
Project 1
Web client and server

EECS 340
Jan 2015

Project Goals

•  Implement a simple WWW client and server
– Examples

•  Use a restricted subset of HTTP
•  Use socket programming
•  To give you experience with HTTP and sockets

programming

HTTP Protocol

Sockets

HTTP Usage

•  HTTP is the protocol that supports
communication between web browsers and
web servers.

•  A “Web Server” is a HTTP server

•  Most clients/servers today speak version 1.1,
but 1.0 is also in use.

Request - Response

•  HTTP has a simple structure:
– client sends a request
– server returns a reply.

HTTP 1.0+ Request

•  Lines of text (ASCII).

•  Lines end with CRLF “\r\n”

•  First line is called “Request-Line”

Request-Line
Headers . . .

Content...

blank line

Request Line

Method URL HTTP-Version\r\n

•  The request line contains 3 tokens (words).

•  space characters “ “ separate the tokens.

•  Newline (\n) seems to work by itself (but the
protocol requires CRLF)

The Header Lines

•  After the Request-Line come a number
(possibly zero) of HTTP header lines.

•  Each header line contains an attribute name
followed by a “:” followed by a space and the
attribute value.

The Name and Value are just text.

Headers

•  Request Headers provide information to the
server about the client
– what kind of client
– what kind of content will be accepted
– who is making the request

•  There can be 0 headers (HTTP 1.0)
•  HTTP 1.1 requires a Host: header

Example HTTP Headers

Accept: text/html

Host: www.northwestern.edu

From: neytmann@cybersurg.com

User-Agent: Mozilla/4.0

Example GET Request
GET /~akuzma/index.html HTTP/1.1
Accept: */*
Host: www.cs.northwestern.edu
User-Agent: Internet Explorer
From: cheater@cs.northwestern.edu

 There is a blank line here

Well Known Address

•  The “well known” TCP port for HTTP servers is
port 80.

•  Other ports can be used as well...

Four parts

•  0: Get build , configure and run the minet stack
•  1: HTTP Client
•  2: Connection-at-a-time HTTP Server
•  3: Simple select-based Multiple-connection-at-

a-time server
•  4: Complex …. (Extra Credit)

