
Netprog: TCP Details 1

TCP Details

Introduction to Networking
Recital 4

Netprog: TCP Details 2

The TCP Project
Important Handouts:

• Minet
– The Minet Technical Report
– The Minet Socket Interface

• TCP Guides
– RFC 793 (in convenient HTML format), RFC 1122
– A very useful summary and picture of the TCP State diagram
– TCP, UDP and IP pocket guide includes header details
– Brief overview of TCP contains a nice summary of the

essentials
– Here is a page with nice TCP animations. They explain TCP

connection startup, termination, data flow and flow control
and cumulative ack concepts. Please see animations 20_1
to 20_5.

Netprog: TCP Details 3

TCP Lingo

• When a client requests a connection, it
sends a “SYN” segment (a special TCP
segment) to the server port.

• SYN stands for synchronize. The SYN
message includes the client’s ISN.

• ISN is Initial Sequence Number.

Netprog: TCP Details 4

More...
• Every TCP segment includes a

Sequence Number that refers to the first
byte of data included in the segment.

• Every TCP segment includes a Request
Number (Acknowledgement Number)
that indicates the byte number of the
next data that is expected to be
received.
– All bytes up through this number have

already been received.

Netprog: TCP Details 5

And more...

• There are a bunch of control flags:
– URG: urgent data included.
– ACK: this segment is (among other things)

an acknowledgement.
– RST: error - abort the session.
– SYN: synchronize Sequence Numbers

(setup)
– FIN: polite connection termination.

Netprog: TCP Details 6

And more...

• MSS: Maximum segment size (A TCP
option)

• Window: Every ACK includes a Window
field that tells the sender how many
bytes it can send before the receiver will
have to toss it away (due to fixed buffer
size).

Netprog: TCP Details 7

TCP Connection Creation

• A server accepts a connection.
– Must be looking for new connections!

• A client requests a connection.
– Must know where the server is!

Netprog: TCP Details 8

Client Starts

• A client starts by sending a SYN
segment with the following information:
– Client’s ISN (generated pseudo-randomly)
– Maximum Receive Window for client.
– Optionally (but usually) MSS (largest

datagram accepted).
– No payload! (Only TCP headers)

Netprog: TCP Details 9

Sever Response
• When a waiting server sees a new

connection request, the server sends
back a SYN segment with:
– Server’s ISN (generated pseudo-randomly)
– Request Number is Client ISN+1
– Maximum Receive Window for server.
– Optionally (but usually) MSS
– No payload! (Only TCP headers)

Netprog: TCP Details 10

Finally

• When the Server’s SYN is received, the
client sends back an ACK with:
– Request Number is Server’s ISN+1

Netprog: TCP Details 11

Client Server

SYN
ISN=X
SYN

ISN=X
1

SYN
ISN=Y ACK=X+1

SYN
ISN=Y ACK=X+1

2

ACK=Y+1ACK=Y+1 3

tim
e

Netprog: TCP Details 12

Why 3-Way?

• Why is the third message necessary?

• HINTS:
– TCP is a reliable service.
– IP delivers each TCP segment.
– IP is not reliable.

Netprog: TCP Details 13

TCP Data and ACK

• Once the connection is established,
data can be sent.

• Each data segment includes a
sequence number identifying the first
byte in the segment.

• Each segment (data or empty) includes
a request number indicating what data
has been received.

Netprog: TCP Details 14

Buffering

• Keep in mind that TCP is (usually) part
of the Operating System. It takes care
of all these details asynchronously.

• The TCP layer doesn’t know when the
application will ask for any received
data.

• TCP buffers incoming data so it’s ready
when we ask for it.

Netprog: TCP Details 15

TCP Buffers

• Both the client and server allocate
buffers to hold incoming and outgoing
data
– The TCP layer does this.

• Both the client and server announce
with every ACK how much buffer space
remains (the Window field in a TCP
segment).

Netprog: TCP Details 16

Send Buffers

• The application gives the TCP layer some
data to send.

• The data is put in a send buffer, where it
stays until the data is ACK’d.
– it has to stay, as it might need to be sent again!

• The TCP layer won’t accept data from the
application unless (or until) there is buffer
space.

Netprog: TCP Details 17

ACKs

• A receiver doesn’t have to ACK every
segment (it can ACK many segments
with a single ACK segment).

• Each ACK can also contain outgoing
data (piggybacking).

• If a sender doesn’t get an ACK after
some time limit (MSL) it resends the
data.

Netprog: TCP Details 18

TCP Segment Order

• Most TCP implementations will accept out-of-
order segments (if there is room in the buffer).

• Once the missing segments arrive, a single
ACK can be sent for the whole thing.

• Remember: IP delivers TCP segments, and
IP in not reliable - IP datagrams can be lost or
arrive out of order.

Netprog: TCP Details 19

Termination

• The TCP layer can send a RST
segment that terminates a connection if
something is wrong.

• Usually the application tells TCP to
terminate the connection politely with a
FIN segment.

Netprog: TCP Details 20

FIN

• Either end of the connection can initiate
termination.

• A FIN is sent, which means the
application is done sending data.

• The FIN is ACK’d.
• The other end must now send a FIN.
• That FIN must be ACK’d.

Netprog: TCP Details 21

App1 App2

FIN
SN=X
FIN

SN=X
1

ACK=X+1ACK=X+1 2

ACK=Y+1ACK=Y+1 4

FIN
SN=Y
FIN

SN=Y
3

...

