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ABSTRACT

Characterizing the relationship that exists between people’s
application interests and mobility properties is the core ques-
tion relevant for location-based services, in particular those
that facilitate serendipitous discovery of people, businesses
and objects. In this paper, we apply rule mining and spec-
tral clustering to study this relationship for a population
of over 280,000 users of a 3G mobile network in a large
metropolitan area. Our analysis reveals that (i) People’s
movement patterns are correlated with the applications they
access, e.g., stationary users and those who move more often
and visit more locations tend to access different applications.
(ii) Location affects the applications accessed by users, i.e.,
at certain locations, users are more likely to evince interest
in a particular class of applications than others irrespective
of the time of day. (iii) Finally, the number of serendipitous
meetings between users of similar cyber interest is larger
in regions with higher density of hotspots. Our analysis
demonstrates how cellular network providers and location-
based services can benefit from knowledge of the inter-play
between users and their locations and interests.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations
C.4 [Performance of Systems]: Measurement techniques

General Terms

Measurement, Human Factors, Experimentation
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1. INTRODUCTION
Recent advances in technology allow mobile devices to

find their physical location via a multitude of methods: cell
tower look up, cell tower triangulation, cell tower and wi-fi
access point triangulation [6] and Global Positioning Sys-
tem (GPS), with varying accuracy levels. Besides the use
of location estimation for navigation services, a new class
of applications, ‘serendipitous’ location-based services, have
also gained tremendous popularity. These services and ap-
plications allow users to serendipitously, i.e., accidentally
discover people, businesses and other locations around them
that match their interests.

For instance, location-aware social networking applica-
tions such as Loopt [3] or Pelago [4] enable ‘serendipitous
meetings’ between friends who discover that they are in the
same neighborhood or city and hence may decide to meet.
Some applications [5] even facilitate formation of new rela-
tionships by allowing users to share their location and profile
information with the entire user base. A user can look up
who else is in proximity and depending on common interests,
can decide to communicate. Furthermore, location tagging
services allow a user to leave interesting tags about a partic-
ular geographic location, e.g., photos [1] or snippets about
current events, etc., and then other users who are in vicin-
ity of that location could be automatically prompted with
those geo-tags. Finally, location-based advertising [2] allows
a retailer to send advertisements to users on detecting that
a user, who previously opted-in to the service, has entered
the ‘geo-fence’ area around the retailer.

These serendipitous location-based services are typically
designed to work even when users provide only coarse-grained
location information. This is due to several reasons. First
and perhaps the most important reason is privacy related.
Users may be more comfortable sharing their location with
friends and businesses at coarse-levels such as neighborhood
or city as opposed to finer-levels such as street address or
GPS coordinates. Second, a vast majority of mobile phones
in a 3G network are still not GPS enabled and hence their
location needs to be obtained via other techniques such as
cell tower look up.



Regardless, these applications still provide a meaningful
experience in the face of coarse location information. In so-
cial networking, it is sufficient for two friends to decide to
meet up if they know that they are in the same neighbor-
hood - they do not necessarily have to know each other’s
exact latitude and longitude to decide on meeting up. Sim-
ilarly, for location-based tagging as well as advertising, if
someone is within a radius of a few hundred meters to a
few miles, that can be sufficient for prompting the user with
geo-tags left by others or advertisements from businesses in
the neighborhood.

The fundamental questions relevant to these serendipi-
tous location-based services remain yet unanswered. For in-
stance, how likely is it to meet in our daily lives, and where,
with people who share similar interests in cyber domain?
What role does our physical location play in terms of what
we access online from there?

We answer these questions by considering an underlying,
yet even broader question: what is the relationship between
one’s mobility properties and affiliations towards given ap-
plications in cyber domain? We answer this question by
systematically and methodically studying the user mobil-
ity and Web access patterns for over 280,000 clients of a
3G mobile network in a large metropolitan area. Using a
one-week network trace, we obtain the application interest
expressed by a user by classifying URLs accessed in to broad
categories such as social networking, dating, music, gaming,
trading, etc. We obtain mobility patterns by extracting the
time-sequence of base-stations accessed by users.

To the best of our knowledge, we are the first to systemat-
ically study the relationship between mobility patterns and
application affiliations at such a large scale. This is our main
contribution. Among a number of insights that we provide,
the key one is that we present a first-of-its-kind evidence
suggesting a strong application affinity at certain locations
irrespective of time of day, i.e., certain locations inspire peo-
ple to access a specific application type.

To understand the relationship between mobility and the
corresponding application usage, we apply an association
rule-mining approach [25] to extract the most prominent be-
havior in mobility and applications. Our analysis confirms
previously reported results [20] on the high predictability
of human movement. For example, we find that 70% of
users return back to at least one common location every
day over a one week period. In addition, we find strong cor-
relation and anti-correlation between some applications and
mobility. For example, we find that listening and download-
ing music prevails for stationary users. For mobile users,
bandwidth- and battery-intensive applications (such as mu-
sic) fade away, while e-mail prevails.

We find that users spend most of their time within their
‘comfort zone’ consisting of three top-most locations, includ-
ing home and work. The access behavior inside and outside
the ‘comfort zone’ differs. For example, dating applications
are mostly accessed from within the ‘comfort zone’, but nei-
ther from home nor from work. On the other hand, users
who leave the ‘comfort zone’ exhibit the tendency of stay-
ing connected by accessing social networking sites, reading
e-mail and news.

Next, we explore the relationship among locations and
applications accessed at them. To achieve this, we extend
the rule-mining approach to identify location hotspots. We
define four types of hotspots based on the time of day when
they are active, i.e., day, noon, evening, and night. We find
that there is a strong bias towards applications accessed by

people at the locations at which hotspots occur. Because the
hotspots we define are time dependent, we explore whether
the root cause of the observed application skew is the time
of day or the location itself. We find that in majority of
scenarios, it is location that dominantly impacts which ap-
plications are accessed.

Finally, to explore the probability that people with similar
cyber affinities meet each other in the real world, we proceed
as follows. Using a spectral clustering approach [12], we split
the metropolitan area into smaller regions. We find that the
frequency with which one meets others who share the same
cyber interests is determined by the density of hotspots in a
given region, i.e., fraction of locations that are hotspots in
the region.

This paper is structured as follows. In Section 2, we pro-
vide details about the trace, and explain how we mine the
desired mobility and application usage information. In Sec-
tion 3, we define our rule-mining based approach and pro-
vide insights about the relationship between mobility, ap-
plications, and locations. In Section 4, we explore hotspots,
perform the regional analysis in Section 5 and in Section 6,
we present related work. We summarize our findings in Sec-
tion 7 and discuss potential benefits to cellular networks and
location-based services.

2. PRELIMINARIES
Here, we provide details about the dataset. Then, we ex-

plain how we extract users’ mobility properties and interests
in the cyber domain, i.e., affiliation towards given Internet
applications and services.

2.1 Trace Description
We use an anonymized trace collected from the content

billing system for the data network of a large 3G mobile ser-
vice provider. The trace contains information about 281,394
clients in a large metropolitan area of 1,900 square miles
(approx. 5,000 square kilometers) during a seven day pe-
riod. It preserves user privacy as all identifiers such as
users’ phone numbers, email addresses and ip-addresses were
anonymized.

The trace provides details of a packet data session de-
fined as beginning from the time the user is authenticated
by the authentication, authorization and accounting (AAA)
protocol by the Remote Authentication Dial in User Ser-
vice (RADIUS) [24] server to the time the user logs off. In
between, a user’s packet data session consists of HTTP and
Multimedia Messaging Service (MMS) sessions1 initiated by
the user.

When a customer logs on, the serving Packet Data Serv-
ing Node sends a RADIUS Access-Request to the RADIUS
server. If the user is successfully authenticated, the RADIUS
server returns an Access-Accept message which contains a
‘correlation identifier’ which will be used to uniquely iden-
tify the user through the entire packet data session. Next,
the Packet Data Serving Node uses the RADIUS accounting
protocol (RADA) [23] for communicating events that involve
data usage to the RADIUS server [23].

These accounting messages contain the following relevant
information: local timestamp, anonymized user identifier
(phone number or email address), anonymized ip-address
assigned to the user, correlation identifier, and the base-
station that was currently serving the user besides other in-

1Whenever we use the term session later in the paper, we
refer to the packet data session, unless stated otherwise.
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Figure 1: Sequence of locations for a user.

formation. These accounting messages can be of type Start,
Update and Stop and there can be any number of these mes-
sages within a packet data session. Start messages are used
to indicate the beginning of a new accounting activity, e.g.,
when the user starts a new application in the current data
session. Update messages are generated periodically to in-
dicate the current accounting status of the data session [7].
The Stop message contains an attribute, ‘Session Continue’
which when set to ‘false’ is indicative of the end of the ses-
sion. Changes in user’s currently associated base-station are
reported either in an Update message or via a Stop message
immediately followed by a Start containing the new base-
station.

Each HTTP session contains the following details: user’s
anonymized ip-address, the URL accessed and the local times-
tamp. Because the Multimedia Messaging Service (MMS) is
run over HTTP in this network, the trace provides the same
records for MMS as well.

We reconstruct a user’s entire packet data session as fol-
lows. Using RADIUS and RADA messages, we build an as-
sociation between a user identifier (phone number of email
address) and his currently assigned ip-address. Then, we
identify the applications accessed by a user by grouping the
HTTP and MMS sessions that occur after a RADIUS ses-
sion and have the same ip-address as was assigned to the
user.

The trace provides the location of a user in terms of the
base-station. In the trace, we have a total of 1,196 base sta-
tions for the large metropolitan area. The area serviced by a
base-station in this network varies from hundreds of square
meters (in densely populated areas) to several square miles
(in sparsely populated areas). On average a base station ser-
vices 4 square kilometers. In the remainder of the paper, we
use the term location to refer to the area serviced by a spe-
cific base-station. Thus, while our trace does not provide
GPS-level fine-grained location information, we will show
later that location information at the level of base-stations
is still invaluable from the perspective of the serendipitous
location-based services. In particular, we will show how we
can infer generic user mobility properties (Sections 2.2,3.1),
as well as correlate locations with application usage (Sec-
tion 3.2).

2.2 Extracting Mobility Properties
Here, we explain how we extract mobility patterns from

the trace and present preliminary results about human mo-
bility.

Table 1: Trace statistics

Mean 90%ile Max.

Session duration 40 min 60 min 3 days 20 hrs
Number of sessions per user 11.2 24 4,442

Number of unique 4.2 8 128
base stations per user

Figure 1 shows an example for the location sequence of
a user across two different packet data sessions. We use
the RADIUS accounting packets of type Start, Update, and
Stop to extract the sequence of locations or base-stations
accessed by a user along with the timestamps at which the
user was present at those locations.

There can be two kinds of movements for a user. (i) (i)
Intra-session movement happens when the user’s location
changes within a packet data session due to hand-offs, e.g.,
between (Accept, 0, 1) and (Start, 2, 2). (ii) Inter-session
movement happens when the location changes during the
inactive time, i.e., when the user is not active in the mobile
network, e.g., between (Stop, 7, 3) and (Accept, 9,3).

We consider a user to be stationary if the base-station he is
associated with does not change. That is even if the user did
physically move within the base-station, for our purposes,
we consider him as stationary. Similarly, there can be two
kinds of stationary events for a user: (i) intra-session when
a user’s location stays the same within a packet data session
and; (ii) inter-session when a user’s location remains the
same between two consecutive sessions.

In our seven-day long trace, we record 3,162,818 packet
data sessions, generated by 281,394 users. Table 1 provides
a few representative statistics for the trace.

2.2.1 Basic Mobility Observations

While we are able to detect a user’s access to the mo-
bile data network and accurately estimate a given location
(above) and characterize accessed applications (below), an
important underlying question is if we are able to accurately
estimate user mobility patterns. In particular, there is on
average a gap of 6 hours and 11 minutes between two con-
secutive sessions from the same user. On separating users
as those who move and those who stay stationary between
two consecutive packet data sessions, we obtain the average
inter-session move and stationary times as 8 hours and 23
minutes, and 4 hours and 25 minutes respectively. In com-
parison, the average time spent by a user session moving is
9.3 minutes (intra-session movement) and stationary is 31
minutes (average intra-session stationary).

Necessarily, intra-session movements provide more infor-
mation about user movement than inter-session movement.
This is because in intra-session movements, we are capable
of tracing all locations visited by a user while he was online.
In this regards, we look in to whether inter-session move-
ments still capture adequate information when compared to
intra-session movements. We compare the two movements
from the perspective of displacement probability.

Given a time difference ∆T , we identify all inter-session
and intra-session movements where the user has changed
his location within the time gap: ∆T ± 0.05∆T . Figure 2
shows cumulative distribution function (CDF) of user dis-
placement, i.e., how far a user moves in the given time in-
terval, with intervals ∆T ranging from 20 minutes to one
day. We compute the distance between two locations as the
geodesic or great-circle distance between them, which takes



Table 2: Classifying URLs in to Interests

Interest Keywords Interest Keywords Interest Keywords

Dating dating, harmony, personals, single, match Gaming poker, blackjack, game, casino Mail mail
Music3 song, mp3, audio, music, track, pandora Maps virtualearth, maps MMS mms
News magazine, tribune, news, journal, times Photo gallery, picture, photo, flickr Ringtones tones

Trading amazon, ebay, buy, market, craigslist Search google, yahoo, msn Weather weather
Social netw. facebook, myspace, blog Travel vacation, hotel, expedia, travel Video video
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Figure 2: Displacement probability.

the earth’s sphericity in to account2. We have two points
to make. First, most human movements occur over short
distances, however, humans are also likely to travel large dis-
tances, albeit with smaller probabilities. This result is in line
with previous findings [9, 20]. Second, inter-session move-
ments, despite containing less information about users’ lo-
cations than intra-session, still exhibit similar displacement
probabilities. Hence, lack of information about locations
visited by the user when he was offline, does not undermine
our ability to estimate mobility patterns.

2.3 Extracting Application Interests
Next, we show how we extract a user’s application interest

by classifying the URL visited. We only have access to the
first part of the URL and not the actual parameters that
are being exchanged with the website. Hence, user privacy
is preserved in this respect as well.

Consequently, we classify the URLs accessed by users into
application interests via keyword mining over the URL. We
distinguish the following categories: dating, gaming, mail,
maps, MMS, music, news, photo, ringtones, search, social
networking, trading, travel, video and weather. A compre-
hensive list of the classification rules we employ is provided
in Table 2. Some keywords, e.g., google, yahoo and msn rep-
resent portals from where users can access different services
(e-mail or search). Hence, in order to distinguish between e-
mail (keyword: mail) and search (keywords: google, yahoo,
msn) we apply the mail rule first.

Furthermore, every time we see a URL accessed by the
user, we extract the last location that the user was seen
at. Each of these application accesses are also encapsulated
in the corresponding packet data session by considering the
times at which the user logged on and off from the network.

In the rest of the paper, we present results for only the

2As earth is not a perfect sphere, our calculations are an
approximation, which however is sufficient for our purposes.
3Note, that the music interest category comprises of both
downloads as well as streaming music.

following interests: dating, social networking, music, e-mail,
trading, and news for the following reasons: (i) categories
social networking, dating and music represent interests and
goals which can serve as triggers for users to arrange for a
serendipitous meeting; (ii) categories e-mail and news rep-
resent the urge to stay connected to friends and world events
and; (iii) category trading represents a potential location-
based market place where people interested in buying and
selling goods in same geographic area could be matched up.
We opportunistically emphasize other applications as and
when necessary.

One limitation of our study lies in the fact that our trace
does not contain device type information. Indeed, certain
devices have characteristics which make them attractive for
a specific purpose, for example they can be easily used as
navigation tools or for sending e-mails. Such extra features
that are device-dependent can have a bias on our analy-
sis. Also, recently, mobile service providers have started
commercializing modems that can be used with personal
computers such as laptops. Users can use these devices to
connect to the Internet from anywhere within the cellular
network. One concern is that these devices do not constrain
the user (in terms of application accesses) in the way a lim-
ited resource platform such as a mobile phone might. Such
modem devices exist in the network that we have analyzed,
although in a relatively small proportion compared to the
total devices; they number a few hundred as informed by
the provider.

3. FROMHUMANMOVEMENTTOAPPLI­

CATION USAGE
Here, we explore basic human mobility patterns, and then

study the relationship between movement and locations on
one hand and application usage on the other.

3.1 Basic mobility patterns
We first develop a methodology to extract basic mobility

patterns exhibited by users. Then we provide initial insights
about inter- and intra-session movement properties. Finally,
we study movement predictability.

3.1.1 Binary trajectory rules

We develop a methodology based on association rule min-
ing [25] to extract binary rules which group movement and
stationarity events with one antecedent and one consequent,
e.g., users who are present at one location who then move
to another location. This methodology also allows us to
identify location boundaries (source to target location) that
become popular at certain times of day, e.g. due to work
commutes as well as locations which are popular with sta-
tionary users, e.g. residential and work areas. We will later
use this methodology for identifying hotspots in Section 4.

First, note that a user who is accessing the mobile data
network from a certain location (base-station) has the fol-
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Figure 3: Hours of day when inter-session rules are active

lowing three possible exit states: (1) user moves to a new
location either while staying connected via the same session
(intra-session movement) or logs-off and logs back again via
a new session (inter-session movement); (2) user stays at
the same location (intra- or inter-session stationary) and;
(3) user switches-off his mobile device (disappear) and does
not re-appear for some time. Equivalently, a user can be de-
fined to have the following three entry states with respect to
a location: (1) user appears in the location for the first time
via a new session; (2) user stayed in the location from the
past and; (3) user entered the location from a different one.
We will explore the entry states of a user later in Section 5.
Here, we define the following three rules to group users with
respect to their exit states:

Definition 1. Movement Rule:
Group all users ui from the user-set U who are present at
location xi, from where the user accessed the network via a
session at time ti ∈ time window w and whose next location
is xj 6= ∅ either within the same session or via a new session
before time ti + δ.

Given δ, ∀ui ∈ U, obtain groups (xi, xj 6= ∅, w, δ) s.t.

∃tj ∈ (ti, ti + δ] : xi, ti ∈ w =⇒ xj , tj .

Definition 2. Stationary Rule:
Group all users ui from the user-set U who are present at
location xi, from where the user accessed the network via a
session at time ti ∈ window w and has since been present
at the same location xi either via the same session or a new
session, since time ti up until the time ti + δ.

Given δ, ∀ui ∈ U, obtain groups (xi, xi, w, δ) s.t.

∀tj ∈ (ti, ti + δ] : xi, ti ∈ w =⇒ xi, tj .

Definition 3. Disappear Rule:
Group users who were present at location xi at time ti ∈
window w and who since then have switched-off their device
up until ti + δ seconds.

Given δ, ∀ui ∈ U, obtain groups (xi, ∅, w, δ) s.t.

∀tj ∈ (ti, ti + δ] : xi, ti ∈ w =⇒ ∅, tj .

Define support for a rule as the number of users that
follow the antecedent, i.e., that were present at location xi

within the time window w. Define confidence for the rule
as the number of users who follow the rule, e.g., for the inter-
session movement rules, those who move from location xi to
location xj . Thus, confidence probability for a rule is

defined as the probability that users who have followed the
rule antecedent so far will follow the consequent as well and
is given by: confidence/support. We consider time windows
of length one hour in this paper and hence the time window
variable w takes values at the hour boundaries.

3.1.2 Inter­session Movement

Next, we consider the movement and stationary events
which occur across sessions. In order to group users by their
inter-session movements and stationarity alone, we only con-
sider the movements and stationarity shown by a user across
two consecutive sessions in Definitions 1-3.

We next identify the times of day when rules of a partic-
ular type are active. To achieve this, we cluster all inter-
session movement (stationary, disappear) rules that occur
in the same time window w irrespective of locations xi or
xj associated with them. In this case, we choose δ as four
hours, which is close to the average inter-session stationary
time (4 hours 25 minutes). Figure 3 shows the averaged
confidence probability of each rule type over an hour win-
dow for two days, one during the week and another over
the weekend. The total support in terms of number of users
present across all locations at a given hour is also plotted
(see y2 axis). First, the total confidence probabilities of all
the rules at a given hour add to 1.0. Second, confidence for
disappear rule dominates.

We derive the following insights: (i) Stationary rules have
a larger average confidence probability than movement rules
during the hours of the night, 10 pm-5 am for Wednesday
and 8 pm-7 am for Sunday. This is indicative of users being
more stationary during the night than day and during the
weekend than during the week; (ii) Finally, two local peaks
at 8 am and 5 pm in Figure 3(a) shows increased group be-
havior on a workday, i.e., moving towards work and back.
No such local peaks occur on the weekend. Note that the
confidence probability is by definition normalized by the val-
ues of the support at the considered time interval. Therefore
the ratio between the values of confidence for the hours of
the day and the hours of night is larger than the ratio be-
tween the values in the confidence probability for the hours
of the day and the hours of the night.

3.1.3 Intra­session Movement

Considering all the sessions generated over seven days,
we quantify how much mobility is captured within a user’s
packet data session. While a majority 84% of sessions stay
stationary (that is stay within one base-station), and 6%



move for 15 minutes or less, the 99%-ile is 3.5 hours and the
maximum time that a session spends in motion is one day. A
user could divide his time within a session as both moving
and being stationary. Once again, about 84% of sessions
are completely or 100% sedentary while 6% of sessions are
completely mobile. Finally, about 10.2% of sessions spend
more time moving than staying within a session, i.e., percent
time spent within a session moving is larger than staying.

3.1.4 Daily Trajectories

Next, we investigate the predictability in users’ behavior.
In this regards, we identify the number of locations that a
user visits every day across all the days that he is seen in
the trace. First, for each user we build a daily trajectory
by combining the sequence of locations that are visited by
the user starting from the midnight of a day up until mid-
night of the next day. We use the locations corresponding
to both intra- and inter-session movements for a user while
building the daily trajectory. Next, given a user, we use his
daily trajectory to extract the set of unique locations that
he accessed that day. Say, a user was seen over 3 days such
that he accessed the following sets of locations: {A, B, C},
{A, B} and {A, C} on those 3 days respectively. Then we
compute the overlapping set of locations for this user as:
{A, B, C}∩{A, B}∩{A, C} = {A}. Interestingly more than
70% of the mobile users visit at least one common location
on every single day that they access the network, suggesting
that users regularly revisit their usual locations. We will
explore this affinity of users to certain locations in the rest
of this section.

3.2 Application Usage
Here, we explore the following two questions: (i) What

is the relationship between mobility and application usage?
(ii) What is the relationship between users’ location and the
applications they access from there?

3.2.1 Mobility and Applications

To answer the first question, we first correlate movement
and stationarity exhibited within a session (intra-session)
with application accesses. We obtain the following groups
of packet data sessions: completely stationary, i.e., those
which spend 0 minutes in movement and sessions with vary-
ing levels of mobility. For the latter, we consider Definition 1
while restricting to only intra-session movement events, and
obtain groups: (xi, xj , w, δ) for δ ranging from [10-60] min-
utes. Recall from definition that a group (xi, xj , w, δ) con-
tains those sessions which were present at location xi at
some time in the hour window w and then move to xj within
δ time. Hence, by definition, for the same location pair xi, xj

and hour window w, for δlo < δhi, the following relationship
holds: (xi, xj , w, δlo) ⊂ (xi, xj , w, δhi). Thus, a group with
a higher value of δ contains the sessions from lower δ values
as well as additional sessions which spent larger amount of
time in movement than those considered previously.

We find that the top applications accessed by stationary
sessions is social networking, music and e-mail which com-
prise 29%, 21% and 21% of all application accesses respec-
tively. Interestingly, as sessions become more mobile, we ob-
served that users access less music, e.g., in the highly mobile
sessions with δ of 60 minutes, percentage accesses for music
reduces to 9%. On the other hand, as sessions become more
mobile, they comprise of more e-mail accesses.

Mobility span. To explore this issue in more depth, we
explore how does mobility span, i.e., the number of loca-
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Figure 4: Application usage breakdown for people
seen in the given number of locations

tions that a user visits, impact the applications he accesses?
Figure 4 shows the application access probability as a func-
tion of discrete mobility spans. In particular, we explore
groups of users that have been seen at that particular num-
ber of locations during the seven day period. For each of the
points on x-axis, the sum of normalized access probabilities
on y-axis equals to one.

Figure 4 shows high correlation (and anti-correlation) be-
tween the mobility span and applications that people access.
In particular, for the ‘stationary’ users (number of base-
stations seen equals 1), music dominates. We explain this
phenomenon later in the text, in the context of the ‘comfort
zone’ that we introduce later.

In contrast, e-mail shows completely opposite trend. In-
deed, the more stationary users are, the less they access
e-mail on their mobile devices. This is most likely because
they use other devices (e.g., a home computer) to access
e-mail. However, the more people move, the more e-mail
starts dominating the applications. Indeed, for those who
have a large mobility span, e-mail is by far the most ac-
cessed application, more than 50% of time. Indeed, those
who move a lot have their mobile phones as their primary
communication devices.

Finally, social networking shows highly intriguing behav-
ior. It lags far behind the leading applications both within
highly stationary group (lags behind music) and within highly
mobile group (lags behind e-mail). Yet, for the medium mo-
bility span group, for which music starts to fade due to mo-
bility, and e-mail still does not start to dominate fully, social
networking is the leading application.

Weather and maps patterns. Here, we correlate the
inter-session rules with applications as follows. We use Def-
inition 3 to obtain the users who disappear, i.e. switch-off
their devices for δ time. Next, in Definitions 1 and 2, we con-
sider only inter-session (and no intra-session) changes and
also restrict the set U to only those users who are accessing
the application being correlated. Thus, given an application
say, maps, we only consider those sessions where the user ac-
cessed an online maps website and then compute the various
inter-session movement and stationary rules with δ values
varying as [1-8] hours to capture varying proportions of those
users. Since, we are only interested in aggregate statistics,
we cluster all the movement and stationarity events that oc-
cur within the same δ value irrespective of the locations and
hours of day involved.

Next, we identify the rule type which captures the max-
imum percentage of accesses to an application type. We
identified two applications, weather and maps as highly cor-
related with inter-session stationary and movement respec-
tively. First, amongst all accesses to weather applications,
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a majority (69%) of them are grouped as inter-session sta-
tionary with a δ of 6 hours. In other words, after a weather
query, users are not inclined to movement. This directly im-
plies that users are more interested in weather when they are
sedentary for a long time. Second, amongst all accesses to
a maps application, a majority (67%) of them are grouped
by inter-session movement rules with a δ of 3 hours. This
suggests that after accessing a maps website, users typically
switch-off and move (possibly to the location they looked-
up) and log-on to the network again after 3 hours.

3.2.2 The Role of Locations

Here, our goal is to understand the relationship between
a user’s physical location and the applications he accesses
from there. To answer this question comprehensively, we
answer the following two related questions: (i) What is the
distribution of locations that users visit in terms of time
spent in these locations? (ii) What applications do users
access at these different locations?

To answer the first question, we proceed as follows. We
first find the groups of users that have been detected in 5,
10, 30, and 50 locations during one week period. Then, we
rank the locations at which the users reside based on the
time spent in each of the locations.

Figure 5 plots the probability to ‘see’ given users as a
function of the location rank. The key insight from the figure
is that users spend the vast majority of time in the top three
locations. For example, users who span five locations (base-
stations) during one week, spend 89.5% of their time in the
top three locations. Likewise, users who visit as many as 50
different base-stations during a week, spend more than 55%
of their time in the top three locations. Hence, we call the
top three location ranks as the user ‘comfort zone’ — the
area where they spent the most of their time.

The second question we want to address is what applica-
tions do users access at differently ranked locations, in par-
ticular with respect to the ‘comfort zone.’ Figure 6 plots the
cumulative distribution functions of the probabilities to ac-
cess the six applications at the given ranked locations. The
vertical line at location rank 3 marks the ‘comfort zone’ bor-
der. Here, we show the statistics for all users, not only the
subgroups we discussed above.

In Figure 6, the higher the curve is, the more the given ap-
plication is accessed within the ‘comfort zone’. For example,
more than 85% of music accesses happen within the ‘com-
fort zone’, while less than 15% outside it. We hypothesize
that because music (and video likewise) is bandwidth and
battery consuming, it is less likely to be accessed outside the
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Figure 7: Home vs. Work

‘comfort zone’. The second interesting result is that dating
applications are mostly accessed from within the ‘comfort
zone’, only 18% outside it. We explain this result later in
the text.

While email, news, and social networking are again more
likely to be accessed within the ‘comfort zone’, they are
accessed much more frequently outside the zone relative to
the other applications. For example, e-mail is accessed 40%
of time outside the ‘comfort zone’, while social networking
is accessed 30% of time outside the ’comfort zone’. Indeed,
it appears that users have the tendency to ‘stay socialized
and connected’ while outside the ‘comfort zone’: they access
social networking sites, they read e-mail, and access news.

Home vs. work. Here, we want to understand which ap-
plications do users access at different locations within their
‘comfort zone’. Because both home and work locations are
amongst two of the three top-most locations in the vast ma-
jority of scenarios, our first goal is to identify locations cor-
responding to a user’s home and work locations. Then, we
provide insights about the applications accessed at the two
locations.

To identify home and work locations, we proceed as fol-
lows. We consider a location as a user’s home if we observe
the user spending most of his time between 10 PM and 6
AM at this location. Further, in order to identify the most
likely work place of a user, we consider the time interval be-
tween 10 AM in the morning and 12 PM (noon) and the time
interval between 2 PM and 5 PM (during weekdays) and de-
termine the top location that the user has been present at. If
the two locations are the same, we are unable to accurately
distinguish between home vs. workplace. This can happen
either because the user does not work or the user lives and
works within the area covered by the same base-station, etc.
If the two locations are different, we assume the one accessed
during night is home and the other is work.

Figure 7 shows the application access statistics. Our find-



ings are the following. First, at home, users are most likely
to access music. This is in-line with our findings above, as
music dominates among applications accessed in the ‘com-
fort zone’. Moreover, for the group of users for which we
were unable to distinguish home vs. work location as it over-
laps, music is again the leading application (result not shown
in the figure). Second, at work, users are most likely to ac-
cess e-mail. Third, at both home and work locations, social
networking is the second most popular application. Most in-
terestingly, dating is the least accessed application at both
home and work. However, given that dating is frequently
accessed in the ‘comfort zone’ (see Figure 6), it follows that
it is mostly accessed outside home and work, yet within the
‘comfort zone’. We shed more light on this phenomenon in
the next section.

4. HOTSPOTS
In this section, we study the effects of user movements

on locations and how locations evolve as a result. First,
by following an approach outlined in [26], we identify which
locations have a high net change in userbase at a certain time
and hence become hotspots. After identifying and classifying
hotspots, we then study the interests of the userbase that is
attracted to the hotspot as well as the actual applications
that users access while they are present there.

We use the binary rule Definitions 1-3 for detection of
hotspots as follows. We consider time windows of one hour
and the change time δ as one hour as well. Let x and h rep-
resent a location and an hour window respectively. Let the
number of users who first switched-on their mobile devices
at location x in the hour window h be denoted as: na(x, h).
Next, let nd(x, h) denote the users who log-off from the net-
work at location x in the hour window h. Finally, let those
who entered the location x within the hour window h from
some other location be denoted as ne(x, h), those that left
it in that hour as nl(x, h) and those that continued staying
there for that hour as ns(x, h).

The number of users entering a location x at a given
hour h can be computed as the total confidence of all the
movement rules which have this location as a target as fol-
lows: ne(x, h) =

P

y 6=x conf(y, x, h, 1). Next, the number
of users leaving a location at a given hour can be com-
puted as the total confidence of all the movement rules
which have this location as the source as follows: nl(x, h) =
P

y 6=x conf(x, y, h, 1). Next, the number of users that stay
stationary at a location at a given hour is given directly by
the confidence of the stationary rule involving this location
as follows: ns(x, h) = conf(x, x, h, 1). Similarly, the users
who first appear or finally disappear at a location at a given
hour are given directly by the confidence of the appear and
disappear rules respectively as: na(x, h) = conf(∅, x, h, 1)
and nd(x, h) = conf(x, ∅, h, 1).

For each location, the total number of users who were
present in an hour window, N(x, h) can be described by
considering all the exit states of those users, i.e., by count-
ing all the users who disappeared, those who left for some
other location and those who stayed stationary: N(x, h) =
ns(x, h) + nl(x, h) + nd(x, h). Now, for the same location
at the next hour window h + 1, the total number of users is
given by those who stayed back from the past window as well
as those who first switched-on their devices at this location
and those who moved from some place else: N(x, h + 1) =
ns(x, h) + na(x, h + 1) + ne(x, h + 1). Thus, the net change
in users at a location across two consecutive hour windows
h and h + 1 is composed of two components, a net in-

flow and net outflow and is obtained as inflow - outflow
or: N(x, h + 1) − N(x, h) = {na(x, h + 1) + ne(x, h + 1)} −
{nl(x, h) + nd(x, h)}.

Hence, we determine if a location becomes a hotspot at a
certain hour as follows. When the net inflow at a location
during a certain hour contributes to the total number of
users at the location at that hour by more than a fraction

γin, then we tag it as a sink, i.e. ne(x,h)+na(x,h)
N(x,h)

≥ γin.

Similarly, when the net outflow at a location during a certain
hour contributes to the total number of users at the location
at that hour by larger than a fraction γout, then we tag the

location as a source, i.e., nl(x,h)+nd(x,h)
N(x,h)

≥ γout. Finally,

when the number of users who stayed at a location within
an hour, ns(x, h) contributes to the total number of users
at the location at that hour by more than a fraction, γs, we
tag it as a stationary location. Note that a location could
be both a source and a sink at the same hour in some cases
e.g., base-stations located next to freeways.

We select the values of thresholds as the 90%-ile for each
of the fractions across the entire trace duration. Thus, the
threshold γin is chosen as the 90%-ile of the fractional con-
tribution of net inflow across all the base-stations over the
entire trace and similarly, for the other two thresholds. This
yields values of γin = 0.7, γout = 0.7 and γs = 0.3.

Next, we use sinks, sources, and stationary locations to
detect hotspots. In addition, we characterize the hotspots
by looking for most likely causes for their creation. In par-
ticular, we use the available geographic (e.g., downtown vs.
suburb) and other properties (e.g., residential vs. business
area) of given areas that we obtain from publicly available
sources. Hence, we characterize the hotspots as follows.

Day hotspots. These locations are sinks during early
morning (8 AM-10 AM), stationary locations during the day
and become sources in early evening(6 PM-7 PM). They are
dominated by people at work, who reside at their offices
during business hours.

Noon hotspots. These locations become sinks during
the afternoon (12 AM-1 PM) and sources shortly after (2
PM-3 PM). They are dominated by people taking a noon
(lunch) break.

Evening hotspots. These locations are sinks during
the evening (7 PM-8 PM) and sources shortly after(10 PM-
11 PM). They are dominated by people going out in the
evening.

Night hotspots. These locations are sinks in early evening
(6 PM-8 PM), stationary locations during the night and be-
come sources in the early morning (7 AM-9 AM). They are
dominated by the people at their homes during night.

By applying the above analysis we identify 23 day hotspots,
28 noon hotspots, 8 evening hotspots, and 62 night hotspots.
A majority (95%) of hotspots get classified by one label only.
Our next goal is to understand what online applications do
people access at these locations. More precisely, we want
to answer the following related questions: (i) What gen-
eral application affiliations do people who gather in these
hotspots have, i.e., what is the hotspots’ userbase; and (ii)
what applications do users access when they are present at
hotspots?

First, we define the userbase of a hotspot (or, any loca-
tion) as the breakdown in applications accessed by the users
who were present at the hotspot, while considering all the
applications that they have accessed during the seven day
trace period, i.e., not necessarily just the applications they
accessed while they were present at the hotspot. Figure
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Figure 8: Hotspots application statistics

8(a) shows the results regarding hotspots’ userbase. It plots
the normalized user affiliation for given applications at dif-
ferent hotspots. For example, the figure for noon hotspots
shows that 50% of users present at noon hotspots use e-
mail (during the seven day interval, not necessarily in the
given hotspot), 30% access music, etc. Because users can
have more than one application affiliation, the sum of nor-
malized affiliations does not equal to one. The key insight
from the figure is that all hotspots have exactly the same
userbase. The majority of people at these locations access
e-mail on their mobile phones, and the least number engages
in dating. Indeed, the trend over all locations (hotspots and
non-hotspots) is exactly the same (the result not shown in
the figure). Hence, it appears that there is nothing specific
about users who enter these hotspots relative to those who
do not access them.

However, on considering the actual applications accessed
at the hotspots, things are quite different (see Figure 8(b)).
The figure clearly shows that there is a strong correlation
between the hotspot type and the primary application that
people access at these hotspots. In other words, people with
the same general application affiliations show highly skewed
and biased group behavior towards a single application at
the considered hotspots. In particular, social networking
is the dominant application among those at noon hotspots;
music among those at night hotspots; e-mail among those at
office hotspots; and dating among those at evening hotspots.
Thus, the given locations are not hotspots only in terms of
a significant number of users present at them at a specific
time. Stunningly, these locations are application hotspots as
well — large groups of people show common ‘cyber’ behavior
at them.

4.1 Time­of­day or Location?

Given that hotspots happen at detected locations, yet
hotspots are time-of-day dependent, the next question is:
what determines the bias shown by hotspots’ users: time-
of-day effects or the locations themselves?

Figure 8(c) shows the time of-day effect; we plot the ap-
plication accesses by clients outside the hotspots, yet at
the same time periods when a hotspot happens. For ex-
ample, consider the locations which are not a hotspot at
noon, thereafter referred to as noon non-hotspots. For these
noon non-hotspots, we collect statistics about user accesses
in the same time period, 12-2 PM. We can see a different
trend than the one shown in Figure 8(b). As an example,
at noon, social networking is not accessed as frequently at
the noon non-hotspots. In the evening, dating is the least
accessed application outside evening hot spots, etc. Hence,
we conclude that time-of-day does not dominantly affect the
accesses at hotspots.

Figure 8(d) shows that location itself dominantly deter-
mines the bias in application accesses observed at hotspots.
In particular, we plot the number of accesses at the hotspot
locations outside the time period that characterizes the given
hotspot. The results clearly show the same trends as ob-
served at hotspots in Figure 8(b). In particular, music is
the leading application at locations corresponding to night
hotspots even during the daytime as well; social networking
is the leading application at locations corresponding at noon
hotspots even outside noon intervals; dating is the leading
application at locations corresponding to evening hotspots
even during non-evening periods. Only in the case of day
(office) hotspots, the leading application is no longer e-mail,



but music. Music prevails in these areas as they are domi-
nated by residential customers during nights.

5. REGIONAL ANALYSIS
Individual users do not span the entire metropolitan area.

Hence, the probability for one user to meet another user
from a different part of the area might be small. Thus,
to fully understand the potential for serendipitous location-
based services, we first attempt to split the metropolitan
area into smaller regions, i.e., by clustering groups of peo-
ple who access the network from similar locations (base-
stations). Then, we explore the interactions within these
regions. In this context we study three user interests which
are representative of serendipitous location-based services:
dating, social networking, and music. We currently only use
broad interest identifiers, assuming this can be a sufficient
trigger for users to meet up, e.g., users interested in mu-
sic may be prompted when they are in proximity and may
decide to meet up. We leave an exploration of fine-grained
interests, e.g., users interested in classic rock likely to meet
up, to future work. Regardless, the broad interest categories
allow us to provide an important upper-bound on likelihood
for users with similar interests to meet up.

Our first task is to identify regions (composed of loca-
tions) and also to determine people belonging to a certain
region based on the time they spend in it. We model this
problem as a bipartite graph between users and locations,
and then perform a co-clustering across users and locations
such that there is a one-to-one correspondence between a
cluster of users and that of locations. In this regards, co-
clustering can be thought of as a graph partitioning problem.
To solve this NP-hard graph partitioning problem, several
heuristics such as Kernighan-Lin [18] have been proposed,
which, however, only consider the local minima while parti-
tioning. In contrast, spectral clustering has been shown to
be global and can obtain a semi-optimal cut [14]. Authors
in [11, 14] show that the second eigenvector of a graph’s
Laplacian matrix gives a guaranteed approximation to the
optimal cut. Other approaches [21, 12] use multiple eigen-
vectors to obtain a k-way partitioning of a graph. We adopt
one such multi-way partitioning approach that was proposed
to obtain a co-clustering of words and documents [12].

We begin by defining a bipartite graph G between users
and locations. Let u = 281, 394 be the total number of users,
and let l = 1, 196 be total number of locations. The vertices
of graph G comprise of all users and locations, for a total of
(u+l) vertices. In the graph G, an edge connects a user i to a
location j if the user has spent time in that location (936,280
edges). Each edge is given a weight W (i, j) as the amount
of time (seconds) spent by a user in that location and a
weight 0 if a user has never visited a location. By definition
of the bipartite graph, there are no edges between vertices
of the same type i.e., between users or between locations.
Denote A as the user-by-location matrix of dimension u × l
with values A(i, j) = W (i, j). The multi-partitioning algo-
rithm for co-clustering users and locations is as described in
Algorithm 1.

The number of connected components in the graph G is
given by the number of trivial singular vectors of the graph
Laplacian [12]. We obtain only one trivial singular vector,
implying that the dynamics of human movement connects
the entire metropolitan area in to one giant connected com-
ponent. Still within this giant connected component, loca-
tion clusters exist on account of the fact that a correspond-
ing cluster of users spends majority of its time within a

Algorithm 1 Multi-partitioning users and locations in to k
clusters each.

• Define the Laplacian of the Graph G as: L =
„

D1 −A
−AT D2

«

where, the squared diagonal matrix D1

of size u2 and D2 of size l2 are the following: D1(i, i) =
Pl

j=0 A(i, j) and D2(i, i) =
Pu

j=0 A(j, i).

• Construct matrix: An = D
−1/2
1 AD

−1/2
2 .

• Perform singular value decomposition on the An matrix
and starting from the second largest singular vectors
(since the first one solves the decomposition trivially)
obtain ⌈log2k⌉ singular left and right vectors each, and
form matrices U and V respectively.

• Construct the following matrix, on which we run K-
means to obtain k clusters each for users and locations:
 

D
−1/2
1 U

D
−1/2
2 V

!

.

Table 3: User and location clusters.

Cluster 1 2 3 4 5
Nr. users 54,589 41,845 40,569 82,389 17,148

Nr. locations 162 216 194 257 118
Day Hot. 0 3 4 15 1
Noon Hot. 9 2 5 10 2

Evening Hot. 3 0 0 4 1
Night Hot. 27 3 4 26 2

location cluster. We run the multi-partitioning algorithm 1
with different values for the number of desired clusters k and
across multiple runs of the algorithm, we always identified
the same five significant regions.

Table 3 presents the five regions (clusters) and the corre-
sponding statistics. Cluster 4 is the largest. It covers the
downtown area, and it clusters together around 82k users.
Cluster 1 and Cluster 3 are suburbs that immediately border
the downtown, with cluster 1 being more urban. Clusters 2
and 4 are suburbs located farther away from the downtown.
Indeed, the average number of users per base-station clearly
reveals the more urban nature of clusters 4 and 1 relative to
other clusters. The average number of users per base-station
in these two clusters is above 320, while for the other three
clusters it is below 200 on average. Indeed, the density of
users is higher in urban areas.

The urban nature of clusters 4 and 1 is further revealed
via the number of hotspots that occur in these regions. For
example, as many as 55 and 39 hotspots reside in clusters 4
and 1, respectively. To the contrary, less than 10 hotspots
on average reside in the other three regions. Interestingly
enough, the number of day hotspots is as high as 15 in region
4, while it is zero in region 1. As we mentioned above, cluster
4 covers the business part of the downtown area, and all day
hotspots reside there. Although cluster 1 is urban, it is more
residential; hence, no day hotspots occur.

Table 4 presents the statistics for inner- and outer-cluster
user movement, as given by the binary rule Definition 1 in
Section 3. Inner- and outer-cluster movement are defined
by whether the two endpoints involved in a movement rule
belong to the same cluster or not, respectively. Our obser-
vations are the following. First, as expected, the majority
of users move within their clusters, as the percents on the



Table 4: Breakdown of movement by users in a clus-
ter and across clusters.

Movement[%] Src. 1 Src. 2 Src. 3 Src. 4 Src. 5
Dest 1 70.4 1.7 2.3 13.1 0.2
Dest 2 1.5 63.5 18.9 1.4 22.5
Dest 3 2.1 21.7 60.6 7.3 5.1
Dest 4 25.9 2.9 16.3 77.7 2.3
Dest 5 0.1 10.2 1.9 0.5 69.9

diagonal positions in the table are the largest for each of the
columns. Second, even if people move outside their clus-
ter, they are most likely to visit the neighboring urban area
(25% from 1 to 4, and 13% from 4 to 1). Third, people from
suburbs rarely visit downtown; they are more likely to visit
neighboring suburbs. Indeed, most of the movement shown
in the table reflect geographic relationships i.e., (1 and 4 are
neighbors; so are 2 and 3, 2 and 5, as well as 3 and 4).

5.1 The Potential for Location­Based Services
Here, we explore how probable is it, and what determines

the probability, for people who share the same interests in
the cyber domain to meet as part of their daily lives? To
answer these questions, we focus on the following interest
categories: social networking, dating, and music, for their
potential to trigger serendipitous interactions. Given a set
of users with the same interest, i.e., those who have accessed
websites relevant to the interest type, either at current time
at current location or at some time before reaching the cur-
rent location, we compute the following two interaction met-
rics.

Time-independent interactions. We consider the over-
lap in trajectories between users of the same interest, irre-
spective of the actual time of overlap. This is relevant for
location-based tagging services [1] where users leave geo-tags
for a location which can be picked by other users who are in
its vicinity.

Time-dependent interactions. In this more restrictive
type of interaction, we consider that users with same interest
are present in the same location at the same time instance.
This type of interaction is the basis for location-aware mo-
bile social networking, and other location-based services.

We consider two versions of the above questions: (i) How
many unique people sharing the same cyber interests are
likely to meet each other (in both time-dependent or inde-
pendent manner)? (ii) How many interactions are people
who share the same interest likely to have?

The first insight (not shown in a figure due to space con-
straints) is that the number of unique people sharing the
same interests that meet each other is larger in region 4
(downtown) than in region 1 (neighboring urban area). This
holds true both for time-independent and time-dependent
interactions, and for all applications of interest. This is be-
cause the number of users is much larger in region 4 (82k)
than in region 1 (54k). Hence, even if the user mobility pat-
terns are similar in both regions, the probability of meeting
different people is larger in a more populated region.

On the other hand, the results are reversed when con-
sidering the number of interactions with people who share
similar interests, as we will show below. In particular, for
time-independent interactions, we not only detect that two
users met, but also count the number of places they met at.
For time-dependent interactions, we count not only that two
users met each other once at a location, but count all such
contacts.

Figure 9 shows the number of time-independent and -
dependent interactions as a function of different locations.
We plot the curves in Figure 9 based on the decreasing num-
ber of meeting events. Hence, the order of locations (base-
stations) on the x-axis, while similar, is not identical. Our
insights are the following.

First, the number of interactions for time-independent in-
teractions is necessarily larger than for time-dependent in-
teractions since the probability to meet a person at a given
location and at the same time is smaller than the probabil-
ity that the two trajectories overlap. As a result, the scale
on the y-axis in Figure 9(b) is an order of magnitude larger
than that of Figure 9(c). Also, social networking and mu-
sic curves are above dating, because these applications are
more popular.

Second, for both time-independent and -dependent inter-
actions, the regions that provide most interactions for either
of the interests, social networking, dating and music, are or-
dered in descending order as: 1, 4, 3, 2 and 5. To see why
this happens, first note that the top-most locations in Figure
9(a) for regions 1 and 4 are hotspots. The urban regions 1
and 4 have higher number of interactions than other regions
mainly because of the large number of hotspots in these re-
gions as shown in Table 3. Most interestingly, even though
region 4 (downtown) contains larger user population than
region 1, the order between them is reversed in terms of
interactions. We explore the reasons for this further.

The key reason is the density of hotspots in a region, de-
fined as a fraction of locations in a region that are hotspots.
A region with higher hotspot density provides more chances
for interactions. For instance, consider music interest. Based
on Table 3, region 1 has 27 night hotspots from 162 base-
stations, and hence a night hotspot density of 17%. The
regions in descending order in terms of night hotspot den-
sity are: 1, 4, 3, 5 and 2. The same order amongst regions
is found for noon (social networking) and evening (dating)
hotspots as well. Hotspot density is able to explain inter-
actions as the top three regions in terms of interactions are
also 1, 4 and 3. For regions 2 and 5, the number of hotspots
is small, hence, non-hotspots influence interactions as well.
Hence, for the same mobility properties, the probability of
accessing a hotspot is larger in region 1, and thus the num-
ber of interactions increases.

Table 5: Interactions per user class.
Event type Mobile users Static Users Static Users

(Hotsp.) (Non-Hotsp.)
Social netw. 704 604 424

Music 828 565 319
Dating 253 188 96

The final question that we explore is the following: given
the impact that hotspots have on interactions, who will ‘ex-
perience’ a larger number of social interactions: a mobile
user or a stationary user present at a hotspot? For this ex-
periment, we cluster out 3 categories of users: (i) mobile
users that have been seen in at least 20 locations, (ii) static
hotspot users that have spent at least 6 hours in a hotspot,
and (iii) static non-hotspot users who have spent at least
6 hours in a non-hotspot. Table 5 shows the results. Most
interactions are observed by mobile users, since they meet
more users than others. Still, the results show that it pays
off to spend a considerable amount of time at a popular loca-
tion. Indeed, the result shows that static hotspot users are
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Figure 9: The number of meeting interactions as a function of locations

close behind highly mobile users. As expected, static non-
hotspot users experience smallest number of interactions.

6. RELATED WORK
The increasing ease in availability of digital footprints of

humans via the mobile devices they carry, has led to a
plethora of studies on human movement. One such group
of work [10, 13, 17, 22] explores the possibility for delay-
tolerant networking, i.e., opportunistic peer-to-peer deliv-
ery of messages between mobile devices coming within Blue-
tooth or WiFi radio range of each other. Such studies are
based on data sets with fine-grained meeting information,
e.g., [10, 17] use contact information polled from a set of
various datasets which use different technologies (e.g. blue-
tooth, wi-fi, etc) to study the inter-contact times between
devices while [13, 22] use bluetooth on a sample set of 100
subjects to study the chance of meeting someone. In con-
trast, the motivating application for our study is serendip-
itous location-based service, for which coarse-grained loca-
tion information at the level of neighborhood or city can be
a sufficient trigger for two users to decide to meet. While
our study here does not directly address peer-to-peer mes-
sage delivery, our findings do have indirect implications to
such applications as well. In particular, our observation on
the affinity between a location hotspot and an application
type suggests that is at these places that such services will
be most likely used.

Another body of work is focused on modeling human tra-
jectories [19]. Recently, authors in[20] studied the trajectory
of 100k anonymized mobile phone users and determined that
the trajectory of humans is not as random as predicted by
the earlier models (Lèvy flight and random walk models)
and in fact humans exhibit a high degree of temporal and
spatial regularity. Our findings regarding this are similar,
in that humans are very likely to spend most of their time
in their three most preferred locations. While our data set
is also from a mobile carrier, our trace is primarily from the
data network (HTTP and MMS) while [20] uses phone calls
and SMS logs. Regardless, this points to an important ev-
idence that human movement studies such as ours and [20]
are not biased by the data source they are based on. In
contrast, our goals in this paper are very different, to study
human movement patterns when correlated with application
interests.

A third body of work [26] has studied mobility in the con-
text of sequential rule mining, where the goal is to extract

the most frequent trajectory sequences. We adapt [25, 26]
to develop our binary rule framework to identify the basic
mobility patterns and then extend the same to perform a
novel joint study of application and mobility. Finally, rule
mining has also been used in the context of other applica-
tions, e.g. identifying patterns in shopping transactions [8,
25], identifying cause-effect pairs in network traffic [16], etc.

The fact that each user is usually associated with three lo-
cations (comfort zone) is most closely related to [15], where
the authors used an anonymized data set from U.S. Cen-
sus Bureau to find that a user’s work and home location
at the granularity of census tract (zip-code) can be used to
uniquely identify about 5% of users. However, such recon-
struction as suggested in [15] requires an adversary to have
access to a mapping between the home/work locations and
user identities, the availability of which we are not aware of;
even the data set used in [15] was synthetic due to privacy
concerns.

7. SUMMARY AND CONCLUSIONS
In this paper we conducted, to the best of our knowledge,

the first large-scale study to characterize the relationship
that exists between people’s cyber interests and their mo-
bility properties. Our key finding is that both users’ mobility
and locations heavily impact their application access behav-
ior. We believe our results demonstrate significant promise
for further research in this area, paving the way for many
advances in understanding basic human behavior and in de-
veloping location-based services.

Summary. From the user perspective, our insights are
the following: (i) Most users spend the vast majority of
their time within the ‘comfort zone’ which consists of the top
three locations, including home and work. (ii) Within the
‘comfort zone’, music prevails, particularly from home. Out-
side the ‘comfort zone’, the popularity of such bandwidth
and battery intensive applications quickly fades. (iii) Dat-
ing applications are mostly accessed from within the ‘com-
fort’ zone, but neither from home nor work. (iv) Users who
leave the ‘comfort zone’ have an inclination to ‘staying con-
nected’ by accessing social networking sites, reading e-mail
and news.

From the perspective of the most popular locations, our
insights are the following: (i) There is a strong time-invariant
bias towards specific applications at those locations at which
hotspots are likely to occur. (ii) In most cases, such a bias
remains unchanged when hotspots are created, i.e., those



who join the hotspot show the same access behavior. (iii)
Office hotspots are the only scenario in which the newly cre-
ated majority manages to change the previously established
application access bias.

From the user interactions perspective, our insights are
the following: (i) The probability to meet different people
with the same cyber interests is dominantly impacted by the
number of users sharing the same interests in a given region.
(ii) However, the frequency with which one meets with oth-
ers who share the same cyber interests is dominated by the
density of hotspots in a given area. (iii) Both mobile users
and those present at popular hotspots have the potential to
achieve a large number of interactions.

From the mobile provider and location-based services per-
spective, our insights are the following: (i) The observed
location-based application access bias validates the enor-
mous potential for existing location-based services, and opens
the doors to a number of new ones. (ii) Due to the strong
bias towards bandwidth intensive applications at a subset of
hotspots, base-station-level caching at such locations would
be very beneficial. (iii) There exists a significant observed
anti-correlation between the use of bandwidth- and battery-
intensive applications, such as music, with mobility. This
finding can be a strong indicator of whether p2p-based mo-
bile applications have a potential need or not; yet, we are
unable to provide such a prediction. If the small usage is due
to bandwidth concerns, then p2p mobile applications have
a huge potential. Yet if battery is the concern, the result is
reversed.
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