperates with DNS caching. However, CDNs gen-
erally set DNS with very short timescales, to allow for
DNS based replica selection to implement load balanc-
ing. Thus, in the absence of DNS-sly client activity, the
DNS-sly-generated DNS responses quickly vanish.


6 Related Work


We survey other systems that aim to provide anonymous,
confidential, or censorship-resistant communication. We
draw distinctions between DNS-sly and such systems be-
low.


DNS Tunneling A number of mechanisms have been
developed in the past which tunnel IP traffic through a
covert channel using DNS, often by encoding data in
DNS payloads [17]. Examples of such systems include
DNScat [10], DNScapy [28], iodine [4], TUNS [24] and
many others [6, 21]. These systems differ in the record
types they use for hiding data and the specific encoding
technique used (e.g., DNScat-B uses hex or NetBIOS
encoding to hide content in A, CNAME, NS and TXT
records and in [24] data is hidden within the TTL field).
These techniques were not designed to be deniable and
thus are easily detectable through DNS payload and traf-
fic analysis [17]. DNS-sly provides much stronger deni-
abilty and is resilient to such analysis as discussed in our


security evaluation.


HTTP Tunneling Systems related to DNS-sly in spirit
but use HTTP tunneling for covert communication are
Infranet [18] and Collage [12]. In the upstream direc-
tion, both Infanet and Collage encode hidden messages
using sequences of visible HTTP traffic. However, in
the downstream direction Infranet hides content in JPEG
images using steganographic methods and Collage uses
user-generated content published at various Web 2.0 sites
to exchange hidden messages. The key difference be-
tween DNS-sly and Infranet is that Infranet enables a
covert channel towards a single Web server, while DNS-
sly does so towards a DNS server. This improves covert-
ness, as an endpoint is far more likely to communicate to
a DNS server than to any single Web server. Besides,
Infranet uses standard JPEG steganographic methods,
which are known to be prone to attacks [20]. While the
use of streaming audio or video Web sites would be ben-
eficial for Infranet, the choice of such specific Web sites
might limit Infranet’s scalability and availability. DNS-
sly relies on the embedded dynamics in DNS responses
induced by the significant proliferation of CDNs. More-
over, Infranet works in the context of the reliable TCP
protocol, while DNS-sly operates on top of the unreli-
able UDP protocol, which leads to notable design differ-
ences. Unlike Collage, where a censor can blacklist an
entire social network (e.g., Facebook in China), this is
not feasible for DNS, which is a core Internet service.


7 Conclusions


We designed DNS-sly, a counter-censorship system that
provides a covert channel between a DNS client and a
server, with the following distinctive features: (i) DNS-
sly adjusts its behavior to each individual user, and uti-
lizes such knowledge to provide strong covertness and
deniability guarantees in the upstream direction. (ii) It
utilizes the frequently changing multiple A records in
DNS responses in the downstream direction to enable
equally strong guarantees for DNS-sly-enabled DNS
servers, (iii) DNS-sly achieves downstream throughput
of up to 600 Bytes of (uncompressed) hidden data per
regular Web page click, making it a practically useful
system. (iv) Our security evaluation showed that DNS-
sly can successfully circumvent sophisticated censoring
techniques, including active discovery probing attacks
against DNS servers. (v) Finally, we demonstrated DNS-
sly’s utility in a real-censored environment, showing that
it provides a novel, realistic, and reliable mechanism for
avoiding censorship.


6







Acknowledgments


This project is supported by the National Science Foun-
dation (NSF) via grant CNS-1526052.


References


[1] Alexa. http://www.alexa.com/.


[2] Anonymizer. http://www.anonymizer.com/.


[3] CBS News: How Egypt Pulled the Plug on the In-
ternet. http://www.cbsnews.com/news/how-egypt-
pulled-the-plug-on-the-internet/.


[4] iodine by kryo. http://code.kryo.se/iodine/.


[5] Squid web proxy cache. http://www.squid-cache.


org/.


[6] tcp-over-dns. http://analogbit.com/software/tcp-over-
dns/.


[7] The Great Firewall of China. http://www.


greatfirewallofchina.org/.


[8] Ukrainian Authorities Suffer New Cyber At-
tacks. http://www.reuters.com/article/


2014/03/08/us-ukraine-cricis-cyberattack


-idUSBREA270FU20140308.


[9] Zero knowledge systems. freedom websecure. http://


www.freedom.net/products/websecure/.


[10] BOWES, R. Dns cat, 2010.


[11] BURNETT, S., AND FEAMSTER, N. Encore: Lightweight
measurement of web censorship with cross-origin re-
quests. In Proc. of ACM Sigcomm ’15 (London, UK,
2015).


[12] BURNETT, S., FEAMSTER, N., AND VEMPALA,
S. Chipping away at censorship firewalls with user-
generated content. In Proc. of USENIX Security ’10
(2010).


[13] CHEN, F., SITARAMAN, R., AND TORRES, M. End-user
mapping: Next generation request routing for content de-
livery. In Proc. of ACM SIGCOMM ’15 (London, UK,
2015).


[14] DANEZIS, G., DINGLEDINE, R., AND MATHEWSON,
N. Mixminion: Design of a type iii anonymous remailer
protocol. In Proceedings of the 2003 IEEE Symposium
on Security and Privacy (2003), SP ’03, IEEE Computer
Society.


[15] DINGLEDINE, R., FREEDMAN, M. J., AND MOLNAR,
D. The free haven project: Distributed anonymous stor-
age service. In In Proc. of the Workshop on Design Issues
in Anonymity and Unobservability (2000), pp. 67–95.


[16] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON,
P. Tor: The second-generation onion router. In Proceed-
ings of the 13th Conference on USENIX Security Sympo-
sium - Volume 13 (Berkeley, CA, USA, 2004), SSYM’04,
USENIX Association, pp. 21–21.


[17] FARNHAM, G. Detecting dns tunneling. InfoSec Reading
Room (2013).


[18] FEAMSTER, N., BALAZINSKA, M., HARFST, G., BAL-
AKRISHNAN, H., AND KARGER, D. Infranet: Circum-
venting web censorship and surveillance. In Proc. of the
11th USENIX Security Symposium (Berkeley, CA, USA,
2002).


[19] FREEDMAN, M. J., AND MORRIS, R. Tarzan: A peer-
to-peer anonymizing network layer. In Proceedings of the
9th ACM Conference on Computer and Communications
Security (2002), CCS ’02, ACM.


[20] FRIDRICH, J., GOLJAN, M., AND HOGEA, D. Attacking
the OutGuess.


[21] HOFFMAN, C., JOHNSON, D., YUAN, B., AND LUTZ,
P. A covert channel in ttl field of dns packets. In Proc. of
SAM ’12 (2012), p. 1.


[22] KUROSE, J. F., AND ROSS, K. W. Computer Network-
ing: A Top-Down Approach (6th Edition), 6th ed. Pear-
son, 2012.


[23] MOCKAPETRIS, P. Domain Names - Implementation And
Specification. Internet Engineering Task Force, Novem-
ber 1987.


[24] NUSSBAUM, L., NEYRON, P., AND RICHARD, O. On
robust covert channels inside dns. In Emerging Chal-
lenges for Security, Privacy and Trust. Springer, 2009,
pp. 51–62.


[25] REITER, M. K., AND RUBIN, A. D. Crowds:
Anonymity for web transactions. ACM Trans. Inf. Syst.
Secur. 1, 1 (Nov. 1998).


[26] SCHMIDT, E., AND COHEN, J. The Future of
Internet Freedom. http://www.nytimes.com/


2014/03/12/opinion/the-future-of-internet-


freedom.html?&_r=0.


[27] SU, A.-J., CHOFFNES, D., KUZMANOVIC, A., AND


BUSTAMANTE, F. Drafting behind Akamai (Travelocity-
based detouring). In Proc. of ACM SIGCOMM ’06 (Pisa,
Italy, Sept. 2006).


[28] VIXIE, P., AND WESSELS, D. Dnscapdns traffic capture
utility. In CAIDA Workshop, July (2007).


[29] WALDMAN, M., AND MAZIÈRES, D. Tangler: A
censorship-resistant publishing system based on docu-
ment entanglements. In Proceedings of the 8th ACM Con-
ference on Computer and Communications Security (New
York, NY, USA, 2001), CCS ’01, ACM, pp. 126–135.


[30] WALDMAN, M., RUBIN, A. D., AND CRANOR, L. F.
Publius: A robust, tamper-evident, censorship-resistant
web publishing system. In Proceedings of the 9th Confer-
ence on USENIX Security Symposium - Volume 9 (Berke-
ley, CA, USA, 2000), SSYM’00, USENIX Association,
pp. 5–5.


7






