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Abstract

Network measurements reveal that today"s most popular web browsers open parallel

TCP connections and use them to actively transfer data from web servers. This technique, based
on the assumption that ~"more is better,"" is motivated by the need to improve user-perceived
performance. While parallel connections indeed improve performance for lossless networks and
when web pages are very large in size, we show, by means of analytical modeling, simulation,
and testbed experiments, that no such improvements exist in scenarios that more closely
characterize today"s Internet. Moreover, we demonstrate that in addition to placing more stress
on web servers, the parallel TCP approach can degrade the web-response times to a level that is
up to an order of magnitude below the level achievable by a single connection. We analyze the
roots of this phenomenon and find that the benefits of accelerated parallel download of small
objects are largely overshadowed by the initial connection setup time, which dominates the
entire transfer. We quantify the user-perceived latency and show that it dramatically

increases with the level of parallelism and congestion in the network.
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1 Imtroduction

Despite the fact that several recently-proposed TCP versions demonstrated a clear
abality to successfully utilize the available bandwidth on an end-to-end path (e.g..
(1: 2)). applications using parallel TCFP connections are thriving in the Internet.
For example. the vast majority of peer-to-peer users employ the parallel File Trans-
fer Protocol (FTP) (3; 4), mitally developed to improve efficiency of large data
transfers in grid-computing emvironments. While such applications technically do

not violate fairness in the network (because all fows applied in parallel download

are TCP-friendly), this selfish behavior 1s unfair to those who use a single TCP
connection to transfer data.

A similar trend 1s observed in the Hypertext Transfer Protocol (HTTP). Contrary to
parallel FTP, where both endpoints must collaborate in partitioming and transferring
a file over parallel TCP connections, HT TP does not require such cooperation from
web servers. This is becanse pages on a web server are typically fragmented: ie
thew consist of a number of small objects that can be fetched by separate connec-
tions.

Historically, the problem of page fragmentation caused significant changes in the
HTTP specification. In its first incamation, HTTP/1.0(5), the client and server open
and close a new TCP connection for each object, which causes significant degrada-
tion in client-percerved response times (6). To address this problem. HTTP/1.1 {7)
enables a persisient connection with pipelining: the TCP connection remains open
(persistent) between consecutive operations, and allows nmmltiple HTTP requests
to be sent without waiting for a response (pipelining). It has been demonstrated

that such an approach significantly improves the client-perceived response times
(8; 9; 10).

Despate the fact that HITP/1.1 specification recommends opening up fo two per-
sistent TCP connections, ! today’s most popular web browsers employ a larger
munber of paralls! persistent TCP connections in an attempt to improve perfor-
mance when downloading pages contain multiple objects. Indeed. measurements
from (11) reveal that both Internet Explorer and Netscapes open up to
seven parallel persistent TCP connections to a web server, and use them concur-
rently to transfer data. While opening multiple connections to different servers
makes perfect sense in presence of distributed web content (e.g., Alamai (12)),
evidence show that browsers in addition open parailel connections fo each such
sarver (11).

This design choice is motivated by a need to improve the client-perceived response
times. For example, the use of parallel connections could result in a larger aggre-
gated window size. Also, in case of packet drops, the parallel transfer could ex-
perience a less aggressive backoff, provided that only a single TCP flow from the
aggregate will halve its window size. Similar to the parallel FTP case, this approach
aims to optimize web browser performance without concern for how this can affect
others, and without worryving about the additional stress placed on the servers.

In this paper, we show that parallel TCP connections largely lack the capacity to
improve the client-percerved response times in scenarios with realistic packet loss

! RFC 2616: “A single-user client SHOULD NOT maintain more than 2 connections with
amy server of proxy. Lhus, openmg more than 2 connections is not strictly forbidden.



ratios and web page sizes. Moreover, we demonstrate that the parallel-connections
approach can degrade client paerformance to a level that 15 significantly below that
of a single persistent TCP connection. The key reason for this effect 1s the gap be-
tween the cost of setting up the parallel connection and the benefit of accelerated
parallel download. While 1t may appear obvious that establishing a larger number
of TCP connections incurs a larger overhead. the key observations 1s that the cost
of establishing parallel connections grows considerably with the number of con-
nections.

Consider a single TCP connection first. If TCP control packets (SYN or SYN ACK)
are lost during the connection setup, the endpoints must wait during extremely
long initial tmeouts before reattempting to establish a connection. In this case, the
client-perceived response time 15 dominated by this mitial setup time because the
actual data transfer time 15 much shorter than the connection establishment time.

When parallel TCP connections are used, the expected connection establishment
latency increases with the number of connections. The larger the number of paral-
lel connections, the larger the probability that TCP control packets will be lost, and
the larger the expected connection-sstablishment latency. At the same time, a larger
number of established TCP connections necessanly reduces the data-transfer la-
tency. However, when the objects are small 1n size, the decrease in the data-transfer
latency (relatrve to the single-connection case) 1s much smaller than the increase
in the connection-establishment latency. Thus, overall parallel-connection perfor-
mance worsens compared to a single connection.

We motivate this problem by developing an analvtical model, generalizing (13; 14)
to predict the client-percerved latency as a function of the number of parallel con-
nections and the packet loss ratio. We develop a model that accounts for connection
establishment latency with parallel connections and the time spent in TCP's data
transfer phase. We use this model to predict the total time to download fixed-size
pages with various numbers of parallel connections and packet loss ratios.

Next, we perform a set of large-scale simulations. In our first set of experiments,
we validate the model by showing that, on average, a single connection outperforms
parallel connections for relatrvely small file sizes, even at low levels of packet loss.
As packet loss increases, the penalty for parallel connections 1s up to an order of
magnitude. We then apply a workload that reflects a real-world scenario to deter-
mine the effect of parallel connections on a typical web browsing experience. We
show that for this realistic scenario, a single connection offers the best average per-
formance and that parallel connections extremely rarely improve response times.

Finally, we perform a set of testbed expeniments to verify our findings 1n a real svs-
tem. The results of these experiments further validate our model and help to prove
that parallel persistent connections should be used with caution in todav’'s web
browsers. At the end. we discuss several related 1ssues: the impact of distributed
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Fig. 1. Diagram depicting the dvnamics of TCP connections when using nonpersistent,
persistent, parallel and pipelined connections.

web content, the server-side effects, the opportunistic use of parallel TCP connec-
tions, and the importance of the whole page performance for web applications.

2 Background

In this section, we provide an overview of the HTTP specifications. We first briefly
explain the components of TCP that are most critical to HI TP performance. Then,
we focus on differences in the ways that HTTP vanants establish and use TCP
connections. In the following discussion, we consider a scenario in which a client
{(web browser) establishes connections to a server (web server).

To initiate a TCP connection, the client sends a SYN packet to the server. indicating
that 1t wants to establish a TCP connection. When the server recerves the packet and
accepts the connection, 1t replies with a corresponding SYN ACK packet. Finally,
the client acknowledges the SYN ACK with an ACK packet to fully establish the
connection. This i1s called the three-way handshake. After a connection has been
fullv established, TCP uses timers and ACKs to determine whether packets for
the connection have been lost, and retransmits those packets that have not been
explicitly acknowledged as recerved.

Figure 1 depicts specific ways in which HT TP vanants establish and use TCP con-
nections. Despite their differences, all versions use the same technique to mnitially
request and download the index page of a given web page. An index page contains
references to the objects embedded in the corresponding web page. As indicated in
the figure, the client piggvbacks the HTTP request to the ACK packet of the initial



three-way TCP handshake. Upon receiving the HTTP request, the server replies
with the index page. Depending on the HTTP version, the objects referenced 1n the
index page are fetched from the server in the following wavs.

The HTTP/1.0 specification uses nonpersistent TCP connections (3). As indicated
in Figure 1(a). this means that a new TCP connection must be established for each
object retrieved from the server. Thus, the HTTP/1.0 client closes the initial TCP
connection upon the receipt of the index page; then, 1t opens a new TCP connection
for the first embedded object. retrieves the object, and closes the TCP connection.
The client repeats this procedure for each of the objects from the page in a senal
fashion. as indicated i Figure 1(a). Clearly, when a web page contains multiple
embedded objects. performance in terms of aggregate latency (i.e.. the time from
the first request for a page until the time when the last object 15 downloaded), sig-
nificantly degrades due to the overhead suffered during multiple connection estab-
lishments. Also, because most web objects are small, TCP rarely leaves the slow
start phase. further imiting performance.

To mmprove HTTP/1.0 performance, many HTTP/1 O-enabled web browsers es-
tablish multiple parallel connections to retrieve objects. Indeed. once the client
receives the index page that references all embedded objects. nothing stops the
client from establishing multiple TCP connections and retrieving objects in paral-
lel from the server. The parallel TCP approach was never explicitly addressed in the
HTTP/1.0 specification; instead, it was assumed to be part of a web browser’s opti-
mizations. As shown in Figure 1(b), opeming parallel connections allows the client
to incur multiple connection-establishment overheads “at the same time,” reducing
aggregate latency.

Another approach to solving the limitations of the mnitial HTTP/1.0 specification 1s
the use of persistent TCP connections as proposed in HTTP/1.1 (7). As depicted in
Figure 1(c). the HTTP/1.1 client need establish only one connection with a server
to retrieve an entire web page and its embedded objects. In addition, HTTP/1.1
also enables pipelining, where a client uses a persistent TCP connection to raquest
multiple objects 1n succession. Each object 1s requested without waiting for the
previous request to complete, which enables clients to eliminate one ETT latency
per downloaded object.

Finally, while HTTP/1.1 specification “softly” recommends opening up to two per-
sistent connections,® this does not prevent browsers from establishing multiple
parallel persistent connections (11). In addition, when pipelining 1s enabled — the
case explored in this paper — these become parallel persistent pipelined connec-
tions. * This scenario is shown in Figure 1(d). In this example, the client establishes
a connection to the server to retrieve the web page, then requests embedded objects

2 In the RFC terminology, SHOULD correspond to a “soft.” and MUST to a “hard” rec-
ommendation.
* Not all browsers support pipelining by default. We discuss this issue i Section 7.
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using the existing connection and a new one that 1t opens in parallel.

[mitially, this implementation appears to retamn the improvements established in
the HTTP/1.0 case. In addition. 1t appears that 1t outperforms the single persistent
HTTP/1.1 case (Figure 1(c)), provided that the use of parallel connections results in
a larger aggregated window size, thereby mmproving user-perceived performance.
However. the parallel connections approach requires both the client and the server
to send a larger number of TCP control (e.g., SYN and SYN ACK) packets, which
increases the probability that at least one such packet will be lost in the network.
A loss of a single TCP control packet invokes initially a 3-sec long timeout, which
doubles for each successive loss. Thus, when the web objects are small 1n size, the
loss of TCP control packets can dramatically increase the connection-establishment
latency: this can negate the potential benefits of accelerated data transfer that oc-
curs due to larger number of connections. We treat these problems in depth in the
following sections.

2 Modeling

In this section. we develop an analvtic model to evaluate the effects of parallel
connections on user-percetved web-response nnmes. Our analysis builds upon the
work of Cardwell ef al. (13). which calculates the expected latency for a single
TCP connection over a lossy link. Our key contribution here is the generalization
of this model for the parallel connections scenario.

We follow the established terminology and assumptions from (13; 14). In addition,
we assume that the packet loss ratio 1n the direction from the server to the client
1s domnant. This 1s justified by the fact that the congestion 15 much more likely to
arise in the server-to-client direction due to a larger amount of traffic being down-
loaded by clients. Also, we assume that the index page size 1s small enough to
fit inside a single TCP packet. This can slightly underestimate the user-percerved
latency, as we explain in detail below. Both of the assumptions considerably sim-
plify our analvsis; later in the paper we evaluate the model and show that these
assumptions do not significantly impact the model’s accuracy.

We consider the total tume to download a web page as the key performance metric
(13). Although web clients often attempt to render web pages even before the entire
index page has been downloaded, this traditionally vields poor results for media-
rich pages. For example. 1f the web page includes images essential to the user inter-
face (e.g., images for input buttons) or dynamic content such as Flash applications,
Javascrnipt code or Java applets. the user-percerved latency must encompass the tume
until these objects have been fully downloaded. Finally, we assume that the browser
1s not using any ~opportunistic’ schemes, 1.2, sending HT TP request for the same
object over multiple connections, or opportunistically discarding TCP connections



that experience congestion problems. To the best of our knowledge, web browsers
do not apply such techniques. We revisit this 1ssue 1n Section 7.

3.1 Connection Establishment

Figure 1(d) shows that the client and the server perform a three-way handshake to
establish the mnitial TCP connection. At each stage of this process, if either party
does not recetve the ACK that it is expecting within some retransmission timeout
(RT'()) seconds, it retransmuts 1ts SYN and doubles the RT'O value. According to
RFC 2988 (16). the RT'O is initially set to three seconds. ! Because we assume that
packet losses happen in the server-to-client direction. we model the losses of SYN
ACK and other packets generated by the server.

Denote the packet loss ratio in the server-to-client direction by p. Let Fii(i) be
the probability of a three-way handshake episode consisting of exactly ¢ failures
transmitting SYN ACK packets, followed by one successful SYN ACK packet.
Then

Py(i) =p'(1 - p). (1)

Denote by L., (1) the latency experienced by the client to recerve a SYN ACK
packet. This latency can be expressed as

Lewl(i) = RTT + (2 - 1) RTO. (2)

Indeed. 1if the initial SYN ACK packet successfully reaches the client. the latency
equals RT'T_If it gets dropped in the network, the latency becomes RTT 4 RT'O,
etc. Thus, the expected latency to recerve a SYN ACK packet, E[L, ], becomes

ElLeu] =Y Puali)Lew(i). 3)

i=0

Next. the client sends a request for the index page to the server. which replies
with a single packet containing the index page. This packet experiences the same
congestion as the SYN ACK packet. Moreover, according to RFC 2988, the initial
RT(O 15 again set to 3 sec for the first data packet. Thus, the expected value of
the latency expenienced by the client to recetve the index page packet after it has
recetved the SYN ACK packets equals the above expected latency for the client
to imitially recetve a SYN ACK packet. Hence, the expected value of aggregate

1 Our measurements confirm that FreeBSD and Linux boxes do follow this recommenda-
tion.
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latency for the index page, E[L;,,]. from sending the SYN packet to downloading
the index page. becomes 2E[L..].

Once the index page 1s downloaded, the client initiates a number of parallel connec-
tions. We assume that the connection establishment phase finishes when a/l TCP
connections are established. ® Thus, the entire process 1s dominated by the slow-
est connection. Denote by n the number of parallel connections. Next, denote by
k. k< n, the number of “slowest” connections; the connections from this group
experience exactly ¢ failures transmitting SYN ACK packets, while the rest of the
n — k connections experience a smaller number of failures. Denote by P(i. n) the
corresponding probability. Then

i1 n—k
Fli,n) = Z i L,"l" [P.':. fa [Zﬂ Ph'a?]] X 4)

for: = 1, while P{0,n) = (1 —p)". In other words, the probability that all connec-
tions are successfully established without a failure transmitting SYN ACK packets
15 (1 — p)”. On the other hand. the probability that £ connections experience i fail-
ures equals [th i)]¥: the probability that n — k connectiona experience less than 2
failures is [S°°"), P, (r)]*~*. Finally. the term counts all possible combina-
tions of the above events.

Ty

Figure 2 plots the connection-establishment probability for n parallel connections,
P(i.n), as a function of latency L..:(2), for =0, 1. and 2. Thus, the relevant points
on the x-axis are RTT (0.1 sec). RT T+ RIT'O (3.1sec)and RTTH+3RTO (9.1 sec).
The key point from the figure 1s that the probability of experiencing a larger number
of retransmissions increases with the number of parallel connections. For example,
the probability that ten connections are established within RTT sec 1s lowest rel-
ative to other scenarios in which a smaller number of connections 15 used. This 13

5 A TCP connection can be used to fetch web objects as scon as 1t 15 established, without

waiting for other connections to finish the setup process. We explain this in more detail
below.
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Fig. 3. Modeling: The ratio of connection-establishment and total latencies.

shown in Figure 2 for the 0.1 sec latency. At the same time, the probability that at
least one of the connections expeniences exactly one retransmission 1s the highest
in the case of ten connections. and the smallest in the case of a single connection,
as indicated in the figure for the 3.1 sec latency. This affects the expected parallel
connection establishment latency. as we explain below.

Finally. denote by L7,, the connection-establishment latency for n parallel connec-
tions, from sending the SYN packet for the index page to recemving the SYN ACK
packets for all n connections. Then. the expected value of L,,. E[L];]. can be
expressed as

eat] =

EL7] = ElLina] + Y P(i,n — 1)Leafi). (5)
=i

Equation (3) indicates that the expected latency to establish n parallel connections
equals the sum of the expected latency to establish the mnitial TCP connection and
download the index page, E[Li,4|. and the expected latency to establish the remain-
g n — 1 connections.

3.2 Total Time to Download

To fully understand the impact of establishment latency on the web transmission
transmission as a whole, we need a method of modeling the expected latency of the
actual data transfer. Here, we make no attempts to develop such a model; mnstead,
we apply the well-established results from (13). In (13). the authors model the TCP
slow start and congestion avoidance phases to compute the expected value of the
time spent in data transfer, E[Lg(D)] (Equation (23) from (13)). as a function of
the file size ). Below, we use this result to compute the expected latency when
parallel connections are used.

Denote by LI, () ) the total time needed to download a web page of size [) with n
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E[LL.(D)] = E[LL) + E[La(D/n)].

(=24

prove this assumption to be valid.

10

(b) 10% packet loss

Fig. 4 Modeling: The page response time versus the page size for different levels of packet

parallel connections. Then. the expected value of L2, ([} ) becomes

(6)

Equation (6) essentially breaks the connection lifetime into two separate stages:
connection establishment and data transfer. This equation appears to indicate that
we are forcing all connections to establish before transferring anv data. which 1s
not the case. Equation (6) indicates that the last connection to establish dominates
the whole page latency. This 15 because each TCP connection 1s responsible. on
average, for transferring the same amount of data, I /n. This 15 a valid assumption
because there 1s no evidence that web browsers use intelligent connection assign-
ment such that the first connection to establish is given the largest object to down-
load. Moreover, this 15 currently impossible because the HTTP index pages do not
provide information about object sizes. In addition, given that all connections share
the same network path, we assume that each connection experiences the same rate
of packet loss and the same connection bandwidth. Therefore, we contend that the
expected value of the total time to download a web page is governed by the last
connection to successtully establish. Both our simulation and testbed experiments

Figure 3 depicts the ratio of the expected values of the connection-establishment
and the total latencies (E[LL,/E[LL,(D)]). as a function of the page size D, for
different number of parallel connections n. The key observation 1s that for small to
medium page sizes, the connection establishment latency represents a large portion
of the total latency when parallel connections are used. For example, for the case
with a page size of 100kB and one connection, the establishment latency represents
only a small percent of the total latency. On the contrary, it represents as much as
approximately 60 % of the total latency when ten connections are used in parallel.

Finally, Figure 4 plots the expected latency, E[LL, (D], as a function of the page

()
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Fig. 6. Simulation: The page response time versus the page size for different levels of packet
loss.

size D). and for different number of parallel connections n; the packet loss ratios are
1% and 10%. The figures indicate that for small to medium page sizes, the use of
parallel connections can degrade the total latency to a level that 15 below the level
achievable by a single connection. This 1s because the connection-establishment
latency increases with the number of parallel connections used. Since this latency
domuinates the total latency for small to medium page sizes, the single connection
achieves the best performance. Figures 4{a) and 4(b) further show that this effect 1s
more pronounced for larger packet loss ratios. This 15 due to fact that the connec-
tion establishment latency increases with the packet loss ratio. Finally, the figure
indicates that as the page size increases, the benefits of parallel download start to
domunate the total latency. In the next section, we explore these effects via simula-
tion.

11



4 Simulation Experiments
4.1 Simulator Setup

Figure 3 depicts our simulation scenario. It consists of a web-client pool and a web
server, which are interconnected by a pair of routers and a bottleneck link. Each
node from the client pool connects to router K, via a 1 Gbps link; likewise, the
web server and router [, are connected by a 1 Gbps link. whaile we set the capacity
of the link between routers H; and F; to 10Mbps. We uniformly distribute the
flow round-trip times 1n the range from 10ms to 100ms. In order to accurately
control the congestion level at F», we randomly drop p percent of packets that pass
through the router from the server to the clients. This 15 accomplished using the
ns-2 extensions from (17). We set the congestion in the server-to-client direction
simply because this 15 more likely to happen. Fundamentally, there should be no
difference 1f the congestion 15 more domunant in the reverse direction.

In the experiments, clients send HTTP requests and retrieve web pages from the
server. We set the index page size such that 1t can fit 1n one packet and thus mini-
mally affect the aggregate latency. The object sizes, as well as the number of em-
bedded objects per page vary i different expeniments; we provide the exact values
below. We use a TCP window size of 16 kBytes and a segment size of 1460 Bytes. ©
In order to fully explore the design space. we change the maximum number of
parallel connections among 1, 2, 3. 5 and 10. Also, we vary the packet loss ratio
between 0 and 10%. Our goal 1s to emulate both moderate congestion scenarios
and heavier ones that may arise due to flash-crowd events (19). Network measure-
ments reveal that the median per-connection packet loss ratio in the Intemet 15 1%
(20). However, a non-negligible percent of clients mayv experience high packet loss
ratios, e.g., above 10% (21).

We upgraded the extension from (22) to enable the support of parallel persistent
TCP connections as follows. When a client requests a page, 1t establishes a persis-
tent TCP connection to the server and sends the HT TP request. which 15 encapsu-
lated 1n a single fixed-size TCP packet. After recerving the index page, the client
establishes the maximum allowed parallel connections for the sumulation run, then
retrieves the embedded objects in a pipelined manner. If the number of files em-
bedded in a page 1s greater than the maximum number of parallel connections, file
requests are pipelined round robin into the available conmections. If the number
of embedded objects 15 smaller than the maximum number of parallel connections
for the run. then the client opens enough connections such that there 1s one con-
nection per object. Indeed, reference (23) indicates that this is the policy currently
immplemented by web browsers.

® The measurement study from (18) reveals that the median advertised window parameter
in the Internet 1s 16 kBytes.
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4.2 Evaluation

4.2.1 The User-Perceived Latency as a Function of the Page Size

We begin the simulation evaluation by examining the effects of the page size and
packet loss on web browser performance. Here, the key performance measure 1s
the end-to-end response time for each page request/response pair. For a given page,
we compute its response time from the moment when the first request for the index
page 1s sent to the server, until the whole page 1s successfully downloaded by the
client.

Figure 6 plots the average response time (the v-axis in the figure) as a function of
the page size (the x-axis in the figure) for different maximum numbers of parallel
connections allowed. For each page size value, the web pages are made to contain a
number of objects between one and the maximum number of parallel connections;
we collect 1000 latency values for each such min. Each data point in Figure 6 rep-
resents the average over all of these runs, and the standard deviation (not shown)
tends to be quite large for smaller aggregate data sizes. This occurs due to the large
timeout interval during connection-establishment. Nevertheless, the averages quate
successfully capture the differences induced by the varving number of parallel con-
nections.

Figure 6(a) demonstrates the effect of varving the number of parallel TCP connec-
tions with 1% packet loss, representing a scenario with a moderate packet loss ratio.
We use a log-log scale to emphasize the change 1n latency over small page sizes.
Figure 6(a) shows that latency is better with one connection for small-to-medium
page sizes, with multiple parallel connections becoming effective only when the
page size 1s greater than 100-300kB. For example, two parallel connections out-
perform the single connection approach for page sizes larger than 100kB, while
10 connections achieve the same for page sizes larger than 500 kB. This 1s because




COF of Rasponse Times, 10% Loss, UCSD distdoutian CCOF of Responsa Times, 10% Lass, CED distrbubon

T T T P, — 1 * T T
e L
IR RTEEE —
T B 1 B ol
- =
! ¥
v ml
£ . £ ot
|E - . o+ . ‘-.:
i + " + : E o0 |-
3| o+ - + o r i
é’ * - H : ~ " I%-.\
-] A - A - il
= ml L I I o
& o <
e R |
Boal e R R i
il jmemm }
] |
(LA -
a i N al
i H 3 Ll ] (o] o i 0 1
Time {s] Time (s}
(a) CDF (b) CCDF

Fig. 8. Stmulation: CDF and CCDF response-time profiles; packet loss rate 1s 1094,

the connection setup latency increases with the number of parallel connections, as
established in the previous section.

Figure 6(b) repeats the previous experiment, but using 10% packet loss, represent-
ing a scenario with a highly congested server. In this case, the difference between
a single connection and multiple connections 1s more pronounced for short pages.
For example, there 1s an order of magnitude improvement i latency for a single
connection compared to 10 parallel connections. This 1s because the connection
setup latency increases with the packet loss ratio and the number of parallel con-
nections. On the other hand, the parallel connections approach start to “payv off”
sooner. for shorter page sizes. For example, 10 connections outperform a single
connection for page sizes larger than 140kB: this 1s smaller than 300 kB required
in the 1% loss scenario. Thus, despite the fact that parallel connections initially lag
more dramatically behind a single connection, they manage to improve the overall
performance and outperform the single connection sooner; this 1s due to extremely
poor performance of a single TCP connection 1n highly congested environments

(1: 2).

4.2.2 Response-Time Distribution Profiles

While quate insightful, the above experiment does not use a realistic object- or
page-size distribution: instead. it uniformly distributes a given page size on a num-
ber of objects. In the next set of experiments. we apply a workload that reflects a
real-world scenario to determune the effect of parallel connections on a typical web
browsing experience. In particular, the object sizes are set according to the distribu-
tion reported 1n (17), which 1s obtained from representative network measurements.
Similarly, the number of embedded objects per page is set according to a distribu-
tion reported in (11), which 15 derived based on a representative sample consisting
of over 22 000 web objects.
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In order to express the above effects 1 a uniform manner, we proceed as follows.
We report the cumulative distribution function (CDF). F(z) = Pr[X = z], of re-
sponse times up to an upper bound (e.g.. 2 or 3 seconds). as origmally proposed
in (24). CDF plots focus on the short-latency region where the vast majority of
pages are downloaded, and they accurately reflect differences that anise due to par-
allel connections. In addition. we report the complementary cumulative distribution
function (CCDF), 1 — Pr[X < x|, of response times; the CCDF profiles capture the
performance of large pages and best reveal the tails of response-time distributions.
In these graphs, each data point represents the average of over 12,000 web page
downloads.

Figure 7(a) plots the CDF curves for average latency with 1. 2. 3, 5 and 10 parallel
connections and 1% packet loss. The figure clearly shows that. on average, using a
single persistent connection results in lower latencies than using multiple connec-
tions. For example, approximately 73% of the pages are downloaded in less than a
second when a single connection 1s used, while this percentage drops to 60% when
10 parallel connections are used. As latency increases, the separation between the
curves decreases. This happens because, as object sizes increase, parallel download
becomes more effective. Overall. however, parallel downloading never manages to
outperform the single connection approach.

The CCDF plot in Figure 7(b) further confirms this result. The smaller the tail of the
distribution 13, the smaller the mean response time, and the better the performance
of a particular scheme. Although the curves are very similar, the single-connection
approach still retains the smallest tail. This 1s because a larger number of large
objects in the same page (a scenario in which parallel connections outperform the
single connection case) rarely occurs.

Finally, Figure 8(a) repeats the previous experiment, but changes the packet loss
to 10%. 5till, the single connection has the best performance. Figure 8(b) further
shows that the CCDF profiles for different connections are almost identical. Thus,
despite the potential for parallel connections to improve the response times of large
pages, such events are very rare.

5 Testhed Experiments

Here, we perform a set of testbed experiments with the goal of venifying the above
findings 1n a real system. We replicate a topology similar to the one depicted in Fig-
ure 3. Our testbed consists of a server and a client machine. The server machine runs
Linux 2.6 and the Apache 2.0 web server (23); the index page 15 implemented as a
dynamic web page that generates objects of specific sizes. The client machine runs
FreeBSD and a sumple web client program that we explain in more detail below.
Both machines are Dell Dimension Desktops with Pentium IV 3.0 GHz processors,

—
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Fig. 9. Testbed experiments: The page response time vs. the page size

and 100 Mbps network interface cards. Provided that the congestion 1s typically
more likely to happen in the direction from the server to the clients, we use the
Traffic Control (tc) utility to probabilistically drop packets from the sending queune
on the server.

Our web client implementation consists of a program that mitially creates a single
connection to the server and then downloads a small index page. 7 The index page
size 15 small enough to fit into a single packet. Following the index page down-
load, the client program opens the maximum allowed parallel connections for the
experimental run; then_ it retrieves the embedded objects 1n a pipelined manner as
explained in the previous section. The imitial connection used to download the -
dex page 1s reused as one of the parallel connections downloading the referenced
objects. The client program spawns multiple threads to handle the parallel connec-
tions. Our measurements show that processing time has little to no effect on the
behavior of the network connections, so we do not include it 1n our analysis.

Figure 9 shows the average page response time as a function of the page size. both
for a single pipelined connection and for 10 parallel connections. The packet loss
rate 15 set to 10%. Due to the smaller number of latency values compared with the
simulation experiments, the curves in Figure 9 are not as smooth for smaller page
sizes. As explained. this large deviation occurs due to large timeout mterval dur-
ing connection-establishment. Indeed. while Figure 9 mav leave the reader with the
immypression that the difference of several hundreds of ms between the two curves
mav not be relevant for clients, this is not the case. Figure 9 depicts the average
latency; it reveals that the number of long (and annoying) TCP timeouts is signifi-
cantly larger when parallel conmections are used.

The curve for 1% loss ratio, while showing the same general trend, exhibits even

larger variations, so we refrain from showing it. Nevertheless, our results line up
reasonably with our modeling and simulation results.

" The source code is available at http://www.cs.northwestern.edu/
“dAro9l1E /fwebBrowaPert /.
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6 Related Work

Web performance has been thoroughly evaluated over the last decade. Thas section
presents a detailed review of the relevant work concerning HTTP performance.

Since persistent HTTP (P-HTTP) was first proposed by Mogul (6:; 26). and since 1ts
subsequent implementation m HTTP/1.1 (7). the evaluation of this technique has
been a popular research topic. Nielsen et al. (8) showed that a pipelined HTTP/1.1
implementation outperforms HTTP/1.0, even when the HTTP/1.0 implementation
uses multiple connections in parallel (Figure 1(b)). In this paper, we showed that a
HTTP/1.1 implementation that uses a single pipelined TCP connection significantly
outperforms the parallel pipelined HTTP/1.1 approach.

Next, Knshnamurty and Wills (9) demonstrate that pipelining and persistence 1m-
proves relative performance of pages with more objects. They explore single per-
sistent HITP/1.1 connections with pipelining versus serial HITP/1.0 connections
and show that HTTP/1.1 offers the best performance. Farkas er al. reach the same
conclusion mn (10).

On the contrary, the measurements by Barford and Crovella (27) indicate that
pipelining does not significantly reduce file-transfer latency. They conclude that
this difference is due to the shorter RTT times in their LAN environment. Sim-
ilarly. Kmuse ef al. (28) point out the problem of ordering, retrieval. and displav
of page elements in HTTP/1.1 that can cause the user’s percerved performance to
degrade. Finally, Heidemann (29) finds and solves several performance problems
caused by interactions between P-HTTP and TCP.

To the best of our knowledge. Bent and Voelker (13) are the first to evaluate the 1m-
pact of parallel persistent connections on client-percerved performance. Contrary
to our findings. they conclude that enabling parallelism improves the nser-percerved
performance. The inconsistency between the two results 15 due to different evalu-
ation environments. Bent and Voelker generated their measurements by replaving
browsing traces; but. as pointed out in (13), these measurements were gathered
overnight, which means 1n a highly uncontested environment. Indeed. if there 15
no congestion in the network, the price of establishing multiple connections 1s the
same as the price of establishing a single connection but the increased number
of connections accelerates the data transfer. Thus. enabling parallelism improves
the user-percerved performance in such cases, as our model predicts. However, we
showed that the results change dramatically when the level of parallelism and the
packet loss ratio increase.

Balaknishnan ef al. (30) study the effect of parallel connections on end-to-end per-
formance and the network. Thev conclude that existing loss recovery techniques
are not effective for avoiding timeouts and that a client using a collection of par-
allel connections 1s more aggressive. Hence, they propose integrated congestion
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control/loss recovery scheme. Despite the fact that they motivate their work by
web server behavior, they apply and evaluate their solution in scenarios with Jong-
lived TCP flows. In such cases, the connection establishment problems are less
pronounced.

Others have also treated the problems related to the performance of parallel TCP
connections in a wide-area network environment (3; 31; 32). Particularly interest-
ing 1s the work of Lu er al. (31). where the authors develop a model to allow ap-
plications using parallel TCP connections to increase their aggregate thronghput
without placing undo stress on the network. Our work derives a model for small
parallel TCP flows. 1n which the setup cost 15 the dominant factor of performance.

Finally, the sensitivity of end-to-end performance to loss of TCP conmrol packets
has been explored previously. In (33), Hall ef al. measure data loss to a news
server. The results clearly show that the largest performance degradations are due
to loss of SYN packets.

—
i

Discussion

Distributed web content. In today’s Internet, many web objects are fetched from
multiple servers. This 1s because many popular web sites are hosted by content
distribution network (CDN) providers (e.g., Akamai (12)). In such scenarios, the
browser opens separate TCP connections to each of the origin servers and fetches
data concurrently. While parallel connections make perfect sense 1n such cases, in
this paper, we focused on a different problem — the one in which a web browser
opens parallel TCP connections to the same web server. Measurements reveal that
in addition to opening parallel connections to different origin servers, browsers
open multiple connections to each such server (11).

Server-side effects. This paper focuses on network-side effects of the examined
problem. While server-side effects are certaimnly relevant, they are beyond the scope
of our work here. Nevertheless, the use of parallel connections increases the num-
ber of TCP SYN packets send to the server, which necessarily magnifies the burden
placed on 1t. While modern servers are becoming increasingly resilient to such
stresses (34). reducing the number of TCP SYN packets could only improve a
server s performance.

Opportunistic use of TCP connections. To the best of our knowledge. modern
web browsers are not opportunistically using TCP connections. For example, a
browser mayv send a number of TCP SYN packets and then simply use the one
whose SYN ACK packets arrives the first. Anderson ef al. (33) demonstrated (in a
somewhat different context) that such an approach can improve availability of web
services. While the same approach would be capable of improving clients” perfor-
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mance in the classical web client/server scenario, adoption of such a technique by
popular web browsers would place an enormous additional load on servers, e.g.,
incomparably larger than what a small-scale overlay testbed from (33) 1s capa-
ble of Likewise, while it may appear attractive to remove the RTO mechanism
all together, pursuing this avenue 1s dangerous. as timeout mechanisms are funda-
mentally required to achieve high performance during periods of heavy congestion

(36).

Pipelining. Like almost any innovation in the Internet. the deplovment of pipelining
1s experiencing difficulties. This 15 mostly due to “broken™ load-balancing proxies
that do not handle pipeliming properly. As a result. web browsers either disable
pipelining by default and leave the final decision to clients (e.g.. Net scape and
Firefox) or implement heunstics to enable/disable 1t (e.g.. Opera). While 1t 13
clear that pipelining is essential for achieving high page-load performance, our key
contribution lies in demonstrating that it 1s not sufficient: in addition to pipelining,
browsers must refrain from opening multiple connections.

The whole-page metric. We usze the average time to download the whole web
page as the key performance metric to demonstrate the advantages of a single-
connection approach. One criticism of such a metric 1s that it dossn’t consider the
so-called head-of-line blocking problem 1n the single-connection scenario; if the
TCP connection 1s broken — all objects are stalled. However. this does not change
our result which states that the single connection approach on average outperforms
parallel connections. A good analogy can be made with air transportation; when an
airplane crashes, chances are very slim that anv of the passengers will survive the
crash. However, on average, airplanes are by far the safest means of transportation.

Even though users are ultimately most interested in whole-page performance (13),
another criticism 15 that this metric 15 not relevant because clients may parse par-
tially loaded pages. Although this technique enjovs limited success for reducing
user-perceived latency. there are many scenarios in which the whole-page metric
1s essential. For example, a web page that relies on a Flash application or Java ap-
plet for its core functionality cannot be considered fully loaded until the requisite
embedded objects have been fully loaded.

§ Conclusions

This paper examined the effects of the use of parallel connections in web browsers
on client performance and discussed the effects that this technique has on server
performance. We showed that for small to medium page sizes, the parallel connec-
tions can degrade the user-percerved latency by up to an order of magnitude relative
to the single connection case. The key reason for this effect is the gap between the
cost of setting up the parallel connections and the benefit of accelerated parallel
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download. The high establishment cost 1s induced by TCP control packet losses
that cause long retransmission timeouts; the benefit of parallel download 15 small
when the web objects are small in size.

We developed an analytic model that successfully captures several key system de-
pendencies. In particular. the model quantifies the wav in which the connection-
establishment latency increases with the number of connections and the level of
congestion. We bolstered our findings by simulation and testbed experiments and
showed that, depending on the congestion level and the number of parallel connec-
tions used, parallel download starts to outperform the single connection approach
when the page size i1s bevond 100-300kB. Finallv, we evaluated realistic web
workloads to determine the impact of parallel connections on typical web browsing
scenarios. While 1t 1s clear that opening multiple connections certainly places ad-
ditional stress on web servers, our results show that this technique on average does
more harm than good to clients, independently of the server load. Thus, all clients
have incentive to abandon this well-established practice; not only for the benefit of
servers, but for their own sake.
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