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Googling the Internet: Profiling Internet Endpoints
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Abstract—Understanding Internet access trends at a global
scale, i.e., how people use the Internet, is a challenging problem
that is typically addressed by analyzing network traces. However,
obtaining such traces presents its own set of challenges owing to
either privacy concerns or to other operational difficulties. The
key hypothesis of our work here is that most of the information
needed to profile the Internet endpoints is already available
around us — on the web.
In this paper, we introduce a novel approach for profiling and

classifying endpoints. We implement and deploy a Google-based
profiling tool, that accurately characterizes endpoint behavior
by collecting and strategically combining information freely
available on the web. Our Web-based ‘unconstrained endpoint
profiling’ (UEP) approach shows advances in the following
scenarios: (i) Even when no packet traces are available, it
can accurately infer application and protocol usage trends at
arbitrary networks; (ii) When network traces are available, it
outperforms state-of-the-art classification tools such as BLINC;
(iii) When sampled flow-level traces are available, it retains
high classification capabilities. We explore other complementary
UEP approaches, such as p2p- and reverse-DNS-lookup-based
schemes, and show that they can further improve the results
of the Web-based UEP. Using this approach, we perform un-
constrained endpoint profiling at a global scale: for clients in
four different world regions (Asia, South and North America
and Europe). We provide the first-of-its-kind endpoint analysis
that reveals fascinating similarities and differences among these
regions.

I. INTRODUCTION

Understanding what people are doing on the Internet at

a global scale, e.g., which applications and protocols they

use, which sites they access, and who they try to talk to,

is an intriguing and important question for a number of

reasons. Answering this question can help reveal fascinating

cultural differences among nations and world regions. It can

shed more light on important social tendencies (e.g., [30])

and help address imminent security vulnerabilities (e.g., [29],

[35]). Moreover, understanding shifts in clients’ interests, e.g.,

detecting when a new application or service becomes popular,

can dramatically impact traffic engineering requirements as

well as marketing and IT-business arenas. YouTube [18] is

probably the best example: it was unexpected and it currently

accounts for more than 10% of the total Internet traffic [21].

The most common way to answer the above questions is

to analyze operational network traces. Unfortunately, such an

approach faces a number of challenges. First, obtaining ‘raw’
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packet traces from operational networks can be very hard,

primarily due to privacy concerns. As a result, researchers are

typically limited to traces collected at their own institutions’

access networks (e.g., [23], [24]). While certainly useful, such

traces can have a strong ‘locality’ bias and thus cannot be

used to accurately reveal the diversity of applications and

behaviors at a global Internet scale. Moreover, sharing such

traces among different institutions is again infeasible due to

privacy concerns.

Even when there are no obstacles in obtaining non-access,

i.e., core-level traces, problems still remain. In particular, accu-

rately classifying traffic in an online fashion at high speeds is

an inherently hard problem. Likewise, gathering large amounts

of data for off-line post-processing is an additional challenge.

Typically, it is feasible to collect only flow-level, or sampled

flow-level information. Unfortunately, some of the state-of-the-

art packet-level traffic classification tools (e.g., [23]) do not

perform as well in such scenarios, as we demonstrate below.

In this paper, we propose a fundamental change in approach-

ing the ‘endpoint profiling problem’: depart from strictly

relying on (and extracting information from) network traces,

and look for answers elsewhere. Indeed, our key hypothesis is

that the large and representative amount of information about

endpoint behavior is available in different forms all around us.

For communication to progress in the Internet, in the

vast majority of scenarios, information about servers, i.e.,

which IP address one must contact in order to proceed is

publicly available (not necessarily on Google). In p2p-based

communication, in which all endpoints can act both as clients

and servers, this means that association between some of the

endpoints and such an application becomes publicly visible.

Even in classical client-server communication scenarios, infor-

mation about clients does stay publicly available for a number

of reasons (e.g., at website user access logs, forums, proxy

logs, etc.). Given that many other forms of communication

and various endpoint behavior (e.g., game abuses) does get

captured and archived, this implies that enormous information,

invaluable for characterizing endpoint behavior at a global

scale, is publicly available.

The first contribution of this paper is the introduction of

a novel methodology, that we term ‘unconstrained endpoint

profiling.’ The methodology uses publicly-available informa-

tion about endpoints, e.g., available on the web or accessible

by crawling p2p systems, to profile endpoints. The approach

is “unconstrained” in the sense that it looks for and uses

external information, beyond that available in network traces,

to predict application trends or complement the existing traffic

classification schemes. Hence our approach is different by

design (not necessarily better) from other traffic classification
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approaches (e.g., BLINC). We compare these approaches for

given networks later in the paper. In this paper, we focus

on Web-oriented UEP approach that aims to characterize

endpoint behavior by strategically combining information from

a number of different sources available on the web. The

key idea is to query the Google search engine [5] with IP

addresses corresponding to arbitrary endpoints. In particular,

we search on text strings corresponding to the standard dotted

decimal representation of IP addresses, and then characterize

endpoints by extracting information from the responses re-

turned by Google. The core components of our methodology

are (i) a rule generator that operates on top of the Google

search engine and (ii) an IP tagger, that tags endpoints with

appropriate features based solely on information collected on

the web. The key challenge lies in automatically and accurately

distilling valuable information from the web and creating a

semantically-rich endpoint database.

We demonstrate that the proposed methodology shows ad-

vances in the following scenarios: (i) even when no operational

traces from a given network are available, it can accurately pre-

dict traffic mixes, i.e., relative presence of various applications

in given networks, (ii) when packet-level traces are available,

it can help outperform state of the art traffic classification

algorithms such as BLINC , e.g., [23], both quantitatively

and qualitatively and, (iii) when sampled flow-level traces

are available, it retains high classification capabilities when

other state-of-the-art schemes do not perform as well. It should

be noted that the examined networks belong to Tier-1 ISPs

which is an unfriendly environment for one of the compared

approaches [25]. Still not all information is available on the

Web. Hence, results may be improved by using additional

sources of information, some of which come at a high cost

(e.g., joining and crawling a p2p network). We explore other

complementary UEP approaches, such as p2p- and reverse-

DNS-lookup-based schemes, and show that they can further

improve the results of the Web-based UEP.

Our second contribution lies in exploiting our methodology

to perform, to the best of our knowledge, the first-of-its-kind

Internet access trend analysis for four world regions: Asia, S.

and N. America and Europe. Not only do we confirm some

common wisdom, e.g., Google massively used all around the

world, Linux operating system widely deployed in France

and Brazil, or multiplayer online gaming highly popular

in Asia; we confirm fascinating similarities and differences

among these regions. For example, we group endpoints into

different classes based on their application usage. We find

that in all explored regions, the online gaming users strongly

protrude as a separate group without much overlap with others.

At the same time, we explore locality properties, i.e., where

do clients fetch content from. We find strong locality bias for

Asia (China), but also for N. America (US), yet much more

international behavior by clients in S. America (Brazil) and

Europe (France).

This paper is structured as follows. In Section II we explain

our Web-based unconstrained endpoint profiling methodol-

ogy that we evaluate in a number of different scenarios in

Section III, and apply this approach to four different world

regions in Section IV. In Section V, we compare the Web-

Fig. 1. Web-based endpoint profiling tool. Generates IP address tags based
on information found via Google.

based unconstrained endpoint profiling approach with two

complementary UEP profiling schemes: p2p crawling and

reverse DNS lookups. We discuss related issues and provide

an overview of related work in Section VI. Finally Section VII

concludes the paper.

II. METHODOLOGY

Here, we propose a new methodology, that we term

Web-based ‘Unconstrained Endpoint Profiling’ (UEP). Our

goal is to characterize endpoints by strategically combining

information available at a number of different sources on the

web. Our key hypothesis is that records about many Internet

endpoints’ activities inevitably stay publicly archived. Of

course, not all active endpoints appear on the web, and not

all communication leaves a public trace. Still, we show that

enormous amounts of information does stay publicly

available, and that a ‘purified’ version of it could be used in

a number of contexts that we explore later in the paper.

A. Unconstrained Endpoint Profiling

Figure 1 depicts our web-based endpoint profiling tool. At

the functional level, the goal is straightforward: we query the

Google search engine by searching on text strings corre-

sponding to the standard dotted decimal representation of IP

addresses. For a given input in the form of an IP address, e.g.,

200.101.18.182, we collect search hits returned by Google,

and then extract information about the corresponding endpoint.

The output is a set of tags (features) associated with this IP

address. For example, forum user, kazaa node, game

abuser, mail server, etc. In general, an endpoint could

be tagged by a number of features, e.g., a forum user and

a p2p client. Such information can come from a number

of different URLs.

At a high level, our approach is based on searching for

information related to IP addresses on the web. The larger the

number of search hits returned for a queried IP address, and

the larger number of them confirming a given behavior (i.e., a

streaming server), the larger the confidence about the

given endpoint activity. The profiling methodology involves

the following three modules: (i) Rule generation, (ii) Web

classification and (iii) IP tagging, that we present in detail

below.

1) Rule Generation: The process starts by querying

Google [5] using a sample ‘seed set’ of random IP addresses

from the networks in four different world regions (details in

Section III) and then obtaining the set of search hits. Each

search hit consists of a URL and corresponding hit text, i.e.,

the text surrounding the word searched. We then extract all the
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words and biwords (word pairs) from the hit texts of all the

hits returned for this seed set. After ranking all the words and

biwords by the number of hits they occur in and after filtering

the trivial keywords (e.g., ‘the’), we constrain ourselves to

the top N keywords1 that could be meaningfully used for

endpoint classification. By meaningfully used we mean that

the keyword found implies an application or application class

associated with network activity.

Then, in the only manual step in our methodology, we

construct a set of rules that map keywords to an interpretation

for the functioning of that website, i.e., the website class.

The rules are as shown in the relationship between Column

1 and 2 in Table I. For example, the rules we develop

in this step capture the intelligence that presence of one

of the following keywords: counter strike, world of

warcraft, age of empires, quake, or game abuse

in either the URL or the text of a website implies that it is a

gaming website (either gaming server list or abuse list). Table I

shows a few rules to differentiate the information contained in

websites. For instance, if a website only contains the keyword

mail server from the set of keywords, then it is classified

as a site containing list of mail servers. However, if a website

contains one of the following words, spam or dictionary

attacker besides mail server, then it is classified as

one containing list of malicious mail servers, e.g., one that is

known to originate spam. Similar rules are used to differentiate

between websites providing gaming servers list and gaming

abuse list.

2) Web Classifier: Extracting information about endpoints

from the web is a non-trivial problem. Our approach is to

first characterize a given webpage (returned by Google),

i.e., determine what information is contained on a website.

This approach significantly simplifies the endpoint tagging

procedure.

Rapid URL Search. Some websites can be quickly clas-

sified by the keywords present in their domain name itself.

Hence, after obtaining a search hit we first scan the URL

string to identify the presence of one of the keywords from

our keyword set in the URL and then determine the website’s

class on the basis of the rules in Table I. For instance, if the

URL matches the rule: {forum | ... | cafe} (see last row in
Table I) then we classify the URL as a Forum site. Typically,

websites that get classified by this rapid URL search belong

to the Forum and Web log classes. If the Rapid URL search

succeeds, we proceed to the IP tagging phase (Section II-A3).

If rapid match fails, we initiate a more thorough search in the

hit text, as we explain next.

Hit Text Search. To facilitate efficient webpage characteri-

zation and endpoint tagging, we build a website cache. The key

idea is to speed-up the classification of endpoints coming from

the same web sites/domains under the assumption that URLs

from the same domain contain similar content. In particular,

we implement the website cache as a hashtable indexed by the

domain part of the URL. For example, if we have a hit coming

from the following URL: www.robtex.com/dns/32.net.ru.html,

the key in the hashtable becomes robtex.com. Hence, all IPs

that return a search hit from this domain can be classified in

1We find and use the top 60 keywords in this paper.

the same way.

Whenever we find a URL whose corresponding domain

name is not present in the cache, we update the cache as

follows. First, we insert the domain name for the URL as

an index into the cache with an empty list (no keywords)

for the value. In addition, we insert a counter for number

of queried IP addresses that return this URL as a hit along

with the corresponding IP address. High values for the counter

would indicate that this domain contains information useful for

classifying endpoints. Thus, when the counter for number of

IP addresses goes over a threshold we retrieve the webpage

based on the last URL. We currently use a threshold of 2.

We have chosen this threshold in order to filter out websites

that carry information about a single IP address only. At the

same time, this approach maximizes the amount of traffic that

we can classify while filtering out the above sites. Then, we

search the webpage for the keywords from the keyword set

and extract the ones that can be found.

Next, we use the rule-based approach to determine the class

to which this website (and hence the domain) belongs. Finally,

we insert an entry in the cache with the domain name as the

key and the list of all associated keywords (from Table I) as

the value. For instance, if the URL matches the rule: mail

server & {spam | dictionary attacker}, then the
domain gets classified as a list of malicious mail servers.

Further, we insert all the keywords in the cache. When a

URL’s domain name is found in the cache, then we can quickly

classify that URL by using the list of keywords present in the

cache. In this way, the cache avoids having to classify the

URL on every hit and simplifies the IP-tagging phase, as we

explain next.
3) IP tagging: The final step is to tag an IP address based

on the collected information. We distinguish between three

different scenarios.

URL based tagging. In some scenarios, an IP address

can be directly tagged when the URL can be classified via

rapid search for keywords in the URL itself. One example is

classifying eMule p2p servers based on the emule-project.net

domain name. Another example is the torrent list found at

torrentportal.com. In such scenarios, we can quickly generate

the appropriate tags by examining the URL itself. In particular,

we use the mapping between a website class (Column 2) and

IP tags (Column 3) in Table I to generate the tags. In majority

of the cases, such rapid tagging is not possible and hence we

have to examine the hit text for additional information.

General hit text based tagging. For most of the websites,

we are able to accurately tag endpoints using a keyword based

approach. The procedure is as follows. If we get a match in the

website cache (for the specific URL we are currently trying to

match), we check if any of the keywords associated with that

domain match in the search hit text. Surprisingly, we typically

find at least a single keyword, that clearly reveals the given

IP’s nature and enables tagging. Table I provides the mapping

between the domain class and IP tags.

For hit texts that match multiple keywords, we explain the

generation of tags via an example. For instance, a URL such

as projecthoneypot.org provides multiple information about an

IP address, e.g., not only that it is a mail server but also

a spammer. Due to a match with both the keywords, this
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TABLE I
KEYWORDS - WEBSITE CLASS - TAGS MAPPING

Keywords Website Class Tags

{‘ftp’ | ‘webmail’ | ‘dns’ | ‘email’ | ‘proxy’ | ‘smtp’ Protocols and Services <protocol name> server
| ‘mysql’ | ‘pop3’ | ‘mms’ | ‘netbios’}

{‘trojan’ | ‘worm’ | ‘malware’ | ‘spyware’ | ‘bot’} Malicious information list <issue name> affected host

‘spam’ Spamlist spammer

{‘blacklist’ | ‘banlist’ | ‘ban’ | ‘blocklist’} Blacklist blacklisted

‘adserver’ Ad-server list adserver

{‘domain’ | ‘whois’ | ‘website’} Domain database website

{‘dns’ | ‘server’ | ‘ns’} DNS list DNS server

{‘proxy’ | ‘anonymous’ | ‘transparent’} Proxy list proxy server

‘router’ Router addresses list router

‘mail server’ Mail server list mail server

‘mail server’ & {‘spam’ | ‘dictionary attacker’} Malicious mail server
mail servers list [spammer] [dictionary attacker]

{‘counter strike’ | ‘warcraft’ | ‘age of the Gaming servers list <game name>
empires’ | ‘quake’ | ‘halo’ | ‘game’} server

{‘counter strike’ | ‘warcraft’ | ‘age of the empires’ | Gaming abuse list <game> node
‘quake’ ‘halo’ | ‘game’} & {‘abuse’ | ‘block’} [abuser] [blocked]

{‘torrent’ | ‘emule’ | ‘kazaa’ | ‘edonkey’ | ‘announce’ | ‘tracker’ | p2p node list <protocol name> p2p node
‘xunlei’ | ‘limewire’ | ‘bitcomet’ | ‘uusee’ | ‘qqlive’ | ‘pplive’ }

{‘irc’ | ‘undernet’ | ‘innernet’ | ‘dal.net’} IRC servers list IRC server

{‘yahoo’ | ‘gtalk’ | ‘msn’ | ‘qq’ | ‘icq’ | ‘server’ | ‘block’} Chat servers <protocol name> chat server

{‘generated by’ | ‘awstats’ | ‘wwwstat’ | Web log site web user [operating system]
‘counter’ | ‘stats’} [browser][date]

{‘cachemgr’ | ‘ipcache’} Proxy log proxy user [site accessed]

{‘forum’ | ‘answer’ | ‘resposta’ | ‘reponse’ | ‘comment’ | Forum forum user [date][user name]
‘comentario’ | ‘commentaire’ | ‘posted’ | ‘poste’ | [http share ][ftp share]

‘registered’| ‘registrado’ | ‘enregistre’ | ’created’ | ’criado’ [streaming node]
‘cree’ | ‘bbs’ | ‘board’ | ‘club’ | ‘guestbook’ | ‘cafe’ }

URL’s domain would be entered in the website cache as a

malicious mail servers’ list. Then queries to an ip-address that

is listed at projecthoneypot.org could return either: (i) both

the keywords mail server and spam, in that case, the

ip-address would be tagged by both the tags mail server

and spammer, (ii) only the keyword mail server where

the ip-address would be tagged as a mail server only and

(iii) only the keyword spam where the ip-address would be

tagged as spammer via the one-to-one mapping but also as

mail server. This expansion of tags (from spam to mail

server) can be done unambiguously because there is no rule

in Table I with only one keyword spam. Similarly, regardless

of the combination of keywords found in the hit text for

gaming servers list or gaming abuse list, their rules can be

disambiguated as well.

In some cases, such as for Web logs and Proxy logs, we can

obtain additional tags (labeled by square brackets in Column

3 of Table I). For Web logs we can obtain the access date and,

if the data exists, the operating system and browser that was

used. Similarly, in the case of Proxy logs, we can obtain the

site that was accessed by the IP address.

Hit text based tagging for Forums. The keyword-based

approach fails when a URL maps to an Internet forum site.

This is because a number of non-correlated keywords may

appear at a forum page. Likewise, forums are specific because

an IP address can appear at such a site for different reasons.

Either it has been automatically recorded by a forum post, or

because a forum user deliberately posted a link (containing

the given IP address) for various reasons.

In the case of forums, we proceed as follows. First, we use

a post-date and username in the vicinity of the IP address

to determine if the IP address was logged automatically by

a forum post. Hence, we tag it as the forum user. If this

is not the case, the presence of the following keywords: http:

\, ftp:\, ppstream:\, mms:\, etc. in front of the IP address
string in the hit text suggests that the user deliberately posted

a link to a shared resource on the forum. Consequently, we

tag the IP address as an http share or ftp share, or as

a streaming node supporting a given protocol (ppstream,

mms, tvants, sop, etc.).

Because each IP address generates several search hits, mul-

tiple tags can be generated for an IP address. Thus aggregating

all the tags corresponding to an IP address either reveals

additional behavior or reaffirms the same behavior. For the

first case, consider the scenario where an IP address hosts

multiple services, that would then be identified and

classified differently and thereby generate different tags for

that IP address, revealing the multiple facets of the IP address’

behavior. In the second case, if an IP address’ behavior has

been identified by multiple sites, then counting the unique sites

that reaffirm that behavior would generate higher confidence.

In this paper, we consider this confidence threshold as 1, i.e.,

even if one URL hit proclaims a particular behavior then we

classify the endpoint accordingly. We make this choice in

order to maximize the amount of traffic classified.

B. Where Does the Information Come From?

Here, we attempt to answer two questions. First, which sites

‘leak’ information about endpoints? While we have already

hinted at some of the answers, we provide more comprehen-

sive statistics next. Second, our goal is to understand if and
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TABLE II
WEBSITE CACHES - TOP ENTRIES

N. America Asia S. America

Nr Site Hits Info Nr Site Hits Info Nr Site Hits Info

1 whois.domaintools.com 338 D 1 jw.dhu.edu.cn 1381 S 1 weblinux.ciasc.gov.br 395 S

2 en.wikipedia.org 263 F 2 projecthoneypot.org 377 M 2 projecthoneypot.org 371 M

3 robtex.com 255 BDN 3 info.edu.sh.cn 268 S 3 robtex.com 252 BDN

4 projecthoneypot.org 217 M 4 czstudy.gov.cn 227 S 4 redes.unb.br 252 S

5 extremetracking.com 202 S 5 qqdj.gov.cn 181 S 5 pt.wikipedia.org 200 F

6 botsvsbrowsers.com 182 W 6 zhidao.baidu.com 176 F 6 appiant.net 136 S

7 cuwhois.com 151 D 7 1bl.org 154 B 7 www.tracemagic.net 116 S

8 proxy.ncu.edu.tw 132 P 8 cqlp.gov.cn 149 S 8 www.luziania.com.br 91 F

9 comp.nus.edu.sg 116 S 9 cache.vagaa.com 142 T 9 pgl.yoyo.org 90 A

10 quia.jp 108 M 10 bid.sei.gov.cn 122 S 10 netflow3.nhlue.edu.tw 76 S

Cache size: 827 Cache size: 892 Cache size: 728

A:adservers, B:blacklist, D:domaindb, F:forum, M:mail/spam, N:dnsdb , P:proxy cache, S:Web logs, T:torrent, W:bot detector

how such ‘information-leaking’ sites vary in different world

regions.

Sites containing information about endpoints could be cat-

egorized in the following groups:

• Web logs: Many web servers run web log analyzer
programs such as AWStats, Webalizer and SurfStats. Such pro-

grams collect information about client IP addresses, statistics

about access dates, host operating systems and host browsers.

They parse the web server log file and generate a report or a

statistics webpage.

• Proxy logs: Popular proxy services also generate logs of
IP addresses that have accessed them. For instance, the Squid

proxy server logs the requests’ IP addresses, and then displays

them on a webpage.

• Forums: As explained above, Internet forums provide
wealth of information about endpoints. Some forums list

the user IP addresses along with the user names and the

posting dates in order to protect against forum spam. Exam-

ples are inforum.insite.com.br or www.reptilesworld.com/bbs.

Likewise, very frequently clients use Internet forums to post

links containing (often illegal) CDs or DVDs with popular

movies as either ftp, http, or streaming shares. We explained

above how our methodology captures such cases. Some IP

logging forums also provide information about clients partici-

pating in chat applications. These forums also ask for (Yahoo,

MSN etc.) messenger ID’s upon registration in order to display

the online status of the forum user. When searching the IP

address on Google one also finds this related information.

• Malicious lists: Denial of service attacks and client
misbehavior in general, are a big problem in today’s Internet.

One of the ways to combat the problem is to track and publi-

cize malicious endpoint behavior. Example lists are: banlists,

spamlists, badlists, gaming abuse lists, adserver lists, spyware

lists, malware lists, forum spammers lists, etc.

• Server lists: For communication to progress in the In-
ternet, information about servers, i.e., which IP address one

must contact in order to proceed, must be publicly available.

Examples are domain name servers, domain databases, gaming

servers, mail servers, IRC servers, router (POP) lists, etc.

• P2P communication: In p2p communication, an endpoint
can act both as a client and as a server. Consequently, an

IP’s involvement in p2p applications such as eMule, gnutella,

edonkey, kazaa, torrents, p2p streaming software, etc., be-

comes visible when contacting the first point of entry into the

system. For this, this first point of entry is known and typically

available on the web. The number of such endpoints in a p2p

network is relatively small; however, whenever a client wants

to retrieve a file he typically goes through such an access point.

Example websites are emule-project.net, edonkey2000.cn, or

cache.vagaa.com, that lists torrent nodes. Gnutella is

a special case since Google can directly identify and list

gnutella nodes using their IP addresses. Given that our system

is Google-based, it inherits this desirable capability.

All the above examples confirm that publicly available

information about endpoints is indeed enormous in terms of

size and semantics. The key property of our system is its

ability to automatically extract all this information in a unified

and methodical way. Moreover, because we operate on top

of Google, any new source of information becomes quickly

revealed and exploited.

Table II answers the second question: how different are

the endpoint information sites in different world regions? In

particular, Table II shows top entries for three different world

regions we explored (details provided in the next section).2

While some sites, e.g., projecthoneypot.org or robtex.com,

show global presence, other top websites are completely

divergent in different world regions. This reveals a strong

locality bias, a feature we explore in more depth in Section

IV below.

III. EVALUATION

Next, we demonstrate the diversity of scenarios in which

unconstrained endpoint profiling can be applied. In particular,

we show how it can be used to (i) discover active IP ranges

without actively probing the same, (ii) classify traffic at a

given network and predict application- and protocol trends in

absence of any operational traces from a given network, (iii)

perform a semantically-rich traffic classification when packet-

level traces are available, and (iv) retain high classification

capabilities even when only sampled flow-level data is avail-

able.

Table III shows the networks we study in this paper. They

belong to Tier-1 ISPs representative of one of the largest

countries in different geographic regions: Asia (China), South

2We omit details for the fourth region - Europe - due to space constraints.
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TABLE III
STUDIED NETWORKS

Asia S. America N. America

XXX.39.0.0/17 XXX.96.128.0/17 XXX.160.0.0/12

XXX.172.0.0/18 XXX.101.0.0/17 XXX.160.0.0/13

XXX.78.192.0/18 XXX.103.0.0/17 XXX.168.0.0/14

XXX.83.128.0/17 XXX.140.128.0/18 XXX.70.0.0/16

XXX.239.128.0/18 XXX.163.0.0/17 XXX.0.0.0/11

XXX.69.128.0/17 XXX.193.192.0/18

XXX.72.0.0/17 XXX.10.128.0/18 Europe

XXX.14.64.0/18 62.147.0.0/16

XXX.15.64.0/18 81.56.0.0/15

XXX.24.0.0/18 82.64.0.0/14

XXX.25.64.0/18

XXX.34.0.0/18

America (Brazil), North America (US) and Europe (France).

The Asian and S. American ISPs serve IPs in the /17 and /18

range, while the N. American and European ISPs serve larger

network ranges.

In most scenarios (Asia, S. and N. America), we manage to

obtain either packet-level (Asia and S. America) or flow-level

(N. America) traces from the given ISPs. The packet-level

traces are couple of hours in duration while the flow-level

trace is almost a week long. These traces are invaluable for

the following two reasons. First, they present the necessary

‘ground truth’ that helps us evaluate how well does our ap-

proach (without using any operational traces) work to discover

active IP ranges (Section III-A) and predict application and

protocol trends (Section III-B). Second, we use these traces

to understand how our approach can be applied in the classical

traffic classification scenarios, both using packet-level (Section

III-C) and flow-level (Section III-D) traces.

To preserve privacy of the collaborating ISPs, in Table III,

we anonymize the appropriate IP ranges by removing the first

Byte from the address. We do not anonymize the IP range for

the European ISP (Proxad, http://www.free.fr/, AS 12322),

simply because we use no operational network trace. In this

case, we stick with the endpoint approach, and thus only use

publicly available information.

A. Revealing Active Endpoints

First, we explore if the Google hits can be used to infer

the active IP ranges of the target access networks. This

knowledge is invaluable in a number of scenarios. For ex-

ample, for Internet-scale measurement projects (e.g., [27])

knowing which IPs are active in a given ISP can help direct

measurements towards the active parts of the address space.

The approach is particularly useful given that large-scale active

probing and network scanning might trigger a ban from either

the host or the targeted ISP. Indeed, our indirect approach

efficiently solves this problem since we get the targeted active

IP subset by simply googling the IP addresses.

To demonstrate the potentials of this approach, we show

results for the XXX.163.0.0/17 network range, that spans

32,767 IP addresses. As one source of information about active

IPs, we google this IP range. As another source, we determine

the active IP addresses from a packet-level trace we obtained

from the corresponding ISP. Necessarily, a relatively short

trace does not contain all active IPs from this network range.

The results are as follows. We determine 3,659 active IPs

 0  20  40  60  80  100  120  0
 50

 100
 150

 200
 250

Google hits
Actual endpoints

3rd IP byte - last 7 bits

4th IP byte

Fig. 2. Inferring endpoints by Google searches - XXX.163.0.0/17. Compar-
ison of results obtained via Google to addresses that generate traffic.

using Google (IP addresses that generate hits on Google).

At the same time, we determine 2,120 IPs from the trace,

i.e., the IP addresses belonging to that specific range that are

observed sending traffic. The overlap is 593 addresses, or

28% (593/2120).

By carefully examining the two results, we find that spatial

correlation is high, i.e., in each trace the active IPs are

very close in IP space. Indeed, IP address assignment on

the Internet at different points in the assignment hierarchy

except the end user is done on a block basis. Also, to ease

network management, network administrators typically assign

contiguous IP addresses to hosts in the same network. To

exploit this feature, we proceed as follows. For each of the

active IP addresses (Google- and trace-based), we apply an IP

mask to enrich the set of IP addresses.3 We apply the mask to

an IP, and then consider all IPs corresponding to the resulting

prefix as being active.

Figure 2 shows the results for both Google- and trace-

based active hosts obtained in this way. Indeed, the figure

shows high spatial correlation between the two sets. In par-

ticular, enhanced Google-based trace now has 12,375 IPs,

while enhanced network trace has 10,627 IPs. The number of

overlapped addresses is as high as 8,137, such that the overlap

between the two sets now becomes 77% (8,137/10,627). We

apply the same approach to the week-long N. American trace

and our results show 79%-84% overlap for the five different

network ranges.

We stress once again that the key point of this approach

is not to accurately infer if a given IP address is active or

not, but rather to hint at the highly probable active IP ranges

and ease methodologies that require such information (e.g.,

[27]). One other observation is that the active IP coverage

obtained with this approach increases as the studied network

range increases. This is because the distance between active

IP clusters increases with the size of the studied network.

Consequently, we note that this approach becomes even more

useful in the context of IPv6. This is because network ranges

will become larger; hence, randomly probing a certain network

space might immediately trigger a ban.

3Numerous experiments on other network ranges corroborate that a mask
of /28 (i.e., zeroing out last 4 bits) shows the best compromise between
maximizing the overlap between Google- and trace-based active IPs and
minimizing the size of enriched subsets.
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B. When No Traces are Available

We apply the unconstrained endpoint approach on a subset

of the IP range belonging to the four ISPs shown in Table

III. In particular, we explore a ‘seed set’ consisting of

approximately 200,000 randomly chosen IP addresses from

each of the four world regions. We obtain the comprehensive

results including statistics about operating systems, browsers,

malicious activity, p2p, protocols and services, chat, gaming

and most popular sites. We omit detailed results here due to

space constraints (see reference [34] for detailed results.) We

emphasize that the information we discuss below is obtained

solely using the Google-based approach, without exploiting

any information from the operational network traces, nor any

other sources.

The key question we aim to answer here is how repre-

sentative are these results. In particular, can they be used to

predict the popularity of a given application in a given world

region? Or, is there any correlation between these results and

operational network traces collected at given networks? We

answer these questions by comparing results obtained via the

unconstrained endpoint profiling approach with the ‘ground

truth,’ in the form of (i) traces from operational networks and

(ii) other publicly available information such as from news

articles about endpoint behavior. More detailed results are

available in reference [34].

Correlation with operational traces. We select the S.

American trace to exemplify correlation between the results

obtained using Google and the network traces analyzed us-

ing packet analyzers and a signature based traffic classification

tool [12]. Other network traces (Asia and N. America) show

results consistent with this example, as we explain below. In

particular, we compare the following traffic categories: p2p,

chat, gaming and browsing. Other characteristics, such as OS

type, browser type, spam, etc., are either hard or impossible

to extract from network-level traces.

We find a high correlation between the two sources. Specif-

ically, in three of the four traffic categories, we find that the

leading applications obtained using the UEP approach is also

the leading application in the trace. In particular, Gnutella

is the leading p2p system, msn is the leading chat software and

Google is the leading website in the trace. Similarly, for all

other scenarios where our system detects a strong application

presence (e.g., ppstream and Tencent QQ software in

China), that behavior is inevitably reflected in traces as well.

Necessarily, not always does the information from network

traces and the Google-based approach stay in the same

order. In particular, when UEP discovers m IP addresses

associated with Application 1 and n IP addresses associated

with Application 2, it does not strictly follow that Application

1 is more popular than Application 2 if m > n. For example,

results for gaming applications found in the traces are often not

in the same order as classified by UEP. The same can happen

for the relative order among other applications as well. For

example, Orkut comes before wikipedia in the network

trace, contrary to the results obtained via Google.

The reasons for this behavior are obvious. First, the

information collected on Google is necessarily biased in the

sense that it depends on several factors: the webpages crawled

by Google, the addresses that do make it onto webpages,

the fraction of those for which application information can

be inferred, etc. Second, the results obtained via the UEP

(Google) approach represent a spatial sample (over the IP

space) averaged over time. On the other hand, results from

the trace represent a sample taken in a short time interval, i.e.,

a few hours in this particular case (South American ISP). Still,

the key point here is that despite the necessary bias introduced

by the UEP approach and differences in the nature of the

data collected from two different sources, web and operational

networks, there is still a high correlation. By high correlation

we mean that when an application is strongly present in a

given area this result shows up consistently in both network

traces and on the web and this is shown by the top-most

applications that we have analyzed.

Correlation with other sources. Here, we compare the

results obtained via Google with other publicly available

sources. One example is the presence of operating systems

in different world regions. Windows is the leading oper-

ating system in all examined regions except France where

the Debian Linux distribution is prevalent. This is not

a surprise given that French administration and schools run

Linux distributions [10]. A similar trend can be observed in

Brazil, where Windows has only a small advantage over

Linux. Again, this is because similar measures to the ones

in France have been implemented in Brazil as well [9]. A

related issue is that of browsers. Mozilla is more popular in

France and Brazil, as a natural result of the operating systems

popularity.

Another example is p2p activity. Our results reveal some

previously-reported locality tendencies, such as torrents and

eMule being widely used in France [31], and p2p streaming

software being very popular in China [4]. Likewise, our results

confirm the well-known ‘Googlemania’ phenomenon. They

also reveal that wikipedia is a very popular website all over

the world. This is not the case for China, where the number

of hits is low, potentially due to a ban [16] at some point.

Similarly, Orkut, the social network built by Google, shows

hits in Brazil, the region where it is very popular [1], [13].

Summary. High correlation between the data collected

from the web and those from operational network traces

and elsewhere imply that the unconstrained endpoint profiling

approach can be effectively used to estimate application pop-

ularity trends in different parts of the world. We demonstrate

that this is possible to achieve in a unified and methodical

way for all different world regions, yet without using any

operational network traces.

C. When Packet-Level Traces are Available

Traffic classification (based on operational network traces)

is another case where the unconstrained endpoint approach

can be applied. Indeed, the state-of-the-art traffic classifica-

tion tools are constrained in several ways. To the best of

our knowledge, all current approaches try to classify traffic

by exclusively focusing on observed packets and connection

patterns established by the endpoints. One example is BLINC

[23], that uses a graphlet based approach to classify network

traffic. Issues with such an approach are the following. First,
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Fig. 3. The traffic amount that is directed to a certain percent of traffic
destinations. Notice how 95% of the traffic is directed to 5% of the destinations
in all cases.

BLINC is primarily an off-line tool that might be challenging

to deploy in the network core. Second, classification semantics

of such a system is not particularly rich at the application

level. For example, it can classify a flow as p2p, but cannot

say which particular protocol it is. Finally, it relies upon ad-

hoc thresholds, that might produce variable quality results

for different traces, as we show below. For the same reason,

the approach does not perform as well when sampled traffic

traces are available, as we demonstrate later. We compare

UEP against a ground truth obtained via a signature-based

traffic classification tool [12]. This tool identifies unique flows

and then ‘sessionalizes’ all packets belonging to the same

flow in to one string against which regular expressions [8] are

applied to identify the corresponding protocol. Because this

tool examines packet payloads to determine the application

type, it is necessarily more computationally intensive than

UEP.

Note that we regard our unconstrained approach as com-

plementary to other traffic classification approaches, including

BLINC. We view the web-crawling part of UEP as a first

and inexpensive pass that gathers services information that are

used to classify traffic. This can be followed by other more

complex techniques that could benefit from the UEP-based

information.

The UEP approach is online capable because of its ability to

classify traffic based on a single observed packet for which one

of the endpoints is revealed (e.g., a web server). Furthermore,

there is a huge bias of traffic destinations (e.g., 95% of traffic

is targeted to 5% of destinations [32]). The implication is that

it is possible to accurately classify 95% of traffic by reverse-

engineering 5% of endpoints, that can be cached in the

network. Indeed, Figure 3 confirms strong endpoint bias for

all traces: Asian, S. and N. American. In particular, 1% of

endpoints account for more than 60% of the traffic, and 5%

endpoints carry more than 95% of traffic in all cases.

We apply the endpoint approach to classify traffic for the

Asian and S. American ISPs for which we have packet-level

traces. In particular, we do this in two phases. First, we collect

the most popular 5% of IP addresses from the traces and

tag them by applying the methodology from Section II. Next,

we use this information to classify the traffic flows into the

classes shown in Column 3 of Table IV. The classification rule

is simple – if one of the endpoints in a flow is tagged by a

server tag, e.g., as a website, then the flow is classified

appropriately, e.g., as Browsing. The detailed classification

rules are as shown in the mapping between Column 2 and

TABLE IV
DETERMINING TRAFFIC CLASSES AND USER BEHAVIOR

Client tag Server tag Traffic class,
User behavior

web user, proxy user website Browsing

mail server mail server Mail

<game name> node <game name> Gaming
[abuser] [blocked] server

n/a <protocol name> Chat
chat server

n/a IRC server Chat

[streaming node] [streaming node] Streaming

<issue name> <issue name> Malware
affected host affected host

p2p node p2p node P2P

[ftp share] ftp server Ftp

Column 3 in Table IV.

Table 5 shows the classification results relative to BLINC

and the signature-based approach for the S. American trace.

We get similar results for other traces. In all cases, we manage

to classify over 60% of the traffic. At the same time, BLINC

classifies about 52% of traffic in the Asian case and 31.35%

in the S. American case (Figure 5 for x=1 and Table V).

Also, in addition to outperforming BLINC quantitatively, the

endpoint approach provides a much richer semantics quality.

For example, we are able not only to classify traffic as

chat, but accurately pinpoint the exact type, e.g., msn vs.

yahoo vs. usenet. Note also that our approach manages

to obtain comparable results with the signature based traffic

classification (Table V), as we discuss in detail below.

Since a flow is classified by the endpoint(s) that it involves,

the correctness of our traffic classification is dependent on the

correctness of our endpoint profiling. We next explore the issue

of correctness by comparing the set of endpoints classified by

our approach versus BLINC and the signature based traffic

classification. Table VI shows the percentage breakdown

per class (for S. America trace) in terms of endpoints found

by both BLINC and our approach (B∩U), only by BLINC
(B-U), only by our approach (U-B), both signature based

traffic classification and our approach (S∩U), only by the
signature based traffic classification (S-U) and only by our

approach (U-S) . It is clear that our approach uncovers more

endpoints and hence classifies more traffic than BLINC.

Moreover, the number of endpoints that a constrained approach

such as BLINC failed to classify is quite high (100% of

streaming, mail and Ftp). Finally, it is also worth noting that

the number of endpoints our approach failed to classify is

fairly limited (7% of chat, 10% of browsing and 8% of p2p and

0% in others). Infact, as we will explain in detail in the next

subsection, while analyzing sampled traffic, the gap between

BLINC and our approach widens even further; the number

of endpoints that only our approach classifies becomes higher

than 91% for all classes. The reasons for the performances

obtained by using BLINC can be found in [25]. The authors

evaluate BLINC on several traces with mixed results and

conclude that BLINC is not recommended for backbone links

but mostly for border links of a single-homed edge network.

Moreover, it is known that methodologies like BLINC need

a sufficient traffic mix (e.g., traffic volume, IP addresses
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TABLE V
TRAFFIC CLASSES FOR S. AMERICA

Class Packet trace
(% of total flows and number of total flows)
BLINC UEP Sign. based

Chat 0.398 5,642 3.38 47,975 2.32 32,903

Browsing 23.16 328,287 44.7 633,830 46.2 654,614

P2P 4.72 66,925 11.31 160,328 22.4 317,723

Gaming 0.14 1,996 0.15 2,123 0 0

Malware4 2.93 41,576 2.3 32,447 0 0

Streaming 0 0 0.18 2,536 0.34 4,869

Mail 0 0 1.58 22,365 2.15 30,426

Ftp 0 0 0.1 1,338 0.16 2,278

Classified 31.35 444,426 63.7 902,942 73.57 1,042,813

Unclassified 68.65 973,089 36.3 514,573 26.43 374,702

Total 100 1,417,515 100 1,417,515 100 1,417,515

present) in order to build the associated detection heuristics

or statistics used by the various methodologies. Because our

network traces are short-lived, they are necessarily unfriendly

to BLINC-like approaches.

We further compare against the results obtained by the

signature based traffic classifier. Our approach classifies more

Chat flows. The reason is that chat applications also use port

443 (HTTPS) when evading firewalls and these are exactly the

flows missing from the signature based approach. The results

for Browsing are comparable as UEP manages to classify

nearly as many flows as the signature based approach. For

P2P, the signature based approach classifies twice as much

(e.g., 11.31% UEP to 22.4% signature based). As we will

show later in Section V, UEP’s performance can be improved

by extending the framework to crawl P2P systems besides the

web. The signature based approach does not have any Gaming

or Malware signatures, so we can not compare in these two

categories. For the last three categories (Streaming, Mail and

FTP), UEP again obtains comparable results (e.g., for mail

22,365 flows for UEP compared to 30,426 flows for singature

based and for FTP 1,338 flows for UEP compared to 2,278

flows for signature based). Note, however, that signature based

traffic classification is necessarily more expensive in terms of

processing overhead and speed.

One last question remains to be answered: why was the

endpoint approach unable to classify the remaining 38% of

the traffic? By carefully examining the traces, we realize that

the vast majority of unclassified traffic is p2p traffic, either file

sharing or streaming. The key reason why these p2p ‘heavy

hitters’ were not classified by the endpoint approach is because

information about these IPs is not available on the web (or at

least not found by Google). Still, these IPs are traceable (e.g.,

[26]); indeed, we pursue such an approach in Section V below.

Independently from p2p information, our results demonstrate

that the information collected from the web is invaluable for

the traffic classification application, even more so in sampled

scenarios as we show below.
D. When Sampled Traces are Available

Packet-level traces are not always available from the net-

4Malware for BLINC indicates scan traffic. However, for our endpoint
approach it includes trojans, worms, malware, spyware and bot infected traffic.
5We do not compare Malware class due to different definitions between
BLINC and UEP.

TABLE VI
ENDPOINTS PER CLASS FOR S. AMERICA

Cls.5 Pkt. trace
Tot. B∩U B-U U-B S∩U S-U U-S

% % % % % %

C 1769 16 7 77 69 0 31

Br 9950 31 10 59 92 6 2

P 8842 14 8 78 47 51 2

G 22 95 0 5 0 0 100

S 160 0 0 100 51 49 0

M 3086 0 0 100 77 23 0

F 197 0 0 100 64 36 0

Br browsing,C chat,M mail,P p2p,S streaming,G gaming,F ftp

B BLINC, U Unconstrained Endpoint Profiling

S Signature based traffic classification
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amount relative to the IP addresses present in the non-sampled version of the
trace.

work. Often only sampled flow-level traces are available,

e.g., collected using Cisco’s Netflow. This is particularly

the case for the network core, where collecting all packets

traversing a high speed link is either infeasible or highly

impractical. Sampled data analysis has received a great

deal of attention in the research community. A well-known

observation is that sampled data causes problems to anomaly

detection algorithms (e.g., [28]). Our observation is that it also

creates problems to traffic classification tools, such as BLINC,

as well. This happens because after the sampling procedure an

insufficient amount of data needed by BLINC(IP addresses,

traffic volumes) remains in the trace, and hence the graphlets

approach simply does not work.

This is not the case for the endpoint approach. The key

reason is that popular endpoints are still present in the trace,

despite sampling. Thus, classification capabilities remain high.

Figure 4 shows the percent of IPs (both all IPs and popular

5% ones) as a function of the sampling rate. In particular, we

create sampled version of the Asian and S. American traces

by randomly selecting packets with a given probability, the

way Netflow would do it. For example, for sampling rate

of 50, the probability to select a packet is 1/50. The figure

clearly reveals that the percent of IPs present in the trace

decreases as the sampling rate increases (e.g., at sampling rate

100, 20% of IPs remain in the trace relative to no sampling

case). Still, the key observation is that the most popular IPs,

that are critically needed for the endpoint approach, do stay

in the trace, and only marginally decrease as the sampling rate

increases.

Figure 5 shows the classification results as a function of

the sampling rate. The first observation is that the endpoint
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approach remains largely unaffected by sampling. Indeed,

the percent of classified traffic drops only marginally. This

is exactly due to the slight drop in the percent of popular

IPs at high sampling rates. At the same time, BLINC’s

performance degrades as the sampling rate increases, for the

reasons explained above. In particular, at sampling rate 40, the

classification rate drops below 5%, and for the rate of 100, it

becomes close to zero. In fact, even at sampling rate of 100, the

endpoint approach identifies all the classes of traffic whereas

BLINC is completely unable to identify any class.6 Finally,

worth noting is that the endpoint approach shows consistent

results for our third trace (again around 60%). We do not show

it in Figure 5 because it is a Netflow trace with the sampling

rate of 1:200.

IV. ENDPOINT PROFILING

Next, we apply our methodology to answer the following

questions: (i) how can we cluster endpoints that show alike

access patterns and how similar or different are these classes

for different world regions, and (ii) where do clients fetch

content from, i.e., how local or international are clients’ access

patterns for these regions? In all scenarios, we utilize the

maximum possible information that we have, and apply our

approach accordingly. When no traces are available (Europe),

we stick with pure endpoint approach (Section III-B). When

packet level traces are available (Asia and S. America), we

apply the endpoint approach as explained in Section III-C.

Finally, when flow level traces are available (N. America), we

apply the approach from Section III-D.

A. Endpoint Clustering

1) Algorithm: First, we introduce an algorithm we selected

to perform endpoint clustering. The key objective of such

clustering is to better understand endpoints’ behavior at a

large scale in different world regions. Employing clustering in

networking has been done before (e.g., [20], [22], [36]). We

select the autoclass algorithm [19], mainly because it provides

unsupervised clustering. This means that, in a Bayesian man-

ner, it can actually infer the different classes from the input

data and classify the given inputs with a certain probability

into one of these classes. The autoclass algorithm selects

the optimal number of classes and also the definition of

these classes using a Bayesian maximum posterior probability

criterion. In addition to accurate clustering, the algorithm

6Due to sampling, the % of flows in classes may change; accordingly, it
is possible that the % of classified flows in a given class increases relative to
the non-sampled case.

TABLE VII
CLASSIFICATION ON REGIONS

Cls. S. Amer. Asia N. Amer. Eur.

1 B,C- 0.421 B- 0.644 B- 0.648 B- 0.520

2 B- 0.209 B,C- 0.254 B,M- 0.096 B,M- 0.291

3 B,M- 0.109 P- 0.034 B,C- 0.087 B,L- 0.120

4 B,P- 0.087 G- 0.016 B,L- 0.073 P- 0.064

5 C- 0.077 F,B- 0.015 P- 0.038 S,B- 0.003

6 P,C- 0.068 P,B- 0.015 B,P- 0.036 G- 0.002

7 S,B- 0.022 F,C- 0.012 P,C- 0.017

8 G- 0.007 S,B - 0.007 P,S- 0.003

9 P,S- 0.003 G- 0.002

B browsing, C chat, M mail, P p2p
S streaming, G gaming, L malware, F ftp

also provides a ranking of the variables according to their

significance in generating the classification.

For each of the regions we explore, input to the endpoint

clustering algorithm is a set of tagged IP addresses from the

region’s network. Since in this case we are interested in the

access behavior of users in the network, we determine the

tags via an extension of the mapping in Table IV. For regions

with traces, if an in-network IP address sends/receives traffic

to/from an out-network IP address that is tagged by a server

tag, e.g., as website, then the in-network address is tagged

appropriately (using the mapping from column 2 to 3 in the

table) as browsing. For regions with no trace (Europe), if an

in-network IP address has a client tag found via the endpoint

method, then it is tagged via the mapping from column 1 to

3 in the table and we also note the URL7of the site where the

tag was obtained from. Thus, the in-network IP addresses are

tagged as browsing, chat, mail, p2p, ftp, streaming, gaming,

malware or combination thereof. The sample set for the

explored networks is around 4,000 in-network IP addresses

for all regions except N. American, where we gather about

21,000 addresses.

2) Evaluation: Table VII lists the top clusters generated

for each region. It also provides the proportion of endpoints

from a region that were grouped into a cluster. It should be

noted that this result captures correlation in clients’ behavior,

not necessarily the absolute presence of a given characteristic.

The insights from Table VII are as follows.

First, browsing along with a combination of browsing and

chat or browsing and mail seems to be the most common

behavior globally. Another interesting result is that gaming

users typically do not engage in any other activity on the

Internet. Indeed, gaming users are clustered in a separate group

of their own in all scenarios. Likewise, Asian users show

a much higher interest in Internet gaming relative to other

regions. This is not a big surprise given the known popu-

larity of Massively Multiplayer Online Role-Playing Games

(MMORPG) in Asia [3]. Finally, it is worth noting that p2p

users do engage in other online activities such as browsing

and chat globally albeit in varying proportions.

Interestingly enough, these global trends remain the same

irrespective of the trace duration. For instance, the Asian and

S. American packet-level traces are of short duration (order

of hours) while the N. American trace is of the order of

7The use of the URL is explained in the next subsection on Traffic Locality.
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several days. Most importantly, the global trends are the same

for the European network for which we relied strictly upon

the endpoint approach, without using any operational traces.

This implies that even in the absence of operational network

traces, valuable information regarding endpoints’ behavior can

be effectively gleaned from the web.

B. Traffic Locality

Next, we explore where do clients fetch the content from,

i.e., how local or global are clients’ access patterns? Such

patterns might not necessarily reflect clients’ interests at the

social or cultural levels. For example, a client might access

highly ‘global’ content, generated at another continent, by

fetching it from a nearby Content Distribution Network’s

replica. Likewise, clients can get engaged in a strictly ‘local’

debate at a forum hosted at the other part of the world. Still,

we argue that the results we present below are necessarily

affected by clients’ interests at social and cultural planes as

well.

We proceed as follows. First, from the mechanism men-

tioned in Subsection IV-A1 we obtain a pair of in-, out-network

IP addresses for each flow. Note that for the case where we

only have the URL, we obtain its corresponding IP address via

DNS lookup. Next, we obtain the AS-level distance between

the two IP addresses by analyzing the BGP Routing Tables

as obtained from Routeviews [15]. Finally, we resolve the

country code for a given destination AS by using the relevant

Internet Routing Registries database (ARIN, RIPE, APNIC

and LACNIC).

Figure 6 shows the results obtained from traces. The above

plots in the figure show AS-level distance among sources

and destinations; the plots below show the country code

distribution for a given AS destination. As an example, for the

S. American trace, the AS-level figure shows that the majority

of the destinations are 2 AS-level hops away from the sources.

The corresponding figure below indicates that destinations two

AS hops away from sources reside in Brazil (around 30%), in

US (around 30%) and in Europe (about 20%), etc.

The most interesting insights from Figure 6 are as follows.

First, results for China show very high locality: not only are

the majority of destinations in China as well, but majority

of communication beyond country borders still stays in Asia.

Surprisingly (or not), similar behavior holds for US, where

the vast majority of content is fetched from within US. Quite

opposite behavior holds for S. American endpoints. In addition

to the local access patterns, they show strong global behavior

as well: S. America’s clients fetch a lot of content from US

and Europe.

Figure 7 show the results obtained by solely using the

Google based approach. While for obvious reasons (time vs.

IP space average, see Section III-B) we cannot fully match

the trace- and Google-based results, the conclusions we drew

above still hold. That is, clients residing in China and North

America fetch mostly local content. For China, 76% of the

accesses are local while for North America, 67% of the

accesses are local. In the case of Brazil the local accesses are

around 17% in accordance with the low local traffic observed

while analyzing the traces. Another insight (the rightmost plots

in Figure 7) is that clients in Europe show highly international

behavior: they fetch a lot of content from US and much less

from Asia.

When considering p2p traffic locality we notice a slight

increase in the intra-AS traffic (compared to the average) -

23% for the Asian ISP, 27% for the S. American ISP and 14%

for the N. American ISP. However, notice that a large volume

of p2p traffic, i.e., 73% to 86%, is inter-AS that creates

well-known problems for ISPs.

V. ENDPOINT PROFILING IN A BROADER CONTEXT

Endpoint profiling in a broader context means using

publicly-available information, not necessarily from the web

only, to classify endpoints. While we demonstrated above that

a large amount of information is indeed available on the web,

other sources of information are available as well. Here, we

explore two additional sources of information: p2p networks

and DNS. We find both approaches to be complementary to

our web-based scheme.

A. Endpoint Profiling via P2p Crawling

For p2p communication to progress, the ‘entry points’

to such systems are necessarily available on the web (e.g.,

torrentportal.com). Yet, the next stage in communica-

tion, i.e., getting the appropriate peer IP address to download

a file from, is not necessarily available on the web. Still,

this information is publicly available. It could be collected

by crawling such systems (e.g., [26]).

We have chosen to investigate the BitTorrent system [2],

by building a simple BitTorrent crawler. The crawler takes as

input a set of file info hashes that we have harvested from

the web; next, it contacts the trackers and for each of the

files obtains a set of peer IP addresses. To validate these

addresses, we contact the peers and request to download data.

Then, we proceed and record the IP addresses of the peers that

actually respond to our download requests. In this way we have

obtained a list of 1,550,173 unique IP addresses spread over

the world and somewhat evenly distributed across IP ranges.

Once we gathered this information we proceed and tag all the

obtained endpoints as BitTorrent p2p nodes.

Next, we explore how this new information can help in the

traffic classification scenarios explained in Section III-C above.

Necessarily, we classify the (still) unclassified traffic coming

from these nodes as p2p traffic. Our results show that we can

on average improve the classification result for about 3% in

all scenarios. We explain this result below.

First, in our crawling effort, we did not focus on a targeted

IP range of interest, but have crawled everywhere. Undoubt-

edly, if focused on a given area, we expect that better results

are possible to achieve. Moreover, while we explored only

a single p2p system, crawling other popular p2p systems

would certainly further improve the result. In that context,

the information obtained by our generic web-based approach

can help understand which p2p systems are popular in given

regions, hence worth crawling. One final observation is that

the classification improvement obtained based on p2p crawling

is independent from the traffic sampling rate. This is not a

surprise: given that p2p flows are long-lived, despite even very

low sampling rate, the IP addresses of interest still stay in the

sampled packet trace.
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Fig. 6. Traffic locality (from available traces). For this experiment we considered each network range from Table III separately and we computed what
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values that were recorded for a network range in that region while the Avg. is an average across network ranges from that region.
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Fig. 7. Traffic locality (Google-based approach). The same experiment as above only instead of traffic from a given region we considered endpoint
proofs-of-access, e.g., accesses to a certain forum, obtained from Google.

B. Endpoint Profiling via Reverse DNS Lookups

Another source of information is the reverse DNS lookup

service: when presented with an IP address, the system returns

the domain name associated with the given address. The

question is if useful information about the IP address can be

extracted from the given name. Such an approach has been

proposed in [33]. In an attempt to find IP addresses associated

with routers, the authors mine the domain names that are

obtained via reverse DNS lookups. While the authors restrict

themselves to discovering router IP addresses, this approach

is not limited to routers only; it can be applied to determine

endpoints with different functions, e.g., gaming, chat servers,

etc. We explore such an approach below.

We proceed as follows. We implement a DNS mining tech-

nique (details below) and then compare it to the Web-based

UEP approach for the S. America’s network. In particular, we

collect IP addresses classified as a given server type by the

Web-based UEP approach in the S. America’s range, and then

query the reverse DNS lookup service with these addresses.

To classify the endpoints based or reverse DNS lookups, in

majority of scenarios we apply the rapid search approach

(Section II) on DNS domain names using keywords such as

gnutella, irc, emule, game, proxy, mail, ad, etc. We

do not apply the rapid search approach for web servers, but

simply proceed as follows. Once prompted with the domain

name, we try to connect to a given server. If successful, we

tag the given endpoint as a web server.

Figure 8 shows the results. We compare eight different

endpoint types, Gnutella nodes, IRC servers, Emule nodes,

Game servers, Proxy servers, Web servers, Ad servers and
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Mail servers. The portion of bars in the figure marked by

’UEP’ means that these IP addresses were classified by Web-

based UEP, but no meaningful information was extractable

from DNS reverse lookups. The portion of bars marked by

’No rec.’ are IP addresses that are successfully classified by the

Web-based UEP approach, but the DNS returned the so-called

’NX Domain,’ and hence the reverse DNS lookup cannot

give useful information. Finally, the portion of bars marked

by ’Found’ means that these IP addresses are successfully

classified both by UEP and the reverse lookup approach.

Figure 8 shows that Web-based UEP manages to gather

much more information than DNS mining is capable of. For

example, when dealing with p2p information, either Gnutella

or Emule, DNS mining performs really poorly: none of the

IPs found by Web-based UEP are found by DNS mining in

the Gnutella case, and less then 2% are found in the Emule

case. Even in the case of Gaming, Mail, Proxy, or Ad Servers,

the information found by DNS mining is not significantly

improved (between 6% and 10%). Moreover, a large amount

of the servers found by UEP do not even have a DNS record.

The only areas in which DNS mining performs comparable

to Web-based UEP is for IRC and Web Servers. Still, it

should be noted that extracting web information is not directly

possible via DNS, but we had to apply active probing as well.

Finally, it is interesting that for about 20% of web servers

found by Web-based UEP, no DNS records exist. Thus, while

DNS records do provide information about endpoints, this

information is relatively limited. At the same time, Web-based

UEP does not rely only on a single service but on a multitude

of services that make endpoint information available on the

web. Finally, the UEP approach is not limited to servers only,

it can reveal information about clients as well.

VI. DISCUSSION AND RELATED WORK

How accurate is the information on the web? The first

question we discuss here is how trustworthy is the information

on the web? To get a sense for this, we performed small scale

experiments. In particular, we checked links posted on forums;

also, we did a port-scan against randomly chosen servers from

various server lists available on the web. We found that the

information is highly accurate. The vast majority of links

posted on forums were active, pointing to the ‘right’ content.

Likewise, the ports that were found active on the servers fully

correlate with the information available on the web.

How up-to-date is the information on the web? This is

related to the following two questions: (i) How quickly can we

detect new or updated information about endpoints? (ii) How

can we detect if the information on a given site is outdated?

For the first issue, we depend upon Google, that is capable

of quickly detecting new content on the web; the Google

crawler determines how frequently content changes on a page

and schedules the frequency of crawl to that page accordingly

[6]. For detecting outdated information, we can leverage the

following information: First, many websites provide informa-

tion about the time the content was ‘last updated’. Likewise,

entries on Internet forums typically indicate the date and time

of access. In both cases, this information could be used to

filter-out outdated information, e.g., older than a given date.
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Fig. 8. Comparison of information found via Web-based UEP to information
found by mining DNS names.

In order to further analyze this aspect we have conducted a

study on the staleness of the information that we have used.

We took the top 300 websites that gave most hits that were

used in the traffic classification part (using only the tags taken

from these websites we have managed to classify 91% of the

traffic). On this set we retrieved the Last Update date. We

found that for 88% of these websites we could retrieve such

a date and 71% of the websites analyzed have been updated

in the last month. While via this method we are unable to

estimate staleness of a particular IP address, we are still able

to show a high level of freshness for the websites that provide

information about IP addresses.

Vertical search engines. Information available on the web

has traditionally been crawled and indexed by generic search

engines such as Google [5], Yahoo [17] and Microsoft

Search [11]. However, recently there has been a steady

increase in ‘vertical search engines’ that crawl and index only

specific content such as Indeed [7], a job search engine

and Spock [14], a people search engine. To the best of our

knowledge, this paper is the first to propose using information

available on the web for understanding endpoints, i.e., IP

addresses. In this regards, our work can be considered as a first

but important step towards developing a vertical search engine

for endpoints. Indeed, one of our future research directions is

to build such a crawler to index IP address information from

the web (instead of overriding on generic search engines).

VII. CONCLUSIONS

In this paper, we proposed a novel approach to the endpoint

profiling problem. The key idea is to shift the research focus

from mining operational network traces to extracting the

information about endpoints from elsewhere, e.g., web or

p2p systems. We developed and deployed a profiling tool

that operates on top of the Google search engine. It is

capable of collecting, automatically processing, and strate-

gically combining information about endpoints, and finally

tagging the same with extracted features. We demonstrated that

the proposed approach can (i) accurately predict application

and protocol usage trends even when no network traces are

available; (ii) outperform state-of-the-art classification tools

such as BLINC when packet traces are available; and (iii)

retain high classification capabilities even when only sampled

flow-level traces are available.
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We applied our approach to profile endpoints at four differ-

ent world regions, and provided a unique and comprehensive

set of insights about (i) network applications and protocols

used in these regions, (ii) characteristics of endpoint classes

that share similar access patterns, and (iii) clients’ locality

properties. Finally, we demonstrated that complementary UEP

approaches, such as p2p- or DNS-based schemes, can further

improve the Web-based UEP performance.
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